Mercurial > trustbridge > nss-cmake-static
comparison nspr/pr/src/misc/prtime.c @ 0:1e5118fa0cb1
This is NSS with a Cmake Buildsyste
To compile a static NSS library for Windows we've used the
Chromium-NSS fork and added a Cmake buildsystem to compile
it statically for Windows. See README.chromium for chromium
changes and README.trustbridge for our modifications.
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Mon, 28 Jul 2014 10:47:06 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:1e5118fa0cb1 |
---|---|
1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ | |
2 /* This Source Code Form is subject to the terms of the Mozilla Public | |
3 * License, v. 2.0. If a copy of the MPL was not distributed with this | |
4 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | |
5 | |
6 /* | |
7 * prtime.c -- | |
8 * | |
9 * NSPR date and time functions | |
10 * | |
11 */ | |
12 | |
13 #include "prinit.h" | |
14 #include "prtime.h" | |
15 #include "prlock.h" | |
16 #include "prprf.h" | |
17 #include "prlog.h" | |
18 | |
19 #include <string.h> | |
20 #include <ctype.h> | |
21 #include <errno.h> /* for EINVAL */ | |
22 #include <time.h> | |
23 | |
24 /* | |
25 * The COUNT_LEAPS macro counts the number of leap years passed by | |
26 * till the start of the given year Y. At the start of the year 4 | |
27 * A.D. the number of leap years passed by is 0, while at the start of | |
28 * the year 5 A.D. this count is 1. The number of years divisible by | |
29 * 100 but not divisible by 400 (the non-leap years) is deducted from | |
30 * the count to get the correct number of leap years. | |
31 * | |
32 * The COUNT_DAYS macro counts the number of days since 01/01/01 till the | |
33 * start of the given year Y. The number of days at the start of the year | |
34 * 1 is 0 while the number of days at the start of the year 2 is 365 | |
35 * (which is ((2)-1) * 365) and so on. The reference point is 01/01/01 | |
36 * midnight 00:00:00. | |
37 */ | |
38 | |
39 #define COUNT_LEAPS(Y) ( ((Y)-1)/4 - ((Y)-1)/100 + ((Y)-1)/400 ) | |
40 #define COUNT_DAYS(Y) ( ((Y)-1)*365 + COUNT_LEAPS(Y) ) | |
41 #define DAYS_BETWEEN_YEARS(A, B) (COUNT_DAYS(B) - COUNT_DAYS(A)) | |
42 | |
43 /* | |
44 * Static variables used by functions in this file | |
45 */ | |
46 | |
47 /* | |
48 * The following array contains the day of year for the last day of | |
49 * each month, where index 1 is January, and day 0 is January 1. | |
50 */ | |
51 | |
52 static const int lastDayOfMonth[2][13] = { | |
53 {-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364}, | |
54 {-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365} | |
55 }; | |
56 | |
57 /* | |
58 * The number of days in a month | |
59 */ | |
60 | |
61 static const PRInt8 nDays[2][12] = { | |
62 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, | |
63 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31} | |
64 }; | |
65 | |
66 /* | |
67 * Declarations for internal functions defined later in this file. | |
68 */ | |
69 | |
70 static void ComputeGMT(PRTime time, PRExplodedTime *gmt); | |
71 static int IsLeapYear(PRInt16 year); | |
72 static void ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset); | |
73 | |
74 /* | |
75 *------------------------------------------------------------------------ | |
76 * | |
77 * ComputeGMT -- | |
78 * | |
79 * Caveats: | |
80 * - we ignore leap seconds | |
81 * | |
82 *------------------------------------------------------------------------ | |
83 */ | |
84 | |
85 static void | |
86 ComputeGMT(PRTime time, PRExplodedTime *gmt) | |
87 { | |
88 PRInt32 tmp, rem; | |
89 PRInt32 numDays; | |
90 PRInt64 numDays64, rem64; | |
91 int isLeap; | |
92 PRInt64 sec; | |
93 PRInt64 usec; | |
94 PRInt64 usecPerSec; | |
95 PRInt64 secPerDay; | |
96 | |
97 /* | |
98 * We first do the usec, sec, min, hour thing so that we do not | |
99 * have to do LL arithmetic. | |
100 */ | |
101 | |
102 LL_I2L(usecPerSec, 1000000L); | |
103 LL_DIV(sec, time, usecPerSec); | |
104 LL_MOD(usec, time, usecPerSec); | |
105 LL_L2I(gmt->tm_usec, usec); | |
106 /* Correct for weird mod semantics so the remainder is always positive */ | |
107 if (gmt->tm_usec < 0) { | |
108 PRInt64 one; | |
109 | |
110 LL_I2L(one, 1L); | |
111 LL_SUB(sec, sec, one); | |
112 gmt->tm_usec += 1000000L; | |
113 } | |
114 | |
115 LL_I2L(secPerDay, 86400L); | |
116 LL_DIV(numDays64, sec, secPerDay); | |
117 LL_MOD(rem64, sec, secPerDay); | |
118 /* We are sure both of these numbers can fit into PRInt32 */ | |
119 LL_L2I(numDays, numDays64); | |
120 LL_L2I(rem, rem64); | |
121 if (rem < 0) { | |
122 numDays--; | |
123 rem += 86400L; | |
124 } | |
125 | |
126 /* Compute day of week. Epoch started on a Thursday. */ | |
127 | |
128 gmt->tm_wday = (numDays + 4) % 7; | |
129 if (gmt->tm_wday < 0) { | |
130 gmt->tm_wday += 7; | |
131 } | |
132 | |
133 /* Compute the time of day. */ | |
134 | |
135 gmt->tm_hour = rem / 3600; | |
136 rem %= 3600; | |
137 gmt->tm_min = rem / 60; | |
138 gmt->tm_sec = rem % 60; | |
139 | |
140 /* | |
141 * Compute the year by finding the 400 year period, then working | |
142 * down from there. | |
143 * | |
144 * Since numDays is originally the number of days since January 1, 1970, | |
145 * we must change it to be the number of days from January 1, 0001. | |
146 */ | |
147 | |
148 numDays += 719162; /* 719162 = days from year 1 up to 1970 */ | |
149 tmp = numDays / 146097; /* 146097 = days in 400 years */ | |
150 rem = numDays % 146097; | |
151 gmt->tm_year = tmp * 400 + 1; | |
152 | |
153 /* Compute the 100 year period. */ | |
154 | |
155 tmp = rem / 36524; /* 36524 = days in 100 years */ | |
156 rem %= 36524; | |
157 if (tmp == 4) { /* the 400th year is a leap year */ | |
158 tmp = 3; | |
159 rem = 36524; | |
160 } | |
161 gmt->tm_year += tmp * 100; | |
162 | |
163 /* Compute the 4 year period. */ | |
164 | |
165 tmp = rem / 1461; /* 1461 = days in 4 years */ | |
166 rem %= 1461; | |
167 gmt->tm_year += tmp * 4; | |
168 | |
169 /* Compute which year in the 4. */ | |
170 | |
171 tmp = rem / 365; | |
172 rem %= 365; | |
173 if (tmp == 4) { /* the 4th year is a leap year */ | |
174 tmp = 3; | |
175 rem = 365; | |
176 } | |
177 | |
178 gmt->tm_year += tmp; | |
179 gmt->tm_yday = rem; | |
180 isLeap = IsLeapYear(gmt->tm_year); | |
181 | |
182 /* Compute the month and day of month. */ | |
183 | |
184 for (tmp = 1; lastDayOfMonth[isLeap][tmp] < gmt->tm_yday; tmp++) { | |
185 } | |
186 gmt->tm_month = --tmp; | |
187 gmt->tm_mday = gmt->tm_yday - lastDayOfMonth[isLeap][tmp]; | |
188 | |
189 gmt->tm_params.tp_gmt_offset = 0; | |
190 gmt->tm_params.tp_dst_offset = 0; | |
191 } | |
192 | |
193 | |
194 /* | |
195 *------------------------------------------------------------------------ | |
196 * | |
197 * PR_ExplodeTime -- | |
198 * | |
199 * Cf. struct tm *gmtime(const time_t *tp) and | |
200 * struct tm *localtime(const time_t *tp) | |
201 * | |
202 *------------------------------------------------------------------------ | |
203 */ | |
204 | |
205 PR_IMPLEMENT(void) | |
206 PR_ExplodeTime( | |
207 PRTime usecs, | |
208 PRTimeParamFn params, | |
209 PRExplodedTime *exploded) | |
210 { | |
211 ComputeGMT(usecs, exploded); | |
212 exploded->tm_params = params(exploded); | |
213 ApplySecOffset(exploded, exploded->tm_params.tp_gmt_offset | |
214 + exploded->tm_params.tp_dst_offset); | |
215 } | |
216 | |
217 | |
218 /* | |
219 *------------------------------------------------------------------------ | |
220 * | |
221 * PR_ImplodeTime -- | |
222 * | |
223 * Cf. time_t mktime(struct tm *tp) | |
224 * Note that 1 year has < 2^25 seconds. So an PRInt32 is large enough. | |
225 * | |
226 *------------------------------------------------------------------------ | |
227 */ | |
228 PR_IMPLEMENT(PRTime) | |
229 PR_ImplodeTime(const PRExplodedTime *exploded) | |
230 { | |
231 PRExplodedTime copy; | |
232 PRTime retVal; | |
233 PRInt64 secPerDay, usecPerSec; | |
234 PRInt64 temp; | |
235 PRInt64 numSecs64; | |
236 PRInt32 numDays; | |
237 PRInt32 numSecs; | |
238 | |
239 /* Normalize first. Do this on our copy */ | |
240 copy = *exploded; | |
241 PR_NormalizeTime(©, PR_GMTParameters); | |
242 | |
243 numDays = DAYS_BETWEEN_YEARS(1970, copy.tm_year); | |
244 | |
245 numSecs = copy.tm_yday * 86400 + copy.tm_hour * 3600 | |
246 + copy.tm_min * 60 + copy.tm_sec; | |
247 | |
248 LL_I2L(temp, numDays); | |
249 LL_I2L(secPerDay, 86400); | |
