Mercurial > trustbridge > nss-cmake-static
comparison nss/lib/freebl/ec.c @ 0:1e5118fa0cb1
This is NSS with a Cmake Buildsyste
To compile a static NSS library for Windows we've used the
Chromium-NSS fork and added a Cmake buildsystem to compile
it statically for Windows. See README.chromium for chromium
changes and README.trustbridge for our modifications.
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Mon, 28 Jul 2014 10:47:06 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:1e5118fa0cb1 |
---|---|
1 /* This Source Code Form is subject to the terms of the Mozilla Public | |
2 * License, v. 2.0. If a copy of the MPL was not distributed with this | |
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | |
4 | |
5 #ifdef FREEBL_NO_DEPEND | |
6 #include "stubs.h" | |
7 #endif | |
8 | |
9 | |
10 #include "blapi.h" | |
11 #include "prerr.h" | |
12 #include "secerr.h" | |
13 #include "secmpi.h" | |
14 #include "secitem.h" | |
15 #include "mplogic.h" | |
16 #include "ec.h" | |
17 #include "ecl.h" | |
18 | |
19 #ifndef NSS_DISABLE_ECC | |
20 | |
21 /* | |
22 * Returns true if pointP is the point at infinity, false otherwise | |
23 */ | |
24 PRBool | |
25 ec_point_at_infinity(SECItem *pointP) | |
26 { | |
27 unsigned int i; | |
28 | |
29 for (i = 1; i < pointP->len; i++) { | |
30 if (pointP->data[i] != 0x00) return PR_FALSE; | |
31 } | |
32 | |
33 return PR_TRUE; | |
34 } | |
35 | |
36 /* | |
37 * Computes scalar point multiplication pointQ = k1 * G + k2 * pointP for | |
38 * the curve whose parameters are encoded in params with base point G. | |
39 */ | |
40 SECStatus | |
41 ec_points_mul(const ECParams *params, const mp_int *k1, const mp_int *k2, | |
42 const SECItem *pointP, SECItem *pointQ) | |
43 { | |
44 mp_int Px, Py, Qx, Qy; | |
45 mp_int Gx, Gy, order, irreducible, a, b; | |
46 #if 0 /* currently don't support non-named curves */ | |
47 unsigned int irr_arr[5]; | |
48 #endif | |
49 ECGroup *group = NULL; | |
50 SECStatus rv = SECFailure; | |
51 mp_err err = MP_OKAY; | |
52 int len; | |
53 | |
54 #if EC_DEBUG | |
55 int i; | |
56 char mpstr[256]; | |
57 | |
58 printf("ec_points_mul: params [len=%d]:", params->DEREncoding.len); | |
59 for (i = 0; i < params->DEREncoding.len; i++) | |
60 printf("%02x:", params->DEREncoding.data[i]); | |
61 printf("\n"); | |
62 | |
63 if (k1 != NULL) { | |
64 mp_tohex(k1, mpstr); | |
65 printf("ec_points_mul: scalar k1: %s\n", mpstr); | |
66 mp_todecimal(k1, mpstr); | |
67 printf("ec_points_mul: scalar k1: %s (dec)\n", mpstr); | |
68 } | |
69 | |
70 if (k2 != NULL) { | |
71 mp_tohex(k2, mpstr); | |
72 printf("ec_points_mul: scalar k2: %s\n", mpstr); | |
73 mp_todecimal(k2, mpstr); | |
74 printf("ec_points_mul: scalar k2: %s (dec)\n", mpstr); | |
75 } | |
76 | |
77 if (pointP != NULL) { | |
78 printf("ec_points_mul: pointP [len=%d]:", pointP->len); | |
79 for (i = 0; i < pointP->len; i++) | |
80 printf("%02x:", pointP->data[i]); | |
81 printf("\n"); | |
82 } | |
83 #endif | |
84 | |
85 /* NOTE: We only support uncompressed points for now */ | |
86 len = (params->fieldID.size + 7) >> 3; | |
87 if (pointP != NULL) { | |
88 if ((pointP->data[0] != EC_POINT_FORM_UNCOMPRESSED) || | |
89 (pointP->len != (2 * len + 1))) { | |
90 PORT_SetError(SEC_ERROR_UNSUPPORTED_EC_POINT_FORM); | |
91 return SECFailure; | |
92 }; | |
93 } | |
94 | |
95 MP_DIGITS(&Px) = 0; | |
96 MP_DIGITS(&Py) = 0; | |
97 MP_DIGITS(&Qx) = 0; | |
98 MP_DIGITS(&Qy) = 0; | |
99 MP_DIGITS(&Gx) = 0; | |
100 MP_DIGITS(&Gy) = 0; | |
101 MP_DIGITS(&order) = 0; | |
102 MP_DIGITS(&irreducible) = 0; | |
103 MP_DIGITS(&a) = 0; | |
104 MP_DIGITS(&b) = 0; | |
105 CHECK_MPI_OK( mp_init(&Px) ); | |
106 CHECK_MPI_OK( mp_init(&Py) ); | |
107 CHECK_MPI_OK( mp_init(&Qx) ); | |
108 CHECK_MPI_OK( mp_init(&Qy) ); | |
109 CHECK_MPI_OK( mp_init(&Gx) ); | |
110 CHECK_MPI_OK( mp_init(&Gy) ); | |
111 CHECK_MPI_OK( mp_init(&order) ); | |
112 CHECK_MPI_OK( mp_init(&irreducible) ); | |
113 CHECK_MPI_OK( mp_init(&a) ); | |
114 CHECK_MPI_OK( mp_init(&b) ); | |
115 | |
116 if ((k2 != NULL) && (pointP != NULL)) { | |
117 /* Initialize Px and Py */ | |
118 CHECK_MPI_OK( mp_read_unsigned_octets(&Px, pointP->data + 1, (mp_size) len) ); | |
119 CHECK_MPI_OK( mp_read_unsigned_octets(&Py, pointP->data + 1 + len, (mp_size) len) ); | |
120 } | |
121 | |
122 /* construct from named params, if possible */ | |
123 if (params->name != ECCurve_noName) { | |
124 group = ECGroup_fromName(params->name); | |
125 } | |
126 | |
127 #if 0 /* currently don't support non-named curves */ | |
128 if (group == NULL) { | |
129 /* Set up mp_ints containing the curve coefficients */ | |
