Mercurial > dive4elements > gnv-client
view gnv-artifacts/src/main/java/de/intevation/gnv/statistics/TimeseriesStatistics.java @ 417:9697675ede21
Removed warning, which told the user that no gap detection is implemented for horizontalcrossprofile charts.
gnv-artifacts/trunk@465 c6561f87-3c4e-4783-a992-168aeb5c3f6f
author | Ingo Weinzierl <ingo.weinzierl@intevation.de> |
---|---|
date | Mon, 21 Dec 2009 13:55:42 +0000 |
parents | 04a242c67fe6 |
children | 88cd37c3b5e4 |
line wrap: on
line source
/** * Title: TimeseriesStatistics, $Header: /share/gdi/SDI-Suite/Repository/projekte/BSH-GDI/genericViewer/src/main/java/de/conterra/bsh/gdi/gnviewer/output/statistics/TimeseriesStatistics.java,v 1.3 2008/08/18 14:50:33 drewnak Exp $ * Source: $Source: /share/gdi/SDI-Suite/Repository/projekte/BSH-GDI/genericViewer/src/main/java/de/conterra/bsh/gdi/gnviewer/output/statistics/TimeseriesStatistics.java,v $ * created by: Stefan Blume (blume) * erstellt am: 06.12.2007 * Copyright: con terra GmbH, 2005 * * modified by: $Author: drewnak $ * modified on: $Date: 2008/08/18 14:50:33 $ * Version: $Revision: 1.3 $ * TAG: $Name: $ * locked from: $Locker: $ * CVS State: $State: Exp $ * Project: $ProjectName$ */ package de.intevation.gnv.statistics; import java.sql.SQLException; import java.util.ArrayList; import java.util.Collection; import java.util.Iterator; import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; import org.apache.commons.math.stat.regression.SimpleRegression; import org.apache.log4j.Logger; import de.intevation.gnv.geobackend.base.Result; import de.intevation.gnv.state.describedata.KeyValueDescibeData; import de.intevation.gnv.statistics.exception.StatisticsException; /** * The class <code>TimeseriesStatistics</code> fulfills the following purposes: * <ol> * <li></li> * </ol> * * @author blume * @author Tim Englich <tim.englich@intevation.de> * @version 1.0 * @serial 1.0 * @see * @since 06.12.2007 18:02:27 */ public class TimeseriesStatistics implements Statistics { /** * Default Logging instance */ private static Logger log = Logger.getLogger(TimeseriesStatistics.class); /** * Constructor */ public TimeseriesStatistics() { super(); } /** * @see de.intevation.gnv.statistics.Statistics#calculateStatistics(java.util.Collection, java.util.Collection, java.util.Collection, java.util.Collection) */ public Collection<StatisticSet> calculateStatistics( Collection<Result> resultSet, Collection<KeyValueDescibeData> parameters, Collection<KeyValueDescibeData> measurements, Collection<KeyValueDescibeData> dates ) throws StatisticsException { this.clearStatistics(); DescriptiveStatistics lStatistics = null; SimpleRegression lRegression = null; Collection<StatisticSet> statisticSets = new ArrayList<StatisticSet>(); String break1, break2, break3; int lSeries = 1; try { Iterator<Result> resultIterator = resultSet.iterator(); if (resultIterator.hasNext()) { Result row = resultIterator.next(); Result previousRow = row; break1 = row.getString("GROUP1"); break2 = row.getString("GROUP2"); break3 = row.getString("GROUP3"); lRegression = new SimpleRegression(); lStatistics = new DescriptiveStatistics(); while (resultIterator.hasNext()) { if (!break1.equals(row.getString("GROUP1")) || !break2.equals(row.getString("GROUP2")) || !break3.equals(row.getString("GROUP3")) ) { String statisticsName = this.generateStatisticsName(break1, break2, break3, parameters, measurements, dates); statisticSets.add(this.generateStatisticsValues(lStatistics, lRegression, statisticsName)); lStatistics.clear(); lRegression.clear(); this.clearStatistics(); lStatistics.addValue(row.getDouble("YORDINATE")); Double x = this.calculateXOrdinateValue(previousRow,row); lRegression.addData(x, row.getDouble("YORDINATE")); break1 = row.getString("GROUP1"); break2 = row.getString("GROUP2"); break3 = row.getString("GROUP3"); previousRow = row; row = resultIterator.next(); lSeries++; } else { Double value = row.getDouble("YORDINATE"); if (value != null) { lStatistics.addValue(value.doubleValue()); Double x = calculateXOrdinateValue(previousRow,row); lRegression.addData(x, value.doubleValue()); } previousRow = row; row = resultIterator.next(); } } lStatistics.addValue(row.getDouble("YORDINATE")); Double x = this.calculateXOrdinateValue(previousRow, row); lRegression.addData(x, row.getDouble("YORDINATE")); String statisticsName = this.generateStatisticsName(break1, break2, break3, parameters, measurements, dates); statisticSets.add(this.generateStatisticsValues(lStatistics, lRegression, statisticsName)); lStatistics.clear(); lRegression.clear(); } } catch (Exception e) { log.error(e.getMessage(), e); } return statisticSets; } protected void clearStatistics(){} /** * * @param break1 * @param break2 * @param break3 * @param parameters * @param measurements * @param dates * @return */ protected String generateStatisticsName(String break1, String break2, String break3, Collection<KeyValueDescibeData> parameters, Collection<KeyValueDescibeData> measurements, Collection<KeyValueDescibeData> dates){ log.debug("TimeseriesStatistics.generateStatisticsName"); return this.findValueTitle(parameters,break1)+ " "+ this.findValueTitle(measurements,break2) + "m"; } protected String findValueTitle(Collection<KeyValueDescibeData> values, String id) { log.debug("TimeseriesStatistics.findValueTitle "+ id); if (values != null) { Iterator<KeyValueDescibeData> it = values.iterator(); while (it.hasNext()) { KeyValueDescibeData data = it.next(); if (id.equals(data.getKey())) { return data.getValue(); } } } return ""; } protected double calculateXOrdinateValue(Result previousRow, Result row) throws SQLException { return new Double((row.getDate("XORDINATE")).getTime() / 1000 / 3600); } /** * @param lStatistics * @param lRegression * @param lStats * @param lSeries */ private StatisticSet generateStatisticsValues(DescriptiveStatistics lStatistics, SimpleRegression lRegression, String statisticName) { StatisticSet statisticSet = new StatisticSet(statisticName); statisticSet.addStatistic(new Statistic( "gnviewer.statistics.descriptive.arithmeticMean", lStatistics .getMean())); statisticSet.addStatistic(new Statistic( "gnviewer.statistics.descriptive.kurtosis", lStatistics .getKurtosis())); statisticSet.addStatistic(new Statistic("gnviewer.statistics.descriptive.max", lStatistics.getMax())); statisticSet.addStatistic(new Statistic("gnviewer.statistics.descriptive.min", lStatistics.getMin())); statisticSet.addStatistic(new Statistic("gnviewer.statistics.descriptive.n", lStatistics.getN())); statisticSet.addStatistic(new Statistic( "gnviewer.statistics.descriptive.percentile.90", lStatistics .getPercentile(90))); statisticSet.addStatistic(new Statistic( "gnviewer.statistics.descriptive.percentile.75", lStatistics .getPercentile(75))); statisticSet.addStatistic(new Statistic( "gnviewer.statistics.descriptive.percentile.50", lStatistics .getPercentile(50))); statisticSet.addStatistic(new Statistic( "gnviewer.statistics.descriptive.percentile.10", lStatistics .getPercentile(10))); statisticSet.addStatistic(new Statistic( "gnviewer.statistics.descriptive.deviation", lStatistics .getStandardDeviation())); statisticSet.addStatistic(new Statistic( "gnviewer.statistics.descriptive.variance", lStatistics .getVariance())); statisticSet.addStatistic(new Statistic( "gnviewer.statistics.descriptive.intercept", lRegression .getIntercept())); statisticSet.addStatistic(new Statistic("gnviewer.statistics.descriptive.slope", lRegression.getSlope())); return statisticSet; } }