250 LL_MUL(temp, temp, secPerDay); | |
251 LL_I2L(numSecs64, numSecs); | |
252 LL_ADD(numSecs64, numSecs64, temp); | |
253 | |
254 /* apply the GMT and DST offsets */ | |
255 LL_I2L(temp, copy.tm_params.tp_gmt_offset); | |
256 LL_SUB(numSecs64, numSecs64, temp); | |
257 LL_I2L(temp, copy.tm_params.tp_dst_offset); | |
258 LL_SUB(numSecs64, numSecs64, temp); | |
259 | |
260 LL_I2L(usecPerSec, 1000000L); | |
261 LL_MUL(temp, numSecs64, usecPerSec); | |
262 LL_I2L(retVal, copy.tm_usec); | |
263 LL_ADD(retVal, retVal, temp); | |
264 | |
265 return retVal; | |
266 } | |
267 | |
268 /* | |
269 *------------------------------------------------------------------------- | |
270 * | |
271 * IsLeapYear -- | |
272 * | |
273 * Returns 1 if the year is a leap year, 0 otherwise. | |
274 * | |
275 *------------------------------------------------------------------------- | |
276 */ | |
277 | |
278 static int IsLeapYear(PRInt16 year) | |
279 { | |
280 if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0) | |
281 return 1; | |
282 else | |
283 return 0; | |
284 } | |
285 | |
286 /* | |
287 * 'secOffset' should be less than 86400 (i.e., a day). | |
288 * 'time' should point to a normalized PRExplodedTime. | |
289 */ | |
290 | |
291 static void | |
292 ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset) | |
293 { | |
294 time->tm_sec += secOffset; | |
295 | |
296 /* Note that in this implementation we do not count leap seconds */ | |
297 if (time->tm_sec < 0 || time->tm_sec >= 60) { | |
298 time->tm_min += time->tm_sec / 60; | |
299 time->tm_sec %= 60; | |
300 if (time->tm_sec < 0) { | |
301 time->tm_sec += 60; | |
302 time->tm_min--; | |
303 } | |
304 } | |
305 | |
306 if (time->tm_min < 0 || time->tm_min >= 60) { | |
307 time->tm_hour += time->tm_min / 60; | |
308 time->tm_min %= 60; | |
309 if (time->tm_min < 0) { | |
310 time->tm_min += 60; | |
311 time->tm_hour--; | |
312 } | |
313 } | |
314 | |
315 if (time->tm_hour < 0) { | |
316 /* Decrement mday, yday, and wday */ | |
317 time->tm_hour += 24; | |
318 time->tm_mday--; | |
319 time->tm_yday--; | |
320 if (time->tm_mday < 1) { | |
321 time->tm_month--; | |
322 if (time->tm_month < 0) { | |
323 time->tm_month = 11; | |
324 time->tm_year--; | |
325 if (IsLeapYear(time->tm_year)) | |
326 time->tm_yday = 365; | |
327 else | |
328 time->tm_yday = 364; | |
329 } | |
330 time->tm_mday = nDays[IsLeapYear(time->tm_year)][time->tm_month]; | |
331 } | |
332 time->tm_wday--; | |
333 if (time->tm_wday < 0) | |
334 time->tm_wday = 6; | |
335 } else if (time->tm_hour > 23) { | |
336 /* Increment mday, yday, and wday */ | |
337 time->tm_hour -= 24; | |
338 time->tm_mday++; | |
339 time->tm_yday++; | |
340 if (time->tm_mday > | |
341 nDays[IsLeapYear(time->tm_year)][time->tm_month]) { | |
342 time->tm_mday = 1; | |
343 time->tm_month++; | |
344 if (time->tm_month > 11) { | |
345 time->tm_month = 0; | |
346 time->tm_year++; | |
347 time->tm_yday = 0; | |
348 } | |
349 } | |
350 time->tm_wday++; | |
351 if (time->tm_wday > 6) | |
352 time->tm_wday = 0; | |
353 } | |
354 } | |
355 | |
356 PR_IMPLEMENT(void) | |
357 PR_NormalizeTime(PRExplodedTime *time, PRTimeParamFn params) | |
358 { | |
359 int daysInMonth; | |
360 PRInt32 numDays; | |
361 | |
362 /* Get back to GMT */ | |
363 time->tm_sec -= time->tm_params.tp_gmt_offset | |
364 + time->tm_params.tp_dst_offset; | |
365 time->tm_params.tp_gmt_offset = 0; | |
366 time->tm_params.tp_dst_offset = 0; | |
367 | |
368 /* Now normalize GMT */ | |
369 | |
370 if (time->tm_usec < 0 || time->tm_usec >= 1000000) { | |
371 time->tm_sec += time->tm_usec / 1000000; | |
372 time->tm_usec %= 1000000; | |
373 if (time->tm_usec < 0) { | |
374 time->tm_usec += 1000000; | |
375 time->tm_sec--; | |
376 } | |
377 } | |
378 | |
379 /* Note that we do not count leap seconds in this implementation */ | |
380 if (time->tm_sec < 0 || time->tm_sec >= 60) { | |
381 time->tm_min += time->tm_sec / 60; | |
382 time->tm_sec %= 60; | |
383 if (time->tm_sec < 0) { | |
384 time->tm_sec += 60; | |
385 time->tm_min--; | |
386 } | |
387 } | |
388 | |
389 if (time->tm_min < 0 || time->tm_min >= 60) { | |
390 time->tm_hour += time->tm_min / 60; | |
391 time->tm_min %= 60; | |
392 if (time->tm_min < 0) { | |
393 time->tm_min += 60; | |
394 time->tm_hour--; | |
395 } | |
396 } | |
397 | |
398 if (time->tm_hour < 0 || time->tm_hour >= 24) { | |
399 time->tm_mday += time->tm_hour / 24; | |
400 time->tm_hour %= 24; | |
401 if (time->tm_hour < 0) { | |
402 time->tm_hour += 24; | |
403 time->tm_mday--; | |
404 } | |
405 } | |
406 | |
407 /* Normalize month and year before mday */ | |
408 if (time->tm_month < 0 || time->tm_month >= 12) { | |
409 time->tm_year += time->tm_month / 12; | |
410 time->tm_month %= 12; | |
411 if (time->tm_month < 0) { | |
412 time->tm_month += 12; | |
413 time->tm_year--; | |
414 } | |
415 } | |
416 | |
417 /* Now that month and year are in proper range, normalize mday */ | |
418 | |
419 if (time->tm_mday < 1) { | |
420 /* mday too small */ | |
421 do { | |
422 /* the previous month */ | |
423 time->tm_month--; | |
424 if (time->tm_month < 0) { | |
425 time->tm_month = 11; | |
426 time->tm_year--; | |
427 } | |
428 time->tm_mday += nDays[IsLeapYear(time->tm_year)][time->tm_month]; | |
429 } while (time->tm_mday < 1); | |
430 } else { | |
431 daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month]; | |
432 while (time->tm_mday > daysInMonth) { | |
433 /* mday too large */ | |
434 time->tm_mday -= daysInMonth; | |
435 time->tm_month++; | |
436 if (time->tm_month > 11) { | |
437 time->tm_month = 0; | |
438 time->tm_year++; | |
439 } | |
440 daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month]; | |
441 } | |
442 } | |
443 | |
444 /* Recompute yday and wday */ | |
445 time->tm_yday = time->tm_mday + | |
446 lastDayOfMonth[IsLeapYear(time->tm_year)][time->tm_month]; | |
447 | |
448 numDays = DAYS_BETWEEN_YEARS(1970, time->tm_year) + time->tm_yday; | |
449 time->tm_wday = (numDays + 4) % 7; | |
450 if (time->tm_wday < 0) { | |
451 time->tm_wday += 7; | |
452 } | |
453 | |
454 /* Recompute time parameters */ | |
455 | |
456 time->tm_params = params(time); | |
457 | |
458 ApplySecOffset(time, time->tm_params.tp_gmt_offset | |
459 + time->tm_params.tp_dst_offset); | |
460 } | |
461 | |
462 | |
463 /* | |
464 *------------------------------------------------------------------------- | |
465 * | |
466 * PR_LocalTimeParameters -- | |
467 * | |
468 * returns the time parameters for the local time zone | |
469 * | |
470 * The following uses localtime() from the standard C library. | |
471 * (time.h) This is our fallback implementation. Unix, PC, and BeOS | |
472 * use this version. A platform may have its own machine-dependent | |
473 * implementation of this function. | |
474 * | |
475 *------------------------------------------------------------------------- | |
476 */ | |
477 | |
478 #if defined(HAVE_INT_LOCALTIME_R) | |
479 | |
480 /* | |
481 * In this case we could define the macro as | |
482 * #define MT_safe_localtime(timer, result) \ | |
483 * (localtime_r(timer, result) == 0 ? result : NULL) | |
484 * I chose to compare the return value of localtime_r with -1 so | |
485 * that I can catch the cases where localtime_r returns a pointer | |
486 * to struct tm. The macro definition above would not be able to | |
487 * detect such mistakes because it is legal to compare a pointer | |
488 * with 0. | |
489 */ | |
490 | |
491 #define MT_safe_localtime(timer, result) \ | |
492 (localtime_r(timer, result) == -1 ? NULL: result) | |
493 | |
494 #elif defined(HAVE_POINTER_LOCALTIME_R) | |
495 | |
496 #define MT_safe_localtime localtime_r | |
497 | |
498 #else | |
499 | |
500 #define HAVE_LOCALTIME_MONITOR 1 /* We use 'monitor' to serialize our calls | |
501 * to localtime(). */ | |
502 static PRLock *monitor = NULL; | |
503 | |
504 static struct tm *MT_safe_localtime(const time_t *clock, struct tm *result) | |
505 { | |
506 struct tm *tmPtr; | |
507 int needLock = PR_Initialized(); /* We need to use a lock to protect | |
508 * against NSPR threads only when the | |
509 * NSPR thread system is activated. */ | |
510 | |
511 if (needLock) PR_Lock(monitor); | |
512 | |
513 /* | |
514 * Microsoft (all flavors) localtime() returns a NULL pointer if 'clock' | |
515 * represents a time before midnight January 1, 1970. In | |
516 * that case, we also return a NULL pointer and the struct tm | |