130 CHECK_MPI_OK( mp_read_unsigned_octets(&Gx, params->base.data + 1, | |
131 (mp_size) len) ); | |
132 CHECK_MPI_OK( mp_read_unsigned_octets(&Gy, params->base.data + 1 + len, | |
133 (mp_size) len) ); | |
134 SECITEM_TO_MPINT( params->order, &order ); | |
135 SECITEM_TO_MPINT( params->curve.a, &a ); | |
136 SECITEM_TO_MPINT( params->curve.b, &b ); | |
137 if (params->fieldID.type == ec_field_GFp) { | |
138 SECITEM_TO_MPINT( params->fieldID.u.prime, &irreducible ); | |
139 group = ECGroup_consGFp(&irreducible, &a, &b, &Gx, &Gy, &order, params->cofactor); | |
140 } else { | |
141 SECITEM_TO_MPINT( params->fieldID.u.poly, &irreducible ); | |
142 irr_arr[0] = params->fieldID.size; | |
143 irr_arr[1] = params->fieldID.k1; | |
144 irr_arr[2] = params->fieldID.k2; | |
145 irr_arr[3] = params->fieldID.k3; | |
146 irr_arr[4] = 0; | |
147 group = ECGroup_consGF2m(&irreducible, irr_arr, &a, &b, &Gx, &Gy, &order, params->cofactor); | |
148 } | |
149 } | |
150 #endif | |
151 if (group == NULL) | |
152 goto cleanup; | |
153 | |
154 if ((k2 != NULL) && (pointP != NULL)) { | |
155 CHECK_MPI_OK( ECPoints_mul(group, k1, k2, &Px, &Py, &Qx, &Qy) ); | |
156 } else { | |
157 CHECK_MPI_OK( ECPoints_mul(group, k1, NULL, NULL, NULL, &Qx, &Qy) ); | |
158 } | |
159 | |
160 /* Construct the SECItem representation of point Q */ | |
161 pointQ->data[0] = EC_POINT_FORM_UNCOMPRESSED; | |
162 CHECK_MPI_OK( mp_to_fixlen_octets(&Qx, pointQ->data + 1, | |
163 (mp_size) len) ); | |
164 CHECK_MPI_OK( mp_to_fixlen_octets(&Qy, pointQ->data + 1 + len, | |
165 (mp_size) len) ); | |
166 | |
167 rv = SECSuccess; | |
168 | |
169 #if EC_DEBUG | |
170 printf("ec_points_mul: pointQ [len=%d]:", pointQ->len); | |
171 for (i = 0; i < pointQ->len; i++) | |
172 printf("%02x:", pointQ->data[i]); | |
173 printf("\n"); | |
174 #endif | |
175 | |
176 cleanup: | |
177 ECGroup_free(group); | |
178 mp_clear(&Px); | |
179 mp_clear(&Py); | |
180 mp_clear(&Qx); | |
181 mp_clear(&Qy); | |
182 mp_clear(&Gx); | |
183 mp_clear(&Gy); | |
184 mp_clear(&order); | |
185 mp_clear(&irreducible); | |
186 mp_clear(&a); | |
187 mp_clear(&b); | |
188 if (err) { | |
189 MP_TO_SEC_ERROR(err); | |
190 rv = SECFailure; | |
191 } | |
192 | |
193 return rv; | |
194 } | |
195 #endif /* NSS_DISABLE_ECC */ | |
196 | |
197 /* Generates a new EC key pair. The private key is a supplied | |
198 * value and the public key is the result of performing a scalar | |
199 * point multiplication of that value with the curve's base point. | |
200 */ | |
201 SECStatus | |
202 ec_NewKey(ECParams *ecParams, ECPrivateKey **privKey, | |
203 const unsigned char *privKeyBytes, int privKeyLen) | |
204 { | |
205 SECStatus rv = SECFailure; | |
206 #ifndef NSS_DISABLE_ECC | |
207 PLArenaPool *arena; | |
208 ECPrivateKey *key; | |
209 mp_int k; | |
210 mp_err err = MP_OKAY; | |
211 int len; | |
212 | |
213 #if EC_DEBUG | |
214 printf("ec_NewKey called\n"); | |
215 #endif | |
216 MP_DIGITS(&k) = 0; | |
217 | |
218 if (!ecParams || !privKey || !privKeyBytes || (privKeyLen < 0)) { | |
219 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
220 return SECFailure; | |
221 } | |
222 | |
223 /* Initialize an arena for the EC key. */ | |
224 if (!(arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE))) | |
225 return SECFailure; | |
226 | |
227 key = (ECPrivateKey *)PORT_ArenaZAlloc(arena, sizeof(ECPrivateKey)); | |
228 if (!key) { | |
229 PORT_FreeArena(arena, PR_TRUE); | |
230 return SECFailure; | |
231 } | |
232 | |
233 /* Set the version number (SEC 1 section C.4 says it should be 1) */ | |
234 SECITEM_AllocItem(arena, &key->version, 1); | |
235 key->version.data[0] = 1; | |
236 | |
237 /* Copy all of the fields from the ECParams argument to the | |
238 * ECParams structure within the private key. | |
239 */ | |
240 key->ecParams.arena = arena; | |
241 key->ecParams.type = ecParams->type; | |
242 key->ecParams.fieldID.size = ecParams->fieldID.size; | |
243 key->ecParams.fieldID.type = ecParams->fieldID.type; | |
244 if (ecParams->fieldID.type == ec_field_GFp) { | |
245 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.fieldID.u.prime, | |
246 &ecParams->fieldID.u.prime)); | |
247 } else { | |
248 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.fieldID.u.poly, | |
249 &ecParams->fieldID.u.poly)); | |
250 } | |
251 key->ecParams.fieldID.k1 = ecParams->fieldID.k1; | |
252 key->ecParams.fieldID.k2 = ecParams->fieldID.k2; | |
253 key->ecParams.fieldID.k3 = ecParams->fieldID.k3; | |
254 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curve.a, | |
255 &ecParams->curve.a)); | |