517 * object pointed to by 'result' is not modified. | |
518 * | |
519 * Watcom C/C++ 11.0 localtime() treats time_t as unsigned long | |
520 * hence, does not recognize negative values of clock as pre-1/1/70. | |
521 * We have to manually check (WIN16 only) for negative value of | |
522 * clock and return NULL. | |
523 * | |
524 * With negative values of clock, OS/2 returns the struct tm for | |
525 * clock plus ULONG_MAX. So we also have to check for the invalid | |
526 * structs returned for timezones west of Greenwich when clock == 0. | |
527 */ | |
528 | |
529 tmPtr = localtime(clock); | |
530 | |
531 #if defined(WIN16) || defined(XP_OS2) | |
532 if ( (PRInt32) *clock < 0 || | |
533 ( (PRInt32) *clock == 0 && tmPtr->tm_year != 70)) | |
534 result = NULL; | |
535 else | |
536 *result = *tmPtr; | |
537 #else | |
538 if (tmPtr) { | |
539 *result = *tmPtr; | |
540 } else { | |
541 result = NULL; | |
542 } | |
543 #endif /* WIN16 */ | |
544 | |
545 if (needLock) PR_Unlock(monitor); | |
546 | |
547 return result; | |
548 } | |
549 | |
550 #endif /* definition of MT_safe_localtime() */ | |
551 | |
552 void _PR_InitTime(void) | |
553 { | |
554 #ifdef HAVE_LOCALTIME_MONITOR | |
555 monitor = PR_NewLock(); | |
556 #endif | |
557 #ifdef WINCE | |
558 _MD_InitTime(); | |
559 #endif | |
560 } | |
561 | |
562 void _PR_CleanupTime(void) | |
563 { | |
564 #ifdef HAVE_LOCALTIME_MONITOR | |
565 if (monitor) { | |
566 PR_DestroyLock(monitor); | |
567 monitor = NULL; | |
568 } | |
569 #endif | |
570 #ifdef WINCE | |
571 _MD_CleanupTime(); | |
572 #endif | |
573 } | |
574 | |
575 #if defined(XP_UNIX) || defined(XP_PC) || defined(XP_BEOS) | |
576 | |
577 PR_IMPLEMENT(PRTimeParameters) | |
578 PR_LocalTimeParameters(const PRExplodedTime *gmt) | |
579 { | |
580 | |
581 PRTimeParameters retVal; | |
582 struct tm localTime; | |
583 time_t secs; | |
584 PRTime secs64; | |
585 PRInt64 usecPerSec; | |
586 PRInt64 usecPerSec_1; | |
587 PRInt64 maxInt32; | |
588 PRInt64 minInt32; | |
589 PRInt32 dayOffset; | |
590 PRInt32 offset2Jan1970; | |
591 PRInt32 offsetNew; | |
592 int isdst2Jan1970; | |
593 | |
594 /* | |
595 * Calculate the GMT offset. First, figure out what is | |
596 * 00:00:00 Jan. 2, 1970 GMT (which is exactly a day, or 86400 | |
597 * seconds, since the epoch) in local time. Then we calculate | |
598 * the difference between local time and GMT in seconds: | |
599 * gmt_offset = local_time - GMT | |
600 * | |
601 * Caveat: the validity of this calculation depends on two | |
602 * assumptions: | |
603 * 1. Daylight saving time was not in effect on Jan. 2, 1970. | |
604 * 2. The time zone of the geographic location has not changed | |
605 * since Jan. 2, 1970. | |
606 */ | |
607 | |
608 secs = 86400L; | |
609 (void) MT_safe_localtime(&secs, &localTime); | |
610 | |
611 /* GMT is 00:00:00, 2nd of Jan. */ | |
612 | |
613 offset2Jan1970 = (PRInt32)localTime.tm_sec | |
614 + 60L * (PRInt32)localTime.tm_min | |
615 + 3600L * (PRInt32)localTime.tm_hour | |
616 + 86400L * (PRInt32)((PRInt32)localTime.tm_mday - 2L); | |
617 | |
618 isdst2Jan1970 = localTime.tm_isdst; | |
619 | |
620 /* | |
621 * Now compute DST offset. We calculate the overall offset | |
622 * of local time from GMT, similar to above. The overall | |
623 * offset has two components: gmt offset and dst offset. | |
624 * We subtract gmt offset from the overall offset to get | |
625 * the dst offset. | |
626 * overall_offset = local_time - GMT | |
627 * overall_offset = gmt_offset + dst_offset | |
628 * ==> dst_offset = local_time - GMT - gmt_offset | |
629 */ | |
630 | |
631 secs64 = PR_ImplodeTime(gmt); /* This is still in microseconds */ | |
632 LL_I2L(usecPerSec, PR_USEC_PER_SEC); | |
633 LL_I2L(usecPerSec_1, PR_USEC_PER_SEC - 1); | |
634 /* Convert to seconds, truncating down (3.1 -> 3 and -3.1 -> -4) */ | |
635 if (LL_GE_ZERO(secs64)) { | |
636 LL_DIV(secs64, secs64, usecPerSec); | |
637 } else { | |
638 LL_NEG(secs64, secs64); | |
639 LL_ADD(secs64, secs64, usecPerSec_1); | |
640 LL_DIV(secs64, secs64, usecPerSec); | |
641 LL_NEG(secs64, secs64); | |
642 } | |
643 LL_I2L(maxInt32, PR_INT32_MAX); | |
644 LL_I2L(minInt32, PR_INT32_MIN); | |
645 if (LL_CMP(secs64, >, maxInt32) || LL_CMP(secs64, <, minInt32)) { | |
646 /* secs64 is too large or too small for time_t (32-bit integer) */ | |
647 retVal.tp_gmt_offset = offset2Jan1970; | |
648 retVal.tp_dst_offset = 0; | |
649 return retVal; | |
650 } | |
651 LL_L2I(secs, secs64); | |
652 | |
653 /* | |
654 * On Windows, localtime() (and our MT_safe_localtime() too) | |
655 * returns a NULL pointer for time before midnight January 1, | |
656 * 1970 GMT. In that case, we just use the GMT offset for | |
657 * Jan 2, 1970 and assume that DST was not in effect. | |
658 */ | |
659 | |
660 if (MT_safe_localtime(&secs, &localTime) == NULL) { | |
661 retVal.tp_gmt_offset = offset2Jan1970; | |
662 retVal.tp_dst_offset = 0; | |
663 return retVal; | |
664 } | |
665 | |
666 /* | |
667 * dayOffset is the offset between local time and GMT in | |
668 * the day component, which can only be -1, 0, or 1. We | |
669 * use the day of the week to compute dayOffset. | |
670 */ | |
671 | |
672 dayOffset = (PRInt32) localTime.tm_wday - gmt->tm_wday; | |
673 | |
674 /* | |
675 * Need to adjust for wrapping around of day of the week from | |
676 * 6 back to 0. | |
677 */ | |
678 | |
679 if (dayOffset == -6) { | |
680 /* Local time is Sunday (0) and GMT is Saturday (6) */ | |
681 dayOffset = 1; | |
682 } else if (dayOffset == 6) { | |
683 /* Local time is Saturday (6) and GMT is Sunday (0) */ | |
684 dayOffset = -1; | |
685 } | |
686 | |
687 offsetNew = (PRInt32)localTime.tm_sec - gmt->tm_sec | |
688 + 60L * ((PRInt32)localTime.tm_min - gmt->tm_min) | |
689 + 3600L * ((PRInt32)localTime.tm_hour - gmt->tm_hour) | |
690 + 86400L * (PRInt32)dayOffset; | |
691 | |
692 if (localTime.tm_isdst <= 0) { | |
693 /* DST is not in effect */ | |
694 retVal.tp_gmt_offset = offsetNew; | |
695 retVal.tp_dst_offset = 0; | |
696 } else { | |
697 /* DST is in effect */ | |
698 if (isdst2Jan1970 <=0) { | |
699 /* | |
700 * DST was not in effect back in 2 Jan. 1970. | |
701 * Use the offset back then as the GMT offset, | |
702 * assuming the time zone has not changed since then. | |
703 */ | |
704 retVal.tp_gmt_offset = offset2Jan1970; | |
705 retVal.tp_dst_offset = offsetNew - offset2Jan1970; | |
706 } else { | |
707 /* | |
708 * DST was also in effect back in 2 Jan. 1970. | |
709 * Then our clever trick (or rather, ugly hack) fails. | |
710 * We will just assume DST offset is an hour. | |
711 */ | |
712 retVal.tp_gmt_offset = offsetNew - 3600; | |
713 retVal.tp_dst_offset = 3600; | |
714 } | |
715 } | |
716 | |
717 return retVal; | |
718 } | |
719 | |
720 #endif /* defined(XP_UNIX) || defined(XP_PC) || defined(XP_BEOS) */ | |
721 | |
722 /* | |
723 *------------------------------------------------------------------------ | |
724 * | |
725 * PR_USPacificTimeParameters -- | |
726 * | |
727 * The time parameters function for the US Pacific Time Zone. | |
728 * | |
729 *------------------------------------------------------------------------ | |
730 */ | |
731 | |
732 /* | |
733 * Returns the mday of the first sunday of the month, where | |
734 * mday and wday are for a given day in the month. | |
735 * mdays start with 1 (e.g. 1..31). | |
736 * wdays start with 0 and are in the range 0..6. 0 = Sunday. | |
737 */ | |
738 #define firstSunday(mday, wday) (((mday - wday + 7 - 1) % 7) + 1) | |
739 | |
740 /* | |
741 * Returns the mday for the N'th Sunday of the month, where | |
742 * mday and wday are for a given day in the month. | |
743 * mdays start with 1 (e.g. 1..31). | |
744 * wdays start with 0 and are in the range 0..6. 0 = Sunday. | |
745 * N has the following values: 0 = first, 1 = second (etc), -1 = last. | |
746 * ndays is the number of days in that month, the same value as the | |
747 * mday of the last day of the month. | |
748 */ | |
749 static PRInt32 | |
750 NthSunday(PRInt32 mday, PRInt32 wday, PRInt32 N, PRInt32 ndays) | |
751 { | |
752 PRInt32 firstSun = firstSunday(mday, wday); | |
753 | |
754 if (N < 0) | |
755 N = (ndays - firstSun) / 7; | |
756 return firstSun + (7 * N); | |
757 } | |
758 | |
759 typedef struct DSTParams { | |
760 PRInt8 dst_start_month; /* 0 = January */ | |
761 PRInt8 dst_start_Nth_Sunday; /* N as defined above */ | |