256 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curve.b, | |
257 &ecParams->curve.b)); | |
258 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curve.seed, | |
259 &ecParams->curve.seed)); | |
260 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.base, | |
261 &ecParams->base)); | |
262 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.order, | |
263 &ecParams->order)); | |
264 key->ecParams.cofactor = ecParams->cofactor; | |
265 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.DEREncoding, | |
266 &ecParams->DEREncoding)); | |
267 key->ecParams.name = ecParams->name; | |
268 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curveOID, | |
269 &ecParams->curveOID)); | |
270 | |
271 len = (ecParams->fieldID.size + 7) >> 3; | |
272 SECITEM_AllocItem(arena, &key->publicValue, 2*len + 1); | |
273 len = ecParams->order.len; | |
274 SECITEM_AllocItem(arena, &key->privateValue, len); | |
275 | |
276 /* Copy private key */ | |
277 if (privKeyLen >= len) { | |
278 memcpy(key->privateValue.data, privKeyBytes, len); | |
279 } else { | |
280 memset(key->privateValue.data, 0, (len - privKeyLen)); | |
281 memcpy(key->privateValue.data + (len - privKeyLen), privKeyBytes, privKeyLen); | |
282 } | |
283 | |
284 /* Compute corresponding public key */ | |
285 CHECK_MPI_OK( mp_init(&k) ); | |
286 CHECK_MPI_OK( mp_read_unsigned_octets(&k, key->privateValue.data, | |
287 (mp_size) len) ); | |
288 | |
289 rv = ec_points_mul(ecParams, &k, NULL, NULL, &(key->publicValue)); | |
290 if (rv != SECSuccess) goto cleanup; | |
291 *privKey = key; | |
292 | |
293 cleanup: | |
294 mp_clear(&k); | |
295 if (rv) | |
296 PORT_FreeArena(arena, PR_TRUE); | |
297 | |
298 #if EC_DEBUG | |
299 printf("ec_NewKey returning %s\n", | |
300 (rv == SECSuccess) ? "success" : "failure"); | |
301 #endif | |
302 #else | |
303 PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); | |
304 #endif /* NSS_DISABLE_ECC */ | |
305 | |
306 return rv; | |
307 | |
308 } | |
309 | |
310 /* Generates a new EC key pair. The private key is a supplied | |
311 * random value (in seed) and the public key is the result of | |
312 * performing a scalar point multiplication of that value with | |
313 * the curve's base point. | |
314 */ | |
315 SECStatus | |
316 EC_NewKeyFromSeed(ECParams *ecParams, ECPrivateKey **privKey, | |
317 const unsigned char *seed, int seedlen) | |
318 { | |
319 SECStatus rv = SECFailure; | |
320 #ifndef NSS_DISABLE_ECC | |
321 rv = ec_NewKey(ecParams, privKey, seed, seedlen); | |
322 #else | |
323 PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); | |
324 #endif /* NSS_DISABLE_ECC */ | |
325 return rv; | |
326 } | |
327 | |
328 #ifndef NSS_DISABLE_ECC | |
329 /* Generate a random private key using the algorithm A.4.1 of ANSI X9.62, | |
330 * modified a la FIPS 186-2 Change Notice 1 to eliminate the bias in the | |
331 * random number generator. | |
332 * | |
333 * Parameters | |
334 * - order: a buffer that holds the curve's group order | |
335 * - len: the length in octets of the order buffer | |
336 * | |
337 * Return Value | |
338 * Returns a buffer of len octets that holds the private key. The caller | |
339 * is responsible for freeing the buffer with PORT_ZFree. | |
340 */ | |
341 static unsigned char * | |
342 ec_GenerateRandomPrivateKey(const unsigned char *order, int len) | |
343 { | |
344 SECStatus rv = SECSuccess; | |
345 mp_err err; | |
346 unsigned char *privKeyBytes = NULL; | |
347 mp_int privKeyVal, order_1, one; | |
348 | |
349 MP_DIGITS(&privKeyVal) = 0; | |
350 MP_DIGITS(&order_1) = 0; | |
351 MP_DIGITS(&one) = 0; | |
352 CHECK_MPI_OK( mp_init(&privKeyVal) ); | |
353 CHECK_MPI_OK( mp_init(&order_1) ); | |
354 CHECK_MPI_OK( mp_init(&one) ); | |
355 | |
356 /* Generates 2*len random bytes using the global random bit generator | |
357 * (which implements Algorithm 1 of FIPS 186-2 Change Notice 1) then | |
358 * reduces modulo the group order. | |
359 */ | |
360 if ((privKeyBytes = PORT_Alloc(2*len)) == NULL) goto cleanup; | |
361 CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(privKeyBytes, 2*len) ); | |
362 CHECK_MPI_OK( mp_read_unsigned_octets(&privKeyVal, privKeyBytes, 2*len) ); | |
363 CHECK_MPI_OK( mp_read_unsigned_octets(&order_1, order, len) ); | |
364 CHECK_MPI_OK( mp_set_int(&one, 1) ); | |
365 CHECK_MPI_OK( mp_sub(&order_1, &one, &order_1) ); | |
366 CHECK_MPI_OK( mp_mod(&privKeyVal, &order_1, &privKeyVal) ); | |
367 CHECK_MPI_OK( mp_add(&privKeyVal, &one, &privKeyVal) ); | |
368 CHECK_MPI_OK( mp_to_fixlen_octets(&privKeyVal, privKeyBytes, len) ); | |
369 memset(privKeyBytes+len, 0, len); | |
370 cleanup: | |