762 PRInt8 dst_start_month_ndays; /* ndays as defined above */ | |
763 PRInt8 dst_end_month; /* 0 = January */ | |
764 PRInt8 dst_end_Nth_Sunday; /* N as defined above */ | |
765 PRInt8 dst_end_month_ndays; /* ndays as defined above */ | |
766 } DSTParams; | |
767 | |
768 static const DSTParams dstParams[2] = { | |
769 /* year < 2007: First April Sunday - Last October Sunday */ | |
770 { 3, 0, 30, 9, -1, 31 }, | |
771 /* year >= 2007: Second March Sunday - First November Sunday */ | |
772 { 2, 1, 31, 10, 0, 30 } | |
773 }; | |
774 | |
775 PR_IMPLEMENT(PRTimeParameters) | |
776 PR_USPacificTimeParameters(const PRExplodedTime *gmt) | |
777 { | |
778 const DSTParams *dst; | |
779 PRTimeParameters retVal; | |
780 PRExplodedTime st; | |
781 | |
782 /* | |
783 * Based on geographic location and GMT, figure out offset of | |
784 * standard time from GMT. In this example implementation, we | |
785 * assume the local time zone is US Pacific Time. | |
786 */ | |
787 | |
788 retVal.tp_gmt_offset = -8L * 3600L; | |
789 | |
790 /* | |
791 * Make a copy of GMT. Note that the tm_params field of this copy | |
792 * is ignored. | |
793 */ | |
794 | |
795 st.tm_usec = gmt->tm_usec; | |
796 st.tm_sec = gmt->tm_sec; | |
797 st.tm_min = gmt->tm_min; | |
798 st.tm_hour = gmt->tm_hour; | |
799 st.tm_mday = gmt->tm_mday; | |
800 st.tm_month = gmt->tm_month; | |
801 st.tm_year = gmt->tm_year; | |
802 st.tm_wday = gmt->tm_wday; | |
803 st.tm_yday = gmt->tm_yday; | |
804 | |
805 /* Apply the offset to GMT to obtain the local standard time */ | |
806 ApplySecOffset(&st, retVal.tp_gmt_offset); | |
807 | |
808 if (st.tm_year < 2007) { /* first April Sunday - Last October Sunday */ | |
809 dst = &dstParams[0]; | |
810 } else { /* Second March Sunday - First November Sunday */ | |
811 dst = &dstParams[1]; | |
812 } | |
813 | |
814 /* | |
815 * Apply the rules on standard time or GMT to obtain daylight saving | |
816 * time offset. In this implementation, we use the US DST rule. | |
817 */ | |
818 if (st.tm_month < dst->dst_start_month) { | |
819 retVal.tp_dst_offset = 0L; | |
820 } else if (st.tm_month == dst->dst_start_month) { | |
821 int NthSun = NthSunday(st.tm_mday, st.tm_wday, | |
822 dst->dst_start_Nth_Sunday, | |
823 dst->dst_start_month_ndays); | |
824 if (st.tm_mday < NthSun) { /* Before starting Sunday */ | |
825 retVal.tp_dst_offset = 0L; | |
826 } else if (st.tm_mday == NthSun) { /* Starting Sunday */ | |
827 /* 01:59:59 PST -> 03:00:00 PDT */ | |
828 if (st.tm_hour < 2) { | |
829 retVal.tp_dst_offset = 0L; | |
830 } else { | |
831 retVal.tp_dst_offset = 3600L; | |
832 } | |
833 } else { /* After starting Sunday */ | |
834 retVal.tp_dst_offset = 3600L; | |
835 } | |
836 } else if (st.tm_month < dst->dst_end_month) { | |
837 retVal.tp_dst_offset = 3600L; | |
838 } else if (st.tm_month == dst->dst_end_month) { | |
839 int NthSun = NthSunday(st.tm_mday, st.tm_wday, | |
840 dst->dst_end_Nth_Sunday, | |
841 dst->dst_end_month_ndays); | |
842 if (st.tm_mday < NthSun) { /* Before ending Sunday */ | |
843 retVal.tp_dst_offset = 3600L; | |
844 } else if (st.tm_mday == NthSun) { /* Ending Sunday */ | |
845 /* 01:59:59 PDT -> 01:00:00 PST */ | |
846 if (st.tm_hour < 1) { | |
847 retVal.tp_dst_offset = 3600L; | |
848 } else { | |
849 retVal.tp_dst_offset = 0L; | |
850 } | |
851 } else { /* After ending Sunday */ | |
852 retVal.tp_dst_offset = 0L; | |
853 } | |
854 } else { | |
855 retVal.tp_dst_offset = 0L; | |
856 } | |
857 return retVal; | |
858 } | |
859 | |
860 /* | |
861 *------------------------------------------------------------------------ | |
862 * | |
863 * PR_GMTParameters -- | |
864 * | |
865 * Returns the PRTimeParameters for Greenwich Mean Time. | |
866 * Trivially, both the tp_gmt_offset and tp_dst_offset fields are 0. | |
867 * | |
868 *------------------------------------------------------------------------ | |
869 */ | |
870 | |
871 PR_IMPLEMENT(PRTimeParameters) | |
872 PR_GMTParameters(const PRExplodedTime *gmt) | |
873 { | |
874 PRTimeParameters retVal = { 0, 0 }; | |
875 return retVal; | |
876 } | |
877 | |
878 /* | |
879 * The following code implements PR_ParseTimeString(). It is based on | |
880 * ns/lib/xp/xp_time.c, revision 1.25, by Jamie Zawinski <jwz@netscape.com>. | |
881 */ | |
882 | |
883 /* | |
884 * We only recognize the abbreviations of a small subset of time zones | |
885 * in North America, Europe, and Japan. | |
886 * | |
887 * PST/PDT: Pacific Standard/Daylight Time | |
888 * MST/MDT: Mountain Standard/Daylight Time | |
889 * CST/CDT: Central Standard/Daylight Time | |
890 * EST/EDT: Eastern Standard/Daylight Time | |
891 * AST: Atlantic Standard Time | |
892 * NST: Newfoundland Standard Time | |
893 * GMT: Greenwich Mean Time | |
894 * BST: British Summer Time | |
895 * MET: Middle Europe Time | |
896 * EET: Eastern Europe Time | |
897 * JST: Japan Standard Time | |
898 */ | |
899 | |
900 typedef enum | |
901 { | |
902 TT_UNKNOWN, | |
903 | |
904 TT_SUN, TT_MON, TT_TUE, TT_WED, TT_THU, TT_FRI, TT_SAT, | |
905 | |
906 TT_JAN, TT_FEB, TT_MAR, TT_APR, TT_MAY, TT_JUN, | |
907 TT_JUL, TT_AUG, TT_SEP, TT_OCT, TT_NOV, TT_DEC, | |
908 | |
909 TT_PST, TT_PDT, TT_MST, TT_MDT, TT_CST, TT_CDT, TT_EST, TT_EDT, | |
910 TT_AST, TT_NST, TT_GMT, TT_BST, TT_MET, TT_EET, TT_JST | |
911 } TIME_TOKEN; | |
912 | |
913 /* | |
914 * This parses a time/date string into a PRTime | |
915 * (microseconds after "1-Jan-1970 00:00:00 GMT"). | |
916 * It returns PR_SUCCESS on success, and PR_FAILURE | |
917 * if the time/date string can't be parsed. | |
918 * | |
919 * Many formats are handled, including: | |
920 * | |
921 * 14 Apr 89 03:20:12 | |
922 * 14 Apr 89 03:20 GMT | |
923 * Fri, 17 Mar 89 4:01:33 | |
924 * Fri, 17 Mar 89 4:01 GMT | |
925 * Mon Jan 16 16:12 PDT 1989 | |
926 * Mon Jan 16 16:12 +0130 1989 | |
927 * 6 May 1992 16:41-JST (Wednesday) | |
928 * 22-AUG-1993 10:59:12.82 | |
929 * 22-AUG-1993 10:59pm | |
930 * 22-AUG-1993 12:59am | |
931 * 22-AUG-1993 12:59 PM | |
932 * Friday, August 04, 1995 3:54 PM | |
933 * 06/21/95 04:24:34 PM | |
934 * 20/06/95 21:07 | |
935 * 95-06-08 19:32:48 EDT | |
936 * | |
937 * If the input string doesn't contain a description of the timezone, | |
938 * we consult the `default_to_gmt' to decide whether the string should | |
939 * be interpreted relative to the local time zone (PR_FALSE) or GMT (PR_TRUE). | |
940 * The correct value for this argument depends on what standard specified | |
941 * the time string which you are parsing. | |
942 */ | |
943 | |
944 PR_IMPLEMENT(PRStatus) | |
945 PR_ParseTimeStringToExplodedTime( | |
946 const char *string, | |
947 PRBool default_to_gmt, | |
948 PRExplodedTime *result) | |
949 { | |
950 TIME_TOKEN dotw = TT_UNKNOWN; | |
951 TIME_TOKEN month = TT_UNKNOWN; | |
952 TIME_TOKEN zone = TT_UNKNOWN; | |
953 int zone_offset = -1; | |
954 int dst_offset = 0; | |
955 int date = -1; | |
956 PRInt32 year = -1; | |
957 int hour = -1; | |
958 int min = -1; | |
959 int sec = -1; | |
960 | |
961 const char *rest = string; | |
962 | |
963 int iterations = 0; | |
964 | |
965 PR_ASSERT(string && result); | |
966 if (!string || !result) return PR_FAILURE; | |
967 | |
968 while (*rest) | |
969 { | |
970 | |
971 if (iterations++ > 1000) | |
972 { | |
973 return PR_FAILURE; | |
974 } | |
975 | |
976 switch (*rest) | |
977 { | |
978 case 'a': case 'A': | |
979 if (month == TT_UNKNOWN && | |
980 (rest[1] == 'p' || rest[1] == 'P') && | |
981 (rest[2] == 'r' || rest[2] == 'R')) | |
982 month = TT_APR; | |
983 else if (zone == TT_UNKNOWN && | |
984 (rest[1] == 's' || rest[1] == 'S') && | |
985 (rest[2] == 't' || rest[2] == 'T')) | |
986 zone = TT_AST; | |
987 else if (month == TT_UNKNOWN && | |
988 (rest[1] == 'u' || rest[1] == 'U') && | |
989 (rest[2] == 'g' || rest[2] == 'G')) | |
990 month = TT_AUG; | |
991 break; | |
992 case 'b': case 'B': | |
993 if (zone == TT_UNKNOWN && | |
994 (rest[1] == 's' || rest[1] == 'S') && | |
995 (rest[2] == 't' || rest[2] == 'T')) | |
996 zone = TT_BST; | |
997 break; | |
998 case 'c': case 'C': | |
999 if (zone == TT_UNKNOWN && | |
1000 (rest[1] == 'd' || rest[1] == 'D') && | |
1001 (rest[2] == 't' || rest[2] == 'T')) | |
1002 zone = TT_CDT; | |
1003 else if (zone == TT_UNKNOWN && | |
1004 (rest[1] == 's' || rest[1] == 'S') && | |
1005 (rest[2] == 't' || rest[2] == 'T')) | |
1006 zone = TT_CST; | |
1007 break; | |
1008 case 'd': case 'D': | |