371 mp_clear(&privKeyVal); | |
372 mp_clear(&order_1); | |
373 mp_clear(&one); | |
374 if (err < MP_OKAY) { | |
375 MP_TO_SEC_ERROR(err); | |
376 rv = SECFailure; | |
377 } | |
378 if (rv != SECSuccess && privKeyBytes) { | |
379 PORT_Free(privKeyBytes); | |
380 privKeyBytes = NULL; | |
381 } | |
382 return privKeyBytes; | |
383 } | |
384 #endif /* NSS_DISABLE_ECC */ | |
385 | |
386 /* Generates a new EC key pair. The private key is a random value and | |
387 * the public key is the result of performing a scalar point multiplication | |
388 * of that value with the curve's base point. | |
389 */ | |
390 SECStatus | |
391 EC_NewKey(ECParams *ecParams, ECPrivateKey **privKey) | |
392 { | |
393 SECStatus rv = SECFailure; | |
394 #ifndef NSS_DISABLE_ECC | |
395 int len; | |
396 unsigned char *privKeyBytes = NULL; | |
397 | |
398 if (!ecParams) { | |
399 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
400 return SECFailure; | |
401 } | |
402 | |
403 len = ecParams->order.len; | |
404 privKeyBytes = ec_GenerateRandomPrivateKey(ecParams->order.data, len); | |
405 if (privKeyBytes == NULL) goto cleanup; | |
406 /* generate public key */ | |
407 CHECK_SEC_OK( ec_NewKey(ecParams, privKey, privKeyBytes, len) ); | |
408 | |
409 cleanup: | |
410 if (privKeyBytes) { | |
411 PORT_ZFree(privKeyBytes, len); | |
412 } | |
413 #if EC_DEBUG | |
414 printf("EC_NewKey returning %s\n", | |
415 (rv == SECSuccess) ? "success" : "failure"); | |
416 #endif | |
417 #else | |
418 PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); | |
419 #endif /* NSS_DISABLE_ECC */ | |
420 | |
421 return rv; | |
422 } | |
423 | |
424 /* Validates an EC public key as described in Section 5.2.2 of | |
425 * X9.62. The ECDH primitive when used without the cofactor does | |
426 * not address small subgroup attacks, which may occur when the | |
427 * public key is not valid. These attacks can be prevented by | |
428 * validating the public key before using ECDH. | |
429 */ | |
430 SECStatus | |
431 EC_ValidatePublicKey(ECParams *ecParams, SECItem *publicValue) | |
432 { | |
433 #ifndef NSS_DISABLE_ECC | |
434 mp_int Px, Py; | |
435 ECGroup *group = NULL; | |
436 SECStatus rv = SECFailure; | |
437 mp_err err = MP_OKAY; | |
438 int len; | |
439 | |
440 if (!ecParams || !publicValue) { | |
441 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
442 return SECFailure; | |
443 } | |
444 | |
445 /* NOTE: We only support uncompressed points for now */ | |
446 len = (ecParams->fieldID.size + 7) >> 3; | |
447 if (publicValue->data[0] != EC_POINT_FORM_UNCOMPRESSED) { | |
448 PORT_SetError(SEC_ERROR_UNSUPPORTED_EC_POINT_FORM); | |
449 return SECFailure; | |
450 } else if (publicValue->len != (2 * len + 1)) { | |
451 PORT_SetError(SEC_ERROR_BAD_KEY); | |
452 return SECFailure; | |
453 } | |
454 | |
455 MP_DIGITS(&Px) = 0; | |
456 MP_DIGITS(&Py) = 0; | |
457 CHECK_MPI_OK( mp_init(&Px) ); | |
458 CHECK_MPI_OK( mp_init(&Py) ); | |
459 | |
460 /* Initialize Px and Py */ | |
461 CHECK_MPI_OK( mp_read_unsigned_octets(&Px, publicValue->data + 1, (mp_size) len) ); | |
462 CHECK_MPI_OK( mp_read_unsigned_octets(&Py, publicValue->data + 1 + len, (mp_size) len) ); | |
463 | |
464 /* construct from named params */ | |
465 group = ECGroup_fromName(ecParams->name); | |
466 if (group == NULL) { | |
467 /* | |
468 * ECGroup_fromName fails if ecParams->name is not a valid | |
469 * ECCurveName value, or if we run out of memory, or perhaps | |
470 * for other reasons. Unfortunately if ecParams->name is a | |
471 * valid ECCurveName value, we don't know what the right error | |
472 * code should be because ECGroup_fromName doesn't return an | |
473 * error code to the caller. Set err to MP_UNDEF because | |
474 * that's what ECGroup_fromName uses internally. | |
475 */ | |
476 if ((ecParams->name <= ECCurve_noName) || | |
477 (ecParams->name >= ECCurve_pastLastCurve)) { | |
478 err = MP_BADARG; | |
479 } else { | |
480 err = MP_UNDEF; | |
481 } | |
482 goto cleanup; | |
483 } | |
484 | |
485 /* validate public point */ | |
486 if ((err = ECPoint_validate(group, &Px, &Py)) < MP_YES) { | |
487 if (err == MP_NO) { | |
488 PORT_SetError(SEC_ERROR_BAD_KEY); | |
489 rv = SECFailure; | |
490 err = MP_OKAY; /* don't change the error code */ | |
491 } | |
492 goto cleanup; | |
493 } | |
494 | |
495 rv = SECSuccess; | |
496 | |
497 cleanup: | |
498 ECGroup_free(group); | |
499 mp_clear(&Px); | |
500 mp_clear(&Py); | |
501 if (err) { | |
502 MP_TO_SEC_ERROR(err); | |
503 rv = SECFailure; | |
504 } | |
505 return rv; | |
506 #else | |
507 PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); | |