1009 if (month == TT_UNKNOWN && | |
1010 (rest[1] == 'e' || rest[1] == 'E') && | |
1011 (rest[2] == 'c' || rest[2] == 'C')) | |
1012 month = TT_DEC; | |
1013 break; | |
1014 case 'e': case 'E': | |
1015 if (zone == TT_UNKNOWN && | |
1016 (rest[1] == 'd' || rest[1] == 'D') && | |
1017 (rest[2] == 't' || rest[2] == 'T')) | |
1018 zone = TT_EDT; | |
1019 else if (zone == TT_UNKNOWN && | |
1020 (rest[1] == 'e' || rest[1] == 'E') && | |
1021 (rest[2] == 't' || rest[2] == 'T')) | |
1022 zone = TT_EET; | |
1023 else if (zone == TT_UNKNOWN && | |
1024 (rest[1] == 's' || rest[1] == 'S') && | |
1025 (rest[2] == 't' || rest[2] == 'T')) | |
1026 zone = TT_EST; | |
1027 break; | |
1028 case 'f': case 'F': | |
1029 if (month == TT_UNKNOWN && | |
1030 (rest[1] == 'e' || rest[1] == 'E') && | |
1031 (rest[2] == 'b' || rest[2] == 'B')) | |
1032 month = TT_FEB; | |
1033 else if (dotw == TT_UNKNOWN && | |
1034 (rest[1] == 'r' || rest[1] == 'R') && | |
1035 (rest[2] == 'i' || rest[2] == 'I')) | |
1036 dotw = TT_FRI; | |
1037 break; | |
1038 case 'g': case 'G': | |
1039 if (zone == TT_UNKNOWN && | |
1040 (rest[1] == 'm' || rest[1] == 'M') && | |
1041 (rest[2] == 't' || rest[2] == 'T')) | |
1042 zone = TT_GMT; | |
1043 break; | |
1044 case 'j': case 'J': | |
1045 if (month == TT_UNKNOWN && | |
1046 (rest[1] == 'a' || rest[1] == 'A') && | |
1047 (rest[2] == 'n' || rest[2] == 'N')) | |
1048 month = TT_JAN; | |
1049 else if (zone == TT_UNKNOWN && | |
1050 (rest[1] == 's' || rest[1] == 'S') && | |
1051 (rest[2] == 't' || rest[2] == 'T')) | |
1052 zone = TT_JST; | |
1053 else if (month == TT_UNKNOWN && | |
1054 (rest[1] == 'u' || rest[1] == 'U') && | |
1055 (rest[2] == 'l' || rest[2] == 'L')) | |
1056 month = TT_JUL; | |
1057 else if (month == TT_UNKNOWN && | |
1058 (rest[1] == 'u' || rest[1] == 'U') && | |
1059 (rest[2] == 'n' || rest[2] == 'N')) | |
1060 month = TT_JUN; | |
1061 break; | |
1062 case 'm': case 'M': | |
1063 if (month == TT_UNKNOWN && | |
1064 (rest[1] == 'a' || rest[1] == 'A') && | |
1065 (rest[2] == 'r' || rest[2] == 'R')) | |
1066 month = TT_MAR; | |
1067 else if (month == TT_UNKNOWN && | |
1068 (rest[1] == 'a' || rest[1] == 'A') && | |
1069 (rest[2] == 'y' || rest[2] == 'Y')) | |
1070 month = TT_MAY; | |
1071 else if (zone == TT_UNKNOWN && | |
1072 (rest[1] == 'd' || rest[1] == 'D') && | |
1073 (rest[2] == 't' || rest[2] == 'T')) | |
1074 zone = TT_MDT; | |
1075 else if (zone == TT_UNKNOWN && | |
1076 (rest[1] == 'e' || rest[1] == 'E') && | |
1077 (rest[2] == 't' || rest[2] == 'T')) | |
1078 zone = TT_MET; | |
1079 else if (dotw == TT_UNKNOWN && | |
1080 (rest[1] == 'o' || rest[1] == 'O') && | |
1081 (rest[2] == 'n' || rest[2] == 'N')) | |
1082 dotw = TT_MON; | |
1083 else if (zone == TT_UNKNOWN && | |
1084 (rest[1] == 's' || rest[1] == 'S') && | |
1085 (rest[2] == 't' || rest[2] == 'T')) | |
1086 zone = TT_MST; | |
1087 break; | |
1088 case 'n': case 'N': | |
1089 if (month == TT_UNKNOWN && | |
1090 (rest[1] == 'o' || rest[1] == 'O') && | |
1091 (rest[2] == 'v' || rest[2] == 'V')) | |
1092 month = TT_NOV; | |
1093 else if (zone == TT_UNKNOWN && | |
1094 (rest[1] == 's' || rest[1] == 'S') && | |
1095 (rest[2] == 't' || rest[2] == 'T')) | |
1096 zone = TT_NST; | |
1097 break; | |
1098 case 'o': case 'O': | |
1099 if (month == TT_UNKNOWN && | |
1100 (rest[1] == 'c' || rest[1] == 'C') && | |
1101 (rest[2] == 't' || rest[2] == 'T')) | |
1102 month = TT_OCT; | |
1103 break; | |
1104 case 'p': case 'P': | |
1105 if (zone == TT_UNKNOWN && | |
1106 (rest[1] == 'd' || rest[1] == 'D') && | |
1107 (rest[2] == 't' || rest[2] == 'T')) | |
1108 zone = TT_PDT; | |
1109 else if (zone == TT_UNKNOWN && | |
1110 (rest[1] == 's' || rest[1] == 'S') && | |
1111 (rest[2] == 't' || rest[2] == 'T')) | |
1112 zone = TT_PST; | |
1113 break; | |
1114 case 's': case 'S': | |
1115 if (dotw == TT_UNKNOWN && | |
1116 (rest[1] == 'a' || rest[1] == 'A') && | |
1117 (rest[2] == 't' || rest[2] == 'T')) | |
1118 dotw = TT_SAT; | |
1119 else if (month == TT_UNKNOWN && | |
1120 (rest[1] == 'e' || rest[1] == 'E') && | |
1121 (rest[2] == 'p' || rest[2] == 'P')) | |
1122 month = TT_SEP; | |
1123 else if (dotw == TT_UNKNOWN && | |
1124 (rest[1] == 'u' || rest[1] == 'U') && | |
1125 (rest[2] == 'n' || rest[2] == 'N')) | |
1126 dotw = TT_SUN; | |
1127 break; | |
1128 case 't': case 'T': | |
1129 if (dotw == TT_UNKNOWN && | |
1130 (rest[1] == 'h' || rest[1] == 'H') && | |
1131 (rest[2] == 'u' || rest[2] == 'U')) | |
1132 dotw = TT_THU; | |
1133 else if (dotw == TT_UNKNOWN && | |
1134 (rest[1] == 'u' || rest[1] == 'U') && | |
1135 (rest[2] == 'e' || rest[2] == 'E')) | |
1136 dotw = TT_TUE; | |
1137 break; | |
1138 case 'u': case 'U': | |
1139 if (zone == TT_UNKNOWN && | |
1140 (rest[1] == 't' || rest[1] == 'T') && | |
1141 !(rest[2] >= 'A' && rest[2] <= 'Z') && | |
1142 !(rest[2] >= 'a' && rest[2] <= 'z')) | |
1143 /* UT is the same as GMT but UTx is not. */ | |
1144 zone = TT_GMT; | |
1145 break; | |
1146 case 'w': case 'W': | |
1147 if (dotw == TT_UNKNOWN && | |
1148 (rest[1] == 'e' || rest[1] == 'E') && | |
1149 (rest[2] == 'd' || rest[2] == 'D')) | |
1150 dotw = TT_WED; | |
1151 break; | |
1152 | |
1153 case '+': case '-': | |
1154 { | |
1155 const char *end; | |
1156 int sign; | |
1157 if (zone_offset != -1) | |
1158 { | |
1159 /* already got one... */ | |
1160 rest++; | |
1161 break; | |
1162 } | |
1163 if (zone != TT_UNKNOWN && zone != TT_GMT) | |
1164 { | |
1165 /* GMT+0300 is legal, but PST+0300 is not. */ | |
1166 rest++; | |
1167 break; | |
1168 } | |
1169 | |
1170 sign = ((*rest == '+') ? 1 : -1); | |
1171 rest++; /* move over sign */ | |
1172 end = rest; | |
1173 while (*end >= '0' && *end <= '9') | |
1174 end++; | |
1175 if (rest == end) /* no digits here */ | |
1176 break; | |
1177 | |
1178 if ((end - rest) == 4) | |
1179 /* offset in HHMM */ | |
1180 zone_offset = (((((rest[0]-'0')*10) + (rest[1]-'0')) * 60) + | |
1181 (((rest[2]-'0')*10) + (rest[3]-'0'))); | |
1182 else if ((end - rest) == 2) | |
1183 /* offset in hours */ | |
1184 zone_offset = (((rest[0]-'0')*10) + (rest[1]-'0')) * 60; | |
1185 else if ((end - rest) == 1) | |
1186 /* offset in hours */ | |
1187 zone_offset = (rest[0]-'0') * 60; | |
1188 else | |
1189 /* 3 or >4 */ | |
1190 break; | |
1191 | |
1192 zone_offset *= sign; | |
1193 zone = TT_GMT; | |
1194 break; | |
1195 } | |
1196 | |
1197 case '0': case '1': case '2': case '3': case '4': | |
1198 case '5': case '6': case '7': case '8': case '9': | |
1199 { | |
1200 int tmp_hour = -1; | |
1201 int tmp_min = -1; | |
1202 int tmp_sec = -1; | |
1203 const char *end = rest + 1; | |
1204 while (*end >= '0' && *end <= '9') | |
1205 end++; | |
1206 | |
1207 /* end is now the first character after a range of digits. */ | |
1208 | |
1209 if (*end == ':') | |
1210 { | |
1211 if (hour >= 0 && min >= 0) /* already got it */ | |
1212 break; | |
1213 | |
1214 /* We have seen "[0-9]+:", so this is probably HH:MM[:SS] */ | |
1215 if ((end - rest) > 2) | |
1216 /* it is [0-9][0-9][0-9]+: */ | |
1217 break; | |
1218 else if ((end - rest) == 2) | |
1219 tmp_hour = ((rest[0]-'0')*10 + | |
1220 (rest[1]-'0')); | |
1221 else | |
1222 tmp_hour = (rest[0]-'0'); | |
1223 | |
1224 /* move over the colon, and parse minutes */ | |
1225 | |
1226 rest = ++end; | |
1227 while (*end >= '0' && *end <= '9') | |
1228 end++; | |
1229 | |
1230 if (end == rest) | |
1231 /* no digits after first colon? */ | |
1232 break; | |
1233 else if ((end - rest) > 2) | |
1234 /* it is [0-9][0-9][0-9]+: */ | |
1235 break; | |
1236 else if ((end - rest) == 2) | |
1237 tmp_min = ((rest[0]-'0')*10 + | |
1238 (rest[1]-'0')); | |
1239 else | |
1240 tmp_min = (rest[0]-'0'); | |
1241 | |
1242 /* now go for seconds */ | |
1243 rest = end; | |
1244 if (*rest == ':') | |
1245 rest++; | |
1246 end = rest; | |
1247 while (*end >= '0' && *end <= '9') | |
1248 end++; | |
1249 | |
1250 if (end == rest) | |
1251 /* no digits after second colon - that's ok. */ | |
1252 ; | |
1253 else if ((end - rest) > 2) | |
1254 /* it is [0-9][0-9][0-9]+: */ | |
1255 break; | |
1256 else if ((end - rest) == 2) | |
1257 tmp_sec = ((rest[0]-'0')*10 + | |
1258 (rest[1]-'0')); | |
1259 else | |
1260 tmp_sec = (rest[0]-'0'); | |
1261 | |
1262 /* If we made it here, we've parsed hour and min, | |
1263 and possibly sec, so it worked as a unit. */ | |
1264 | |
1265 /* skip over whitespace and see if there's an AM or PM | |