508 return SECFailure; | |
509 #endif /* NSS_DISABLE_ECC */ | |
510 } | |
511 | |
512 /* | |
513 ** Performs an ECDH key derivation by computing the scalar point | |
514 ** multiplication of privateValue and publicValue (with or without the | |
515 ** cofactor) and returns the x-coordinate of the resulting elliptic | |
516 ** curve point in derived secret. If successful, derivedSecret->data | |
517 ** is set to the address of the newly allocated buffer containing the | |
518 ** derived secret, and derivedSecret->len is the size of the secret | |
519 ** produced. It is the caller's responsibility to free the allocated | |
520 ** buffer containing the derived secret. | |
521 */ | |
522 SECStatus | |
523 ECDH_Derive(SECItem *publicValue, | |
524 ECParams *ecParams, | |
525 SECItem *privateValue, | |
526 PRBool withCofactor, | |
527 SECItem *derivedSecret) | |
528 { | |
529 SECStatus rv = SECFailure; | |
530 #ifndef NSS_DISABLE_ECC | |
531 unsigned int len = 0; | |
532 SECItem pointQ = {siBuffer, NULL, 0}; | |
533 mp_int k; /* to hold the private value */ | |
534 mp_int cofactor; | |
535 mp_err err = MP_OKAY; | |
536 #if EC_DEBUG | |
537 int i; | |
538 #endif | |
539 | |
540 if (!publicValue || !ecParams || !privateValue || | |
541 !derivedSecret) { | |
542 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
543 return SECFailure; | |
544 } | |
545 | |
546 MP_DIGITS(&k) = 0; | |
547 memset(derivedSecret, 0, sizeof *derivedSecret); | |
548 len = (ecParams->fieldID.size + 7) >> 3; | |
549 pointQ.len = 2*len + 1; | |
550 if ((pointQ.data = PORT_Alloc(2*len + 1)) == NULL) goto cleanup; | |
551 | |
552 CHECK_MPI_OK( mp_init(&k) ); | |
553 CHECK_MPI_OK( mp_read_unsigned_octets(&k, privateValue->data, | |
554 (mp_size) privateValue->len) ); | |
555 | |
556 if (withCofactor && (ecParams->cofactor != 1)) { | |
557 /* multiply k with the cofactor */ | |
558 MP_DIGITS(&cofactor) = 0; | |
559 CHECK_MPI_OK( mp_init(&cofactor) ); | |
560 mp_set(&cofactor, ecParams->cofactor); | |
561 CHECK_MPI_OK( mp_mul(&k, &cofactor, &k) ); | |
562 } | |
563 | |
564 /* Multiply our private key and peer's public point */ | |
565 if (ec_points_mul(ecParams, NULL, &k, publicValue, &pointQ) != SECSuccess) | |
566 goto cleanup; | |
567 if (ec_point_at_infinity(&pointQ)) { | |
568 PORT_SetError(SEC_ERROR_BAD_KEY); /* XXX better error code? */ | |
569 goto cleanup; | |
570 } | |
571 | |
572 /* Allocate memory for the derived secret and copy | |
573 * the x co-ordinate of pointQ into it. | |
574 */ | |
575 SECITEM_AllocItem(NULL, derivedSecret, len); | |
576 memcpy(derivedSecret->data, pointQ.data + 1, len); | |
577 | |
578 rv = SECSuccess; | |
579 | |
580 #if EC_DEBUG | |
581 printf("derived_secret:\n"); | |
582 for (i = 0; i < derivedSecret->len; i++) | |
583 printf("%02x:", derivedSecret->data[i]); | |
584 printf("\n"); | |
585 #endif | |
586 | |
587 cleanup: | |
588 mp_clear(&k); | |
589 | |
590 if (err) { | |
591 MP_TO_SEC_ERROR(err); | |
592 } | |
593 | |
594 if (pointQ.data) { | |
595 PORT_ZFree(pointQ.data, 2*len + 1); | |
596 } | |
597 #else | |
598 PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); | |
599 #endif /* NSS_DISABLE_ECC */ | |
600 | |
601 return rv; | |
602 } | |
603 | |
604 /* Computes the ECDSA signature (a concatenation of two values r and s) | |
605 * on the digest using the given key and the random value kb (used in | |
606 * computing s). | |
607 */ | |
608 SECStatus | |
609 ECDSA_SignDigestWithSeed(ECPrivateKey *key, SECItem *signature, | |
610 const SECItem *digest, const unsigned char *kb, const int kblen) | |
611 { | |
612 SECStatus rv = SECFailure; | |
613 #ifndef NSS_DISABLE_ECC | |
614 mp_int x1; | |
615 mp_int d, k; /* private key, random integer */ | |
616 mp_int r, s; /* tuple (r, s) is the signature */ | |
617 mp_int n; | |
618 mp_err err = MP_OKAY; | |
619 ECParams *ecParams = NULL; | |
620 SECItem kGpoint = { siBuffer, NULL, 0}; | |
621 int flen = 0; /* length in bytes of the field size */ | |
622 unsigned olen; /* length in bytes of the base point order */ | |
623 unsigned obits; /* length in bits of the base point order */ | |
624 | |
625 #if EC_DEBUG | |
626 char mpstr[256]; | |
627 #endif | |
628 | |
629 /* Initialize MPI integers. */ | |
630 /* must happen before the first potential call to cleanup */ | |
631 MP_DIGITS(&x1) = 0; | |
632 MP_DIGITS(&d) = 0; | |
633 MP_DIGITS(&k) = 0; | |
634 MP_DIGITS(&r) = 0; | |
635 MP_DIGITS(&s) = 0; | |
636 MP_DIGITS(&n) = 0; | |
637 | |
638 /* Check args */ | |
639 if (!key || !signature || !digest || !kb || (kblen < 0)) { | |
640 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
641 goto cleanup; | |
642 } | |
643 | |
644 ecParams = &(key->ecParams); | |
645 flen = (ecParams->fieldID.size + 7) >> 3; | |
646 olen = ecParams->order.len; | |
647 if (signature->data == NULL) { | |
648 /* a call to get the signature length only */ | |
649 goto finish; | |
650 } | |
651 if (signature->len < 2*olen) { | |
652 PORT_SetError(SEC_ERROR_OUTPUT_LEN); | |
653 goto cleanup; | |
654 } | |
655 | |
656 | |
657 CHECK_MPI_OK( mp_init(&x1) ); | |
658 CHECK_MPI_OK( mp_init(&d) ); | |
659 CHECK_MPI_OK( mp_init(&k) ); | |
660 CHECK_MPI_OK( mp_init(&r) ); | |
661 CHECK_MPI_OK( mp_init(&s) ); | |
662 CHECK_MPI_OK( mp_init(&n) ); | |
663 | |
664 SECITEM_TO_MPINT( ecParams->order, &n ); | |
665 SECITEM_TO_MPINT( key->privateValue, &d ); | |
666 | |
667 CHECK_MPI_OK( mp_read_unsigned_octets(&k, kb, kblen) ); | |
668 /* Make sure k is in the interval [1, n-1] */ | |
669 if ((mp_cmp_z(&k) <= 0) || (mp_cmp(&k, &n) >= 0)) { | |
670 #if EC_DEBUG | |
671 printf("k is outside [1, n-1]\n"); | |
672 mp_tohex(&k, mpstr); | |
673 printf("k : %s \n", mpstr); | |
674 mp_tohex(&n, mpstr); | |
675 printf("n : %s \n", mpstr); | |
676 #endif | |
677 PORT_SetError(SEC_ERROR_NEED_RANDOM); | |
678 goto cleanup; | |
679 } | |
680 | |
681 /* | |
682 ** We do not want timing information to leak the length of k, | |
683 ** so we compute k*G using an equivalent scalar of fixed | |
684 ** bit-length. | |
685 ** Fix based on patch for ECDSA timing attack in the paper | |
686 ** by Billy Bob Brumley and Nicola Tuveri at | |
687 ** http://eprint.iacr.org/2011/232 | |
688 ** | |
689 ** How do we convert k to a value of a fixed bit-length? | |
690 ** k starts off as an integer satisfying 0 <= k < n. Hence, | |
691 ** n <= k+n < 2n, which means k+n has either the same number | |
692 ** of bits as n or one more bit than n. If k+n has the same | |
693 ** number of bits as n, the second addition ensures that the | |
694 ** final value has exactly one more bit than n. Thus, we | |
695 ** always end up with a value that exactly one more bit than n. | |
696 */ | |
697 CHECK_MPI_OK( mp_add(&k, &n, &k) ); | |
698 if (mpl_significant_bits(&k) <= mpl_significant_bits(&n)) { | |
699 CHECK_MPI_OK( mp_add(&k, &n, &k) ); | |
700 } | |
701 | |
702 /* | |
703 ** ANSI X9.62, Section 5.3.2, Step 2 | |
704 ** | |
705 ** Compute kG | |
706 */ | |
707 kGpoint.len = 2*flen + 1; | |
708 kGpoint.data = PORT_Alloc(2*flen + 1); | |
709 if ((kGpoint.data == NULL) || | |
710 (ec_points_mul(ecParams, &k, NULL, NULL, &kGpoint) | |
711 != SECSuccess)) | |
712 goto cleanup; | |
713 | |
714 /* | |
715 ** ANSI X9.62, Section 5.3.3, Step 1 | |
716 ** | |
717 ** Extract the x co-ordinate of kG into x1 | |
718 */ | |
719 CHECK_MPI_OK( mp_read_unsigned_octets(&x1, kGpoint.data + 1, | |
720 (mp_size) flen) ); | |
721 | |
722 /* | |
723 ** ANSI X9.62, Section 5.3.3, Step 2 | |
724 ** | |
725 ** r = x1 mod n NOTE: n is the order of the curve | |
726 */ | |
727 CHECK_MPI_OK( mp_mod(&x1, &n, &r) ); | |
728 | |
729 /* | |
730 ** ANSI X9.62, Section 5.3.3, Step 3 | |
731 ** | |
732 ** verify r != 0 | |
733 */ | |
734 if (mp_cmp_z(&r) == 0) { | |
735 PORT_SetError(SEC_ERROR_NEED_RANDOM); | |
736 goto cleanup; | |
737 } | |
738 | |
739 /* | |
740 ** ANSI X9.62, Section 5.3.3, Step 4 | |
741 ** | |
742 ** s = (k**-1 * (HASH(M) + d*r)) mod n | |
743 */ | |
744 SECITEM_TO_MPINT(*digest, &s); /* s = HASH(M) */ | |
745 | |
746 /* In the definition of EC signing, digests are truncated | |
747 * to the length of n in bits. | |
748 * (see SEC 1 "Elliptic Curve Digit Signature Algorithm" section 4.1.*/ | |
749 CHECK_MPI_OK( (obits = mpl_significant_bits(&n)) ); | |
750 if (digest->len*8 > obits) { | |
751 mpl_rsh(&s,&s,digest->len*8 - obits); | |
752 } | |
753 | |
754 #if EC_DEBUG | |
755 mp_todecimal(&n, mpstr); | |
756 printf("n : %s (dec)\n", mpstr); | |
757 mp_todecimal(&d, mpstr); | |
758 printf("d : %s (dec)\n", mpstr); | |
759 mp_tohex(&x1, mpstr); | |
760 printf("x1: %s\n", mpstr); | |
761 mp_todecimal(&s, mpstr); | |
762 printf("digest: %s (decimal)\n", mpstr); | |
763 mp_todecimal(&r, mpstr); | |
764 printf("r : %s (dec)\n", mpstr); | |
765 mp_tohex(&r, mpstr); | |
766 printf("r : %s\n", mpstr); | |
767 #endif | |
768 | |
769 CHECK_MPI_OK( mp_invmod(&k, &n, &k) ); /* k = k**-1 mod n */ | |
770 CHECK_MPI_OK( mp_mulmod(&d, &r, &n, &d) ); /* d = d * r mod n */ | |
771 CHECK_MPI_OK( mp_addmod(&s, &d, &n, &s) ); /* s = s + d mod n */ | |
772 CHECK_MPI_OK( mp_mulmod(&s, &k, &n, &s) ); /* s = s * k mod n */ | |
773 | |
774 #if EC_DEBUG | |
775 mp_todecimal(&s, mpstr); | |