1266 directly following the time. | |
1267 */ | |
1268 if (tmp_hour <= 12) | |
1269 { | |
1270 const char *s = end; | |
1271 while (*s && (*s == ' ' || *s == '\t')) | |
1272 s++; | |
1273 if ((s[0] == 'p' || s[0] == 'P') && | |
1274 (s[1] == 'm' || s[1] == 'M')) | |
1275 /* 10:05pm == 22:05, and 12:05pm == 12:05 */ | |
1276 tmp_hour = (tmp_hour == 12 ? 12 : tmp_hour + 12); | |
1277 else if (tmp_hour == 12 && | |
1278 (s[0] == 'a' || s[0] == 'A') && | |
1279 (s[1] == 'm' || s[1] == 'M')) | |
1280 /* 12:05am == 00:05 */ | |
1281 tmp_hour = 0; | |
1282 } | |
1283 | |
1284 hour = tmp_hour; | |
1285 min = tmp_min; | |
1286 sec = tmp_sec; | |
1287 rest = end; | |
1288 break; | |
1289 } | |
1290 else if ((*end == '/' || *end == '-') && | |
1291 end[1] >= '0' && end[1] <= '9') | |
1292 { | |
1293 /* Perhaps this is 6/16/95, 16/6/95, 6-16-95, or 16-6-95 | |
1294 or even 95-06-05... | |
1295 #### But it doesn't handle 1995-06-22. | |
1296 */ | |
1297 int n1, n2, n3; | |
1298 const char *s; | |
1299 | |
1300 if (month != TT_UNKNOWN) | |
1301 /* if we saw a month name, this can't be. */ | |
1302 break; | |
1303 | |
1304 s = rest; | |
1305 | |
1306 n1 = (*s++ - '0'); /* first 1 or 2 digits */ | |
1307 if (*s >= '0' && *s <= '9') | |
1308 n1 = n1*10 + (*s++ - '0'); | |
1309 | |
1310 if (*s != '/' && *s != '-') /* slash */ | |
1311 break; | |
1312 s++; | |
1313 | |
1314 if (*s < '0' || *s > '9') /* second 1 or 2 digits */ | |
1315 break; | |
1316 n2 = (*s++ - '0'); | |
1317 if (*s >= '0' && *s <= '9') | |
1318 n2 = n2*10 + (*s++ - '0'); | |
1319 | |
1320 if (*s != '/' && *s != '-') /* slash */ | |
1321 break; | |
1322 s++; | |
1323 | |
1324 if (*s < '0' || *s > '9') /* third 1, 2, 4, or 5 digits */ | |
1325 break; | |
1326 n3 = (*s++ - '0'); | |
1327 if (*s >= '0' && *s <= '9') | |
1328 n3 = n3*10 + (*s++ - '0'); | |
1329 | |
1330 if (*s >= '0' && *s <= '9') /* optional digits 3, 4, and 5 */ | |
1331 { | |
1332 n3 = n3*10 + (*s++ - '0'); | |
1333 if (*s < '0' || *s > '9') | |
1334 break; | |
1335 n3 = n3*10 + (*s++ - '0'); | |
1336 if (*s >= '0' && *s <= '9') | |
1337 n3 = n3*10 + (*s++ - '0'); | |
1338 } | |
1339 | |
1340 if ((*s >= '0' && *s <= '9') || /* followed by non-alphanum */ | |
1341 (*s >= 'A' && *s <= 'Z') || | |
1342 (*s >= 'a' && *s <= 'z')) | |
1343 break; | |
1344 | |
1345 /* Ok, we parsed three 1-2 digit numbers, with / or - | |
1346 between them. Now decide what the hell they are | |
1347 (DD/MM/YY or MM/DD/YY or YY/MM/DD.) | |
1348 */ | |
1349 | |
1350 if (n1 > 31 || n1 == 0) /* must be YY/MM/DD */ | |
1351 { | |
1352 if (n2 > 12) break; | |
1353 if (n3 > 31) break; | |
1354 year = n1; | |
1355 if (year < 70) | |
1356 year += 2000; | |
1357 else if (year < 100) | |
1358 year += 1900; | |
1359 month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1); | |
1360 date = n3; | |
1361 rest = s; | |
1362 break; | |
1363 } | |
1364 | |
1365 if (n1 > 12 && n2 > 12) /* illegal */ | |
1366 { | |
1367 rest = s; | |
1368 break; | |
1369 } | |
1370 | |
1371 if (n3 < 70) | |
1372 n3 += 2000; | |
1373 else if (n3 < 100) | |
1374 n3 += 1900; | |
1375 | |
1376 if (n1 > 12) /* must be DD/MM/YY */ | |
1377 { | |
1378 date = n1; | |
1379 month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1); | |
1380 year = n3; | |
1381 } | |
1382 else /* assume MM/DD/YY */ | |
1383 { | |
1384 /* #### In the ambiguous case, should we consult the | |
1385 locale to find out the local default? */ | |
1386 month = (TIME_TOKEN)(n1 + ((int)TT_JAN) - 1); | |
1387 date = n2; | |
1388 year = n3; | |
1389 } | |
1390 rest = s; | |
1391 } | |
1392 else if ((*end >= 'A' && *end <= 'Z') || | |
1393 (*end >= 'a' && *end <= 'z')) | |
1394 /* Digits followed by non-punctuation - what's that? */ | |
1395 ; | |
1396 else if ((end - rest) == 5) /* five digits is a year */ | |
1397 year = (year < 0 | |
1398 ? ((rest[0]-'0')*10000L + | |
1399 (rest[1]-'0')*1000L + | |
1400 (rest[2]-'0')*100L + | |
1401 (rest[3]-'0')*10L + | |
1402 (rest[4]-'0')) | |
1403 : year); | |
1404 else if ((end - rest) == 4) /* four digits is a year */ | |
1405 year = (year < 0 | |
1406 ? ((rest[0]-'0')*1000L + | |
1407 (rest[1]-'0')*100L + | |
1408 (rest[2]-'0')*10L + | |
1409 (rest[3]-'0')) | |
1410 : year); | |
1411 else if ((end - rest) == 2) /* two digits - date or year */ | |
1412 { | |
1413 int n = ((rest[0]-'0')*10 + | |
1414 (rest[1]-'0')); | |
1415 /* If we don't have a date (day of the month) and we see a number | |
1416 less than 32, then assume that is the date. | |
1417 | |
1418 Otherwise, if we have a date and not a year, assume this is the | |
1419 year. If it is less than 70, then assume it refers to the 21st | |
1420 century. If it is two digits (>= 70), assume it refers to this | |
1421 century. Otherwise, assume it refers to an unambiguous year. | |
1422 | |
1423 The world will surely end soon. | |
1424 */ | |
1425 if (date < 0 && n < 32) | |
1426 date = n; | |
1427 else if (year < 0) | |
1428 { | |
1429 if (n < 70) | |
1430 year = 2000 + n; | |
1431 else if (n < 100) | |
1432 year = 1900 + n; | |
1433 else | |
1434 year = n; | |
1435 } | |
1436 /* else what the hell is this. */ | |
1437 } | |
1438 else if ((end - rest) == 1) /* one digit - date */ | |
1439 date = (date < 0 ? (rest[0]-'0') : date); | |
1440 /* else, three or more than five digits - what's that? */ | |
1441 | |
1442 break; | |
1443 } | |
1444 } | |
1445 | |
1446 /* Skip to the end of this token, whether we parsed it or not. | |
1447 Tokens are delimited by whitespace, or ,;-/ | |
1448 But explicitly not :+-. | |
1449 */ | |
1450 while (*rest && | |
1451 *rest != ' ' && *rest != '\t' && | |
1452 *rest != ',' && *rest != ';' && | |
1453 *rest != '-' && *rest != '+' && | |
1454 *rest != '/' && | |
1455 *rest != '(' && *rest != ')' && *rest != '[' && *rest != ']') | |
1456 rest++; | |
1457 /* skip over uninteresting chars. */ | |
1458 SKIP_MORE: | |
1459 while (*rest && | |
1460 (*rest == ' ' || *rest == '\t' || | |
1461 *rest == ',' || *rest == ';' || *rest == '/' || | |
1462 *rest == '(' || *rest == ')' || *rest == '[' || *rest == ']')) | |
1463 rest++; | |
1464 | |
1465 /* "-" is ignored at the beginning of a token if we have not yet | |
1466 parsed a year (e.g., the second "-" in "30-AUG-1966"), or if | |
1467 the character after the dash is not a digit. */ | |
1468 if (*rest == '-' && ((rest > string && | |
1469 isalpha((unsigned char)rest[-1]) && year < 0) || | |
1470 rest[1] < '0' || rest[1] > '9')) | |
1471 { | |
1472 rest++; | |
1473 goto SKIP_MORE; | |
1474 } | |
1475 | |
1476 } | |
1477 | |
1478 if (zone != TT_UNKNOWN && zone_offset == -1) | |
1479 { | |
1480 switch (zone) | |
1481 { | |
1482 case TT_PST: zone_offset = -8 * 60; break; | |
1483 case TT_PDT: zone_offset = -8 * 60; dst_offset = 1 * 60; break; | |
1484 case TT_MST: zone_offset = -7 * 60; break; | |
1485 case TT_MDT: zone_offset = -7 * 60; dst_offset = 1 * 60; break; | |
1486 case TT_CST: zone_offset = -6 * 60; break; | |
1487 case TT_CDT: zone_offset = -6 * 60; dst_offset = 1 * 60; break; | |
1488 case TT_EST: zone_offset = -5 * 60; break; | |
1489 case TT_EDT: zone_offset = -5 * 60; dst_offset = 1 * 60; break; | |
1490 case TT_AST: zone_offset = -4 * 60; break; | |
1491 case TT_NST: zone_offset = -3 * 60 - 30; break; | |
1492 case TT_GMT: zone_offset = 0 * 60; break; | |
1493 case TT_BST: zone_offset = 0 * 60; dst_offset = 1 * 60; break; | |
1494 case TT_MET: zone_offset = 1 * 60; break; | |
1495 case TT_EET: zone_offset = 2 * 60; break; | |
1496 case TT_JST: zone_offset = 9 * 60; break; | |
1497 default: | |
1498 PR_ASSERT (0); | |
1499 break; | |
1500 } | |
1501 } | |
1502 | |
1503 /* If we didn't find a year, month, or day-of-the-month, we can't | |
1504 possibly parse this, and in fact, mktime() will do something random | |
1505 (I'm seeing it return "Tue Feb 5 06:28:16 2036", which is no doubt | |
1506 a numerologically significant date... */ | |
1507 if (month == TT_UNKNOWN || date == -1 || year == -1 || year > PR_INT16_MAX) | |
1508 return PR_FAILURE; | |
1509 | |
1510 memset(result, 0, sizeof(*result)); | |
1511 if (sec != -1) | |
1512 result->tm_sec = sec; | |
1513 if (min != -1) | |
1514 result->tm_min = min; | |
1515 if (hour != -1) | |
1516 result->tm_hour = hour; | |
1517 if (date != -1) | |
1518 result->tm_mday = date; | |
1519 if (month != TT_UNKNOWN) | |
1520 result->tm_month = (((int)month) - ((int)TT_JAN)); | |