776 printf("s : %s (dec)\n", mpstr); | |
777 mp_tohex(&s, mpstr); | |
778 printf("s : %s\n", mpstr); | |
779 #endif | |
780 | |
781 /* | |
782 ** ANSI X9.62, Section 5.3.3, Step 5 | |
783 ** | |
784 ** verify s != 0 | |
785 */ | |
786 if (mp_cmp_z(&s) == 0) { | |
787 PORT_SetError(SEC_ERROR_NEED_RANDOM); | |
788 goto cleanup; | |
789 } | |
790 | |
791 /* | |
792 ** | |
793 ** Signature is tuple (r, s) | |
794 */ | |
795 CHECK_MPI_OK( mp_to_fixlen_octets(&r, signature->data, olen) ); | |
796 CHECK_MPI_OK( mp_to_fixlen_octets(&s, signature->data + olen, olen) ); | |
797 finish: | |
798 signature->len = 2*olen; | |
799 | |
800 rv = SECSuccess; | |
801 err = MP_OKAY; | |
802 cleanup: | |
803 mp_clear(&x1); | |
804 mp_clear(&d); | |
805 mp_clear(&k); | |
806 mp_clear(&r); | |
807 mp_clear(&s); | |
808 mp_clear(&n); | |
809 | |
810 if (kGpoint.data) { | |
811 PORT_ZFree(kGpoint.data, 2*flen + 1); | |
812 } | |
813 | |
814 if (err) { | |
815 MP_TO_SEC_ERROR(err); | |
816 rv = SECFailure; | |
817 } | |
818 | |
819 #if EC_DEBUG | |
820 printf("ECDSA signing with seed %s\n", | |
821 (rv == SECSuccess) ? "succeeded" : "failed"); | |
822 #endif | |
823 #else | |
824 PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); | |
825 #endif /* NSS_DISABLE_ECC */ | |
826 | |
827 return rv; | |
828 } | |
829 | |
830 /* | |
831 ** Computes the ECDSA signature on the digest using the given key | |
832 ** and a random seed. | |
833 */ | |
834 SECStatus | |
835 ECDSA_SignDigest(ECPrivateKey *key, SECItem *signature, const SECItem *digest) | |
836 { | |
837 SECStatus rv = SECFailure; | |
838 #ifndef NSS_DISABLE_ECC | |
839 int len; | |
840 unsigned char *kBytes= NULL; | |
841 | |
842 if (!key) { | |
843 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
844 return SECFailure; | |
845 } | |
846 | |
847 /* Generate random value k */ | |
848 len = key->ecParams.order.len; | |
849 kBytes = ec_GenerateRandomPrivateKey(key->ecParams.order.data, len); | |
850 if (kBytes == NULL) goto cleanup; | |
851 | |
852 /* Generate ECDSA signature with the specified k value */ | |
853 rv = ECDSA_SignDigestWithSeed(key, signature, digest, kBytes, len); | |
854 | |
855 cleanup: | |
856 if (kBytes) { | |
857 PORT_ZFree(kBytes, len); | |
858 } | |
859 | |
860 #if EC_DEBUG | |
861 printf("ECDSA signing %s\n", | |
862 (rv == SECSuccess) ? "succeeded" : "failed"); | |
863 #endif | |
864 #else | |
865 PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); | |
866 #endif /* NSS_DISABLE_ECC */ | |
867 | |
868 return rv; | |
869 } | |
870 | |
871 /* | |
872 ** Checks the signature on the given digest using the key provided. | |
873 */ | |
874 SECStatus | |
875 ECDSA_VerifyDigest(ECPublicKey *key, const SECItem *signature, | |
876 const SECItem *digest) | |
877 { | |
878 SECStatus rv = SECFailure; | |
879 #ifndef NSS_DISABLE_ECC | |
880 mp_int r_, s_; /* tuple (r', s') is received signature) */ | |
881 mp_int c, u1, u2, v; /* intermediate values used in verification */ | |
882 mp_int x1; | |
883 mp_int n; | |
884 mp_err err = MP_OKAY; | |
885 ECParams *ecParams = NULL; | |
886 SECItem pointC = { siBuffer, NULL, 0 }; | |
887 int slen; /* length in bytes of a half signature (r or s) */ | |
888 int flen; /* length in bytes of the field size */ | |
889 unsigned olen; /* length in bytes of the base point order */ | |
890 unsigned obits; /* length in bits of the base point order */ | |
891 | |
892 #if EC_DEBUG | |
893 char mpstr[256]; | |
894 printf("ECDSA verification called\n"); | |
895 #endif | |
896 | |
897 /* Initialize MPI integers. */ | |
898 /* must happen before the first potential call to cleanup */ | |
899 MP_DIGITS(&r_) = 0; | |
900 MP_DIGITS(&s_) = 0; | |
901 MP_DIGITS(&c) = 0; | |
902 MP_DIGITS(&u1) = 0; | |
903 MP_DIGITS(&u2) = 0; | |
904 MP_DIGITS(&x1) = 0; | |
905 MP_DIGITS(&v) = 0; | |
906 MP_DIGITS(&n) = 0; | |
907 | |
908 /* Check args */ | |
909 if (!key || !signature || !digest) { | |
910 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
911 goto cleanup; | |
912 } | |
913 | |
914 ecParams = &(key->ecParams); | |
915 flen = (ecParams->fieldID.size + 7) >> 3; | |
916 olen = ecParams->order.len; | |
917 if (signature->len == 0 || signature->len%2 != 0 || | |
918 signature->len > 2*olen) { | |
919 PORT_SetError(SEC_ERROR_INPUT_LEN); | |
920 goto cleanup; | |
921 } | |
922 slen = signature->len/2; | |
923 | |
924 SECITEM_AllocItem(NULL, &pointC, 2*flen + 1); | |
925 if (pointC.data == NULL) | |
926 goto cleanup; | |
927 | |
928 CHECK_MPI_OK( mp_init(&r_) ); | |
929 CHECK_MPI_OK( mp_init(&s_) ); | |
930 CHECK_MPI_OK( mp_init(&c) ); | |
931 CHECK_MPI_OK( mp_init(&u1) ); | |
932 CHECK_MPI_OK( mp_init(&u2) ); | |
933 CHECK_MPI_OK( mp_init(&x1) ); | |
934 CHECK_MPI_OK( mp_init(&v) ); | |
935 CHECK_MPI_OK( mp_init(&n) ); | |
936 | |
937 /* | |
938 ** Convert received signature (r', s') into MPI integers. | |
939 */ | |
940 CHECK_MPI_OK( mp_read_unsigned_octets(&r_, signature->data, slen) ); | |
941 CHECK_MPI_OK( mp_read_unsigned_octets(&s_, signature->data + slen, slen) ); | |
942 | |
943 /* | |
944 ** ANSI X9.62, Section 5.4.2, Steps 1 and 2 | |
945 ** | |
946 ** Verify that 0 < r' < n and 0 < s' < n | |
947 */ | |
948 SECITEM_TO_MPINT(ecParams->order, &n); | |
949 if (mp_cmp_z(&r_) <= 0 || mp_cmp_z(&s_) <= 0 || | |
950 mp_cmp(&r_, &n) >= 0 || mp_cmp(&s_, &n) >= 0) { | |
951 PORT_SetError(SEC_ERROR_BAD_SIGNATURE); | |
952 goto cleanup; /* will return rv == SECFailure */ | |
953 } | |
954 | |
955 /* | |
956 ** ANSI X9.62, Section 5.4.2, Step 3 | |
957 ** | |
958 ** c = (s')**-1 mod n | |
959 */ | |
960 CHECK_MPI_OK( mp_invmod(&s_, &n, &c) ); /* c = (s')**-1 mod n */ | |
961 | |
962 /* | |
963 ** ANSI X9.62, Section 5.4.2, Step 4 | |
964 ** | |
965 ** u1 = ((HASH(M')) * c) mod n | |
966 */ | |
967 SECITEM_TO_MPINT(*digest, &u1); /* u1 = HASH(M) */ | |
968 | |
969 /* In the definition of EC signing, digests are truncated | |
970 * to the length of n in bits. | |
971 * (see SEC 1 "Elliptic Curve Digit Signature Algorithm" section 4.1.*/ | |
972 CHECK_MPI_OK( (obits = mpl_significant_bits(&n)) ); | |
973 if (digest->len*8 > obits) { /* u1 = HASH(M') */ | |
974 mpl_rsh(&u1,&u1,digest->len*8 - obits); | |
975 } | |
976 | |
977 #if EC_DEBUG | |
978 mp_todecimal(&r_, mpstr); | |
979 printf("r_: %s (dec)\n", mpstr); | |
980 mp_todecimal(&s_, mpstr); | |
981 printf("s_: %s (dec)\n", mpstr); | |
982 mp_todecimal(&c, mpstr); | |
983 printf("c : %s (dec)\n", mpstr); | |
984 mp_todecimal(&u1, mpstr); | |
985 printf("digest: %s (dec)\n", mpstr); | |
986 #endif | |
987 | |
988 CHECK_MPI_OK( mp_mulmod(&u1, &c, &n, &u1) ); /* u1 = u1 * c mod n */ | |
989 | |
990 /* | |
991 ** ANSI X9.62, Section 5.4.2, Step 4 | |
992 ** | |
993 ** u2 = ((r') * c) mod n | |
994 */ | |
995 CHECK_MPI_OK( mp_mulmod(&r_, &c, &n, &u2) ); | |
996 | |
997 /* | |
998 ** ANSI X9.62, Section 5.4.3, Step 1 | |
999 ** | |
1000 ** Compute u1*G + u2*Q | |
1001 ** Here, A = u1.G B = u2.Q and C = A + B | |
1002 ** If the result, C, is the point at infinity, reject the signature | |
1003 */ | |
1004 if (ec_points_mul(ecParams, &u1, &u2, &key->publicValue, &pointC) | |
1005 != SECSuccess) { | |
1006 rv = SECFailure; | |
1007 goto cleanup; | |
1008 } | |
1009 if (ec_point_at_infinity(&pointC)) { | |
1010 PORT_SetError(SEC_ERROR_BAD_SIGNATURE); | |
1011 rv = SECFailure; | |
1012 goto cleanup; | |
1013 } | |
1014 | |
1015 CHECK_MPI_OK( mp_read_unsigned_octets(&x1, pointC.data + 1, flen) ); | |
1016 | |
1017 /* | |
1018 ** ANSI X9.62, Section 5.4.4, Step 2 | |
1019 ** | |
1020 ** v = x1 mod n | |
1021 */ | |
1022 CHECK_MPI_OK( mp_mod(&x1, &n, &v) ); | |
1023 | |
1024 #if EC_DEBUG | |
1025 mp_todecimal(&r_, mpstr); | |
1026 printf("r_: %s (dec)\n", mpstr); | |
1027 mp_todecimal(&v, mpstr); | |
1028 printf("v : %s (dec)\n", mpstr); | |
1029 #endif | |
1030 | |
1031 /* | |
1032 ** ANSI X9.62, Section 5.4.4, Step 3 | |
1033 ** | |
1034 ** Verification: v == r' | |
1035 */ | |
1036 if (mp_cmp(&v, &r_)) { | |
1037 PORT_SetError(SEC_ERROR_BAD_SIGNATURE); | |
1038 rv = SECFailure; /* Signature failed to verify. */ | |
1039 } else { | |
1040 rv = SECSuccess; /* Signature verified. */ | |
1041 } | |
1042 | |
1043 #if EC_DEBUG | |
1044 mp_todecimal(&u1, mpstr); | |
1045 printf("u1: %s (dec)\n", mpstr); | |
1046 mp_todecimal(&u2, mpstr); | |
1047 printf("u2: %s (dec)\n", mpstr); | |
1048 mp_tohex(&x1, mpstr); | |
1049 printf("x1: %s\n", mpstr); | |
1050 mp_todecimal(&v, mpstr); | |
1051 printf("v : %s (dec)\n", mpstr); | |
1052 #endif | |
1053 | |
1054 cleanup: | |
1055 mp_clear(&r_); | |
1056 mp_clear(&s_); | |
1057 mp_clear(&c); | |
1058 mp_clear(&u1); | |
1059 mp_clear(&u2); | |
1060 mp_clear(&x1); | |
1061 mp_clear(&v); | |
1062 mp_clear(&n); | |
1063 | |
1064 if (pointC.data) SECITEM_FreeItem(&pointC, PR_FALSE); | |
1065 if (err) { | |
1066 MP_TO_SEC_ERROR(err); | |
1067 rv = SECFailure; | |
1068 } | |
1069 | |
1070 #if EC_DEBUG | |
1071 printf("ECDSA verification %s\n", | |
1072 (rv == SECSuccess) ? "succeeded" : "failed"); | |
1073 #endif | |
1074 #else | |
1075 PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); | |
1076 #endif /* NSS_DISABLE_ECC */ | |
1077 | |
1078 return rv; | |
1079 } | |
1080 |