1521 if (year != -1) | |
1522 result->tm_year = year; | |
1523 if (dotw != TT_UNKNOWN) | |
1524 result->tm_wday = (((int)dotw) - ((int)TT_SUN)); | |
1525 /* | |
1526 * Mainly to compute wday and yday, but normalized time is also required | |
1527 * by the check below that works around a Visual C++ 2005 mktime problem. | |
1528 */ | |
1529 PR_NormalizeTime(result, PR_GMTParameters); | |
1530 /* The remaining work is to set the gmt and dst offsets in tm_params. */ | |
1531 | |
1532 if (zone == TT_UNKNOWN && default_to_gmt) | |
1533 { | |
1534 /* No zone was specified, so pretend the zone was GMT. */ | |
1535 zone = TT_GMT; | |
1536 zone_offset = 0; | |
1537 } | |
1538 | |
1539 if (zone_offset == -1) | |
1540 { | |
1541 /* no zone was specified, and we're to assume that everything | |
1542 is local. */ | |
1543 struct tm localTime; | |
1544 time_t secs; | |
1545 | |
1546 PR_ASSERT(result->tm_month > -1 && | |
1547 result->tm_mday > 0 && | |
1548 result->tm_hour > -1 && | |
1549 result->tm_min > -1 && | |
1550 result->tm_sec > -1); | |
1551 | |
1552 /* | |
1553 * To obtain time_t from a tm structure representing the local | |
1554 * time, we call mktime(). However, we need to see if we are | |
1555 * on 1-Jan-1970 or before. If we are, we can't call mktime() | |
1556 * because mktime() will crash on win16. In that case, we | |
1557 * calculate zone_offset based on the zone offset at | |
1558 * 00:00:00, 2 Jan 1970 GMT, and subtract zone_offset from the | |
1559 * date we are parsing to transform the date to GMT. We also | |
1560 * do so if mktime() returns (time_t) -1 (time out of range). | |
1561 */ | |
1562 | |
1563 /* month, day, hours, mins and secs are always non-negative | |
1564 so we dont need to worry about them. */ | |
1565 if(result->tm_year >= 1970) | |
1566 { | |
1567 PRInt64 usec_per_sec; | |
1568 | |
1569 localTime.tm_sec = result->tm_sec; | |
1570 localTime.tm_min = result->tm_min; | |
1571 localTime.tm_hour = result->tm_hour; | |
1572 localTime.tm_mday = result->tm_mday; | |
1573 localTime.tm_mon = result->tm_month; | |
1574 localTime.tm_year = result->tm_year - 1900; | |
1575 /* Set this to -1 to tell mktime "I don't care". If you set | |
1576 it to 0 or 1, you are making assertions about whether the | |
1577 date you are handing it is in daylight savings mode or not; | |
1578 and if you're wrong, it will "fix" it for you. */ | |
1579 localTime.tm_isdst = -1; | |
1580 | |
1581 #if _MSC_VER == 1400 /* 1400 = Visual C++ 2005 (8.0) */ | |
1582 /* | |
1583 * mktime will return (time_t) -1 if the input is a date | |
1584 * after 23:59:59, December 31, 3000, US Pacific Time (not | |
1585 * UTC as documented): | |
1586 * http://msdn.microsoft.com/en-us/library/d1y53h2a(VS.80).aspx | |
1587 * But if the year is 3001, mktime also invokes the invalid | |
1588 * parameter handler, causing the application to crash. This | |
1589 * problem has been reported in | |
1590 * http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=266036. | |
1591 * We avoid this crash by not calling mktime if the date is | |
1592 * out of range. To use a simple test that works in any time | |
1593 * zone, we consider year 3000 out of range as well. (See | |
1594 * bug 480740.) | |
1595 */ | |
1596 if (result->tm_year >= 3000) { | |
1597 /* Emulate what mktime would have done. */ | |
1598 errno = EINVAL; | |
1599 secs = (time_t) -1; | |
1600 } else { | |
1601 secs = mktime(&localTime); | |
1602 } | |
1603 #else | |
1604 secs = mktime(&localTime); | |
1605 #endif | |
1606 if (secs != (time_t) -1) | |
1607 { | |
1608 PRTime usecs64; | |
1609 LL_I2L(usecs64, secs); | |
1610 LL_I2L(usec_per_sec, PR_USEC_PER_SEC); | |
1611 LL_MUL(usecs64, usecs64, usec_per_sec); | |
1612 PR_ExplodeTime(usecs64, PR_LocalTimeParameters, result); | |
1613 return PR_SUCCESS; | |
1614 } | |
1615 } | |
1616 | |
1617 /* So mktime() can't handle this case. We assume the | |
1618 zone_offset for the date we are parsing is the same as | |
1619 the zone offset on 00:00:00 2 Jan 1970 GMT. */ | |
1620 secs = 86400; | |
1621 (void) MT_safe_localtime(&secs, &localTime); | |
1622 zone_offset = localTime.tm_min | |
1623 + 60 * localTime.tm_hour | |
1624 + 1440 * (localTime.tm_mday - 2); | |
1625 } | |
1626 | |
1627 result->tm_params.tp_gmt_offset = zone_offset * 60; | |
1628 result->tm_params.tp_dst_offset = dst_offset * 60; | |
1629 | |
1630 return PR_SUCCESS; | |
1631 } | |
1632 | |
1633 PR_IMPLEMENT(PRStatus) | |
1634 PR_ParseTimeString( | |
1635 const char *string, | |
1636 PRBool default_to_gmt, | |
1637 PRTime *result) | |
1638 { | |
1639 PRExplodedTime tm; | |
1640 PRStatus rv; | |
1641 | |
1642 rv = PR_ParseTimeStringToExplodedTime(string, | |
1643 default_to_gmt, | |
1644 &tm); | |
1645 if (rv != PR_SUCCESS) | |
1646 return rv; | |
1647 | |
1648 *result = PR_ImplodeTime(&tm); | |
1649 | |
1650 return PR_SUCCESS; | |
1651 } | |
1652 | |
1653 /* | |
1654 ******************************************************************* | |
1655 ******************************************************************* | |
1656 ** | |
1657 ** OLD COMPATIBILITY FUNCTIONS | |
1658 ** | |
1659 ******************************************************************* | |
1660 ******************************************************************* | |
1661 */ | |
1662 | |
1663 | |
1664 /* | |
1665 *----------------------------------------------------------------------- | |
1666 * | |
1667 * PR_FormatTime -- | |
1668 * | |
1669 * Format a time value into a buffer. Same semantics as strftime(). | |
1670 * | |
1671 *----------------------------------------------------------------------- | |
1672 */ | |
1673 | |
1674 PR_IMPLEMENT(PRUint32) | |
1675 PR_FormatTime(char *buf, int buflen, const char *fmt, const PRExplodedTime *tm) | |
1676 { | |
1677 size_t rv; | |
1678 struct tm a; | |
1679 struct tm *ap; | |
1680 | |
1681 if (tm) { | |
1682 ap = &a; | |
1683 a.tm_sec = tm->tm_sec; | |
1684 a.tm_min = tm->tm_min; | |
1685 a.tm_hour = tm->tm_hour; | |
1686 a.tm_mday = tm->tm_mday; | |
1687 a.tm_mon = tm->tm_month; | |
1688 a.tm_wday = tm->tm_wday; | |
1689 a.tm_year = tm->tm_year - 1900; | |
1690 a.tm_yday = tm->tm_yday; | |
1691 a.tm_isdst = tm->tm_params.tp_dst_offset ? 1 : 0; | |
1692 | |
1693 /* | |
1694 * On some platforms, for example SunOS 4, struct tm has two | |
1695 * additional fields: tm_zone and tm_gmtoff. | |
1696 */ | |
1697 | |
1698 #if (__GLIBC__ >= 2) || defined(XP_BEOS) \ | |
1699 || defined(NETBSD) || defined(OPENBSD) || defined(FREEBSD) \ | |
1700 || defined(DARWIN) || defined(SYMBIAN) || defined(ANDROID) | |
1701 a.tm_zone = NULL; | |
1702 a.tm_gmtoff = tm->tm_params.tp_gmt_offset + | |
1703 tm->tm_params.tp_dst_offset; | |
1704 #endif | |
1705 } else { | |
1706 ap = NULL; | |
1707 } | |
1708 | |
1709 rv = strftime(buf, buflen, fmt, ap); | |
1710 if (!rv && buf && buflen > 0) { | |
1711 /* | |
1712 * When strftime fails, the contents of buf are indeterminate. | |
1713 * Some callers don't check the return value from this function, | |
1714 * so store an empty string in buf in case they try to print it. | |
1715 */ | |
1716 buf[0] = '\0'; | |
1717 } | |
1718 return rv; | |
1719 } | |
1720 | |
1721 | |
1722 /* | |
1723 * The following string arrays and macros are used by PR_FormatTimeUSEnglish(). | |
1724 */ | |
1725 | |
1726 static const char* abbrevDays[] = | |
1727 { | |
1728 "Sun","Mon","Tue","Wed","Thu","Fri","Sat" | |
1729 }; | |
1730 | |
1731 static const char* days[] = | |
1732 { | |
1733 "Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday" | |
1734 }; | |
1735 | |
1736 static const char* abbrevMonths[] = | |
1737 { | |
1738 "Jan", "Feb", "Mar", "Apr", "May", "Jun", | |
1739 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" | |
1740 }; | |
1741 | |
1742 static const char* months[] = | |
1743 { | |
1744 "January", "February", "March", "April", "May", "June", | |
1745 "July", "August", "September", "October", "November", "December" | |
1746 }; | |
1747 | |
1748 | |
1749 /* | |
1750 * Add a single character to the given buffer, incrementing the buffer pointer | |
1751 * and decrementing the buffer size. Return 0 on error. | |
1752 */ | |
1753 #define ADDCHAR( buf, bufSize, ch ) \ | |
1754 do \ | |
1755 { \ | |
1756 if( bufSize < 1 ) \ | |
1757 { \ | |
1758 *(--buf) = '\0'; \ | |
1759 return 0; \ | |
1760 } \ | |
1761 *buf++ = ch; \ | |
1762 bufSize--; \ | |
1763 } \ | |
1764 while(0) | |
1765 | |
1766 | |
1767 /* | |
1768 * Add a string to the given buffer, incrementing the buffer pointer | |
1769 * and decrementing the buffer size appropriately. Return 0 on error. | |
1770 */ | |
1771 #define ADDSTR( buf, bufSize, str ) \ | |
1772 do \ | |
1773 { \ | |
1774 PRUint32 strSize = strlen( str ); \ | |
1775 if( strSize > bufSize ) \ | |
1776 { \ | |
1777 if( bufSize==0 ) \ | |
1778 *(--buf) = '\0'; \ | |
1779 else \ | |
1780 *buf = '\0'; \ | |
1781 return 0; \ | |
1782 } \ | |
1783 memcpy(buf, str, strSize); \ | |
1784 buf += strSize; \ | |
1785 bufSize -= strSize; \ | |
1786 } \ | |
1787 while(0) | |
1788 | |
1789 /* Needed by PR_FormatTimeUSEnglish() */ | |
1790 static unsigned int pr_WeekOfYear(const PRExplodedTime* time, | |
1791 unsigned int firstDayOfWeek); | |
1792 | |
1793 | |
1794 /*********************************************************************************** | |
1795 * | |
1796 * Description: | |
1797 * This is a dumbed down version of strftime that will format the date in US | |
1798 * English regardless of the setting of the global locale. This functionality is | |
1799 * needed to write things like MIME headers which must always be in US English. | |
1800 * | |
1801 **********************************************************************************/ | |
1802 | |
1803 PR_IMPLEMENT(PRUint32) | |
1804 PR_FormatTimeUSEnglish( char* buf, PRUint32 bufSize, | |
1805 const char* format, const PRExplodedTime* time ) | |
1806 { | |
1807 char* bufPtr = buf; | |
1808 const char* fmtPtr; | |
1809 char tmpBuf[ 40 ]; | |
1810 const int tmpBufSize = sizeof( tmpBuf ); | |
1811 | |
1812 | |
1813 for( fmtPtr=format; *fmtPtr != '\0'; fmtPtr++ ) | |
1814 { | |
1815 if( *fmtPtr != '%' ) | |
1816 { | |
1817 ADDCHAR( bufPtr, bufSize, *fmtPtr ); | |
1818 } | |
1819 else | |
1820 { | |
1821 switch( *(++fmtPtr) ) | |
1822 { | |
1823 case '%': | |
1824 /* escaped '%' character */ | |
1825 ADDCHAR( bufPtr, bufSize, '%' ); | |
1826 break; | |
1827 | |
1828 case 'a': | |
1829 /* abbreviated weekday name */ | |
1830 ADDSTR( bufPtr, bufSize, abbrevDays[ time->tm_wday ] ); | |
1831 break; | |
1832 | |
1833 case 'A': | |
1834 /* full weekday name */ | |
1835 ADDSTR( bufPtr, bufSize, days[ time->tm_wday ] ); | |
1836 break; | |
1837 | |
1838 case 'b': | |
1839 /* abbreviated month name */ | |
1840 ADDSTR( bufPtr, bufSize, abbrevMonths[ time->tm_month ] ); | |
1841 break; | |
1842 | |
1843 case 'B': | |
1844 /* full month name */ | |
1845 ADDSTR(bufPtr, bufSize, months[ time->tm_month ] ); | |
1846 break; | |
1847 | |
1848 case 'c': | |
1849 /* Date and time. */ | |
1850 PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%a %b %d %H:%M:%S %Y", time ); | |
1851 ADDSTR( bufPtr, bufSize, tmpBuf ); | |
1852 break; | |
1853 | |
1854 case 'd': | |
1855 /* day of month ( 01 - 31 ) */ | |
1856 PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_mday ); | |
1857 ADDSTR( bufPtr, bufSize, tmpBuf ); | |
1858 break; | |
1859 | |
1860 case 'H': | |
1861 /* hour ( 00 - 23 ) */ | |
1862 PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_hour ); | |
1863 ADDSTR( bufPtr, bufSize, tmpBuf ); | |
1864 break; | |
1865 | |
1866 case 'I': | |
1867 /* hour ( 01 - 12 ) */ | |
1868 PR_snprintf(tmpBuf,tmpBufSize,"%.2ld", | |
1869 (time->tm_hour%12) ? time->tm_hour%12 : (PRInt32) 12 ); | |
1870 ADDSTR( bufPtr, bufSize, tmpBuf ); | |
1871 break; | |
1872 | |
1873 case 'j': | |
1874 /* day number of year ( 001 - 366 ) */ | |
1875 PR_snprintf(tmpBuf,tmpBufSize,"%.3d",time->tm_yday + 1); | |
1876 ADDSTR( bufPtr, bufSize, tmpBuf ); | |
1877 break; | |
1878 | |
1879 case 'm': | |
1880 /* month number ( 01 - 12 ) */ | |
1881 PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_month+1); | |
1882 ADDSTR( bufPtr, bufSize, tmpBuf ); | |
1883 break; | |
1884 | |
1885 case 'M': | |
1886 /* minute ( 00 - 59 ) */ | |
1887 PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_min ); | |
1888 ADDSTR( bufPtr, bufSize, tmpBuf ); | |
1889 break; | |
1890 | |
1891 case 'p': | |
1892 /* locale's equivalent of either AM or PM */ | |
1893 ADDSTR( bufPtr, bufSize, (time->tm_hour<12)?"AM":"PM" ); | |
1894 break; | |
1895 | |
1896 case 'S': | |
1897 /* seconds ( 00 - 61 ), allows for leap seconds */ | |
1898 PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_sec ); | |
1899 ADDSTR( bufPtr, bufSize, tmpBuf ); | |
1900 break; | |
1901 | |
1902 case 'U': | |
1903 /* week number of year ( 00 - 53 ), Sunday is the first day of week 1 */ | |
1904 PR_snprintf(tmpBuf,tmpBufSize,"%.2d", pr_WeekOfYear( time, 0 ) ); | |
1905 ADDSTR( bufPtr, bufSize, tmpBuf ); | |
1906 break; | |
1907 | |
1908 case 'w': | |
1909 /* weekday number ( 0 - 6 ), Sunday = 0 */ | |
1910 PR_snprintf(tmpBuf,tmpBufSize,"%d",time->tm_wday ); | |
1911 ADDSTR( bufPtr, bufSize, tmpBuf ); | |
1912 break; | |
1913 | |
1914 case 'W': | |
1915 /* Week number of year ( 00 - 53 ), Monday is the first day of week 1 */ | |
1916 PR_snprintf(tmpBuf,tmpBufSize,"%.2d", pr_WeekOfYear( time, 1 ) ); | |
1917 ADDSTR( bufPtr, bufSize, tmpBuf ); | |
1918 break; | |
1919 | |
1920 case 'x': | |
1921 /* Date representation */ | |
1922 PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%m/%d/%y", time ); | |
1923 ADDSTR( bufPtr, bufSize, tmpBuf ); | |
1924 break; | |
1925 | |
1926 case 'X': | |
1927 /* Time representation. */ | |
1928 PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%H:%M:%S", time ); | |
1929 ADDSTR( bufPtr, bufSize, tmpBuf ); | |
1930 break; | |
1931 | |
1932 case 'y': | |
1933 /* year within century ( 00 - 99 ) */ | |
1934 PR_snprintf(tmpBuf,tmpBufSize,"%.2d",time->tm_year % 100 ); | |
1935 ADDSTR( bufPtr, bufSize, tmpBuf ); | |
1936 break; | |
1937 | |
1938 case 'Y': | |
1939 /* year as ccyy ( for example 1986 ) */ | |
1940 PR_snprintf(tmpBuf,tmpBufSize,"%.4d",time->tm_year ); | |
1941 ADDSTR( bufPtr, bufSize, tmpBuf ); | |
1942 break; | |
1943 | |
1944 case 'Z': | |
1945 /* Time zone name or no characters if no time zone exists. | |
1946 * Since time zone name is supposed to be independant of locale, we | |
1947 * defer to PR_FormatTime() for this option. | |
1948 */ | |
1949 PR_FormatTime( tmpBuf, tmpBufSize, "%Z", time ); | |
1950 ADDSTR( bufPtr, bufSize, tmpBuf ); | |
1951 break; | |
1952 | |
1953 default: | |
1954 /* Unknown format. Simply copy format into output buffer. */ | |
1955 ADDCHAR( bufPtr, bufSize, '%' ); | |
1956 ADDCHAR( bufPtr, bufSize, *fmtPtr ); | |
1957 break; | |
1958 | |
1959 } | |
1960 } | |
1961 } | |
1962 | |
1963 ADDCHAR( bufPtr, bufSize, '\0' ); | |
1964 return (PRUint32)(bufPtr - buf - 1); | |
1965 } | |
1966 | |
1967 | |
1968 | |
1969 /*********************************************************************************** | |
1970 * | |
1971 * Description: | |
1972 * Returns the week number of the year (0-53) for the given time. firstDayOfWeek | |
1973 * is the day on which the week is considered to start (0=Sun, 1=Mon, ...). | |
1974 * Week 1 starts the first time firstDayOfWeek occurs in the year. In other words, | |
1975 * a partial week at the start of the year is considered week 0. | |
1976 * | |
1977 **********************************************************************************/ | |
1978 | |
1979 static unsigned int | |
1980 pr_WeekOfYear(const PRExplodedTime* time, unsigned int firstDayOfWeek) | |
1981 { | |
1982 int dayOfWeek; | |
1983 int dayOfYear; | |
1984 | |
1985 /* Get the day of the year for the given time then adjust it to represent the | |
1986 * first day of the week containing the given time. | |
1987 */ | |
1988 dayOfWeek = time->tm_wday - firstDayOfWeek; | |
1989 if (dayOfWeek < 0) | |
1990 dayOfWeek += 7; | |
1991 | |
1992 dayOfYear = time->tm_yday - dayOfWeek; | |
1993 | |
1994 | |
1995 if( dayOfYear <= 0 ) | |
1996 { | |
1997 /* If dayOfYear is <= 0, it is in the first partial week of the year. */ | |
1998 return 0; | |
1999 } | |
2000 else | |
2001 { | |
2002 /* Count the number of full weeks ( dayOfYear / 7 ) then add a week if there | |
2003 * are any days left over ( dayOfYear % 7 ). Because we are only counting to | |
2004 * the first day of the week containing the given time, rather than to the | |
2005 * actual day representing the given time, any days in week 0 will be "absorbed" | |
2006 * as extra days in the given week. | |
2007 */ | |
2008 return (dayOfYear / 7) + ( (dayOfYear % 7) == 0 ? 0 : 1 ); | |
2009 } | |
2010 } | |
2011 |