Mercurial > trustbridge > nss-cmake-static
comparison nss/lib/freebl/ecl/ecl_mult.c @ 0:1e5118fa0cb1
This is NSS with a Cmake Buildsyste
To compile a static NSS library for Windows we've used the
Chromium-NSS fork and added a Cmake buildsystem to compile
it statically for Windows. See README.chromium for chromium
changes and README.trustbridge for our modifications.
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Mon, 28 Jul 2014 10:47:06 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:1e5118fa0cb1 |
---|---|
1 /* This Source Code Form is subject to the terms of the Mozilla Public | |
2 * License, v. 2.0. If a copy of the MPL was not distributed with this | |
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | |
4 | |
5 #include "mpi.h" | |
6 #include "mplogic.h" | |
7 #include "ecl.h" | |
8 #include "ecl-priv.h" | |
9 #include <stdlib.h> | |
10 | |
11 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k * P(x, | |
12 * y). If x, y = NULL, then P is assumed to be the generator (base point) | |
13 * of the group of points on the elliptic curve. Input and output values | |
14 * are assumed to be NOT field-encoded. */ | |
15 mp_err | |
16 ECPoint_mul(const ECGroup *group, const mp_int *k, const mp_int *px, | |
17 const mp_int *py, mp_int *rx, mp_int *ry) | |
18 { | |
19 mp_err res = MP_OKAY; | |
20 mp_int kt; | |
21 | |
22 ARGCHK((k != NULL) && (group != NULL), MP_BADARG); | |
23 MP_DIGITS(&kt) = 0; | |
24 | |
25 /* want scalar to be less than or equal to group order */ | |
26 if (mp_cmp(k, &group->order) > 0) { | |
27 MP_CHECKOK(mp_init(&kt)); | |
28 MP_CHECKOK(mp_mod(k, &group->order, &kt)); | |
29 } else { | |
30 MP_SIGN(&kt) = MP_ZPOS; | |
31 MP_USED(&kt) = MP_USED(k); | |
32 MP_ALLOC(&kt) = MP_ALLOC(k); | |
33 MP_DIGITS(&kt) = MP_DIGITS(k); | |
34 } | |
35 | |
36 if ((px == NULL) || (py == NULL)) { | |
37 if (group->base_point_mul) { | |
38 MP_CHECKOK(group->base_point_mul(&kt, rx, ry, group)); | |
39 } else { | |
40 MP_CHECKOK(group-> | |
41 point_mul(&kt, &group->genx, &group->geny, rx, ry, | |
42 group)); | |
43 } | |
44 } else { | |
45 if (group->meth->field_enc) { | |
46 MP_CHECKOK(group->meth->field_enc(px, rx, group->meth)); | |
47 MP_CHECKOK(group->meth->field_enc(py, ry, group->meth)); | |
48 MP_CHECKOK(group->point_mul(&kt, rx, ry, rx, ry, group)); | |
49 } else { | |
50 MP_CHECKOK(group->point_mul(&kt, px, py, rx, ry, group)); | |
51 } | |
52 } | |
53 if (group->meth->field_dec) { | |
54 MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth)); | |
55 MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth)); | |
56 } | |
57 | |
58 CLEANUP: | |
59 if (MP_DIGITS(&kt) != MP_DIGITS(k)) { | |
60 mp_clear(&kt); | |
61 } | |
62 return res; | |
63 } | |
64 | |
65 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + | |
66 * k2 * P(x, y), where G is the generator (base point) of the group of | |
67 * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL. | |
68 * Input and output values are assumed to be NOT field-encoded. */ | |
69 mp_err | |
70 ec_pts_mul_basic(const mp_int *k1, const mp_int *k2, const mp_int *px, | |
71 const mp_int *py, mp_int *rx, mp_int *ry, | |
72 const ECGroup *group) | |
73 { | |
74 mp_err res = MP_OKAY; | |
75 mp_int sx, sy; | |
76 | |
77 ARGCHK(group != NULL, MP_BADARG); | |
78 ARGCHK(!((k1 == NULL) | |
79 && ((k2 == NULL) || (px == NULL) | |
80 || (py == NULL))), MP_BADARG); | |
81 | |
82 /* if some arguments are not defined used ECPoint_mul */ | |
83 if (k1 == NULL) { | |
84 return ECPoint_mul(group, k2, px, py, rx, ry); | |
85 } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) { | |
86 return ECPoint_mul(group, k1, NULL, NULL, rx, ry); | |
87 } | |
88 | |
89 MP_DIGITS(&sx) = 0; | |
90 MP_DIGITS(&sy) = 0; | |
91 MP_CHECKOK(mp_init(&sx)); | |
92 MP_CHECKOK(mp_init(&sy)); | |
93 | |
94 MP_CHECKOK(ECPoint_mul(group, k1, NULL, NULL, &sx, &sy)); | |
95 MP_CHECKOK(ECPoint_mul(group, k2, px, py, rx, ry)); | |
96 | |
97 if (group->meth->field_enc) { | |
98 MP_CHECKOK(group->meth->field_enc(&sx, &sx, group->meth)); | |
99 MP_CHECKOK(group->meth->field_enc(&sy, &sy, group->meth)); | |
100 MP_CHECKOK(group->meth->field_enc(rx, rx, group->meth)); | |
101 MP_CHECKOK(group->meth->field_enc(ry, ry, group->meth)); | |
102 } | |
103 | |
104 MP_CHECKOK(group->point_add(&sx, &sy, rx, ry, rx, ry, group)); | |
105 | |
106 if (group->meth->field_dec) { | |
107 MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth)); | |
108 MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth)); | |
109 } | |
110 | |
111 CLEANUP: | |
112 mp_clear(&sx); | |
113 mp_clear(&sy); | |
114 return res; | |
115 } | |
116 | |
117 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + | |
118 * k2 * P(x, y), where G is the generator (base point) of the group of | |
119 * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL. | |
120 * Input and output values are assumed to be NOT field-encoded. Uses | |
121 * algorithm 15 (simultaneous multiple point multiplication) from Brown, | |
122 * Hankerson, Lopez, Menezes. Software Implementation of the NIST | |
123 * Elliptic Curves over Prime Fields. */ | |
124 mp_err | |
125 ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2, const mp_int *px, | |
126 const mp_int *py, mp_int *rx, mp_int *ry, | |
127 const ECGroup *group) | |
128 { | |
129 mp_err res = MP_OKAY; | |
130 mp_int precomp[4][4][2]; | |
131 const mp_int *a, *b; | |
132 int i, j; | |
133 int ai, bi, d; | |
134 | |
135 ARGCHK(group != NULL, MP_BADARG); | |
136 ARGCHK(!((k1 == NULL) | |
137 && ((k2 == NULL) || (px == NULL) | |
138 || (py == NULL))), MP_BADARG); | |
139 | |
140 /* if some arguments are not defined used ECPoint_mul */ | |
141 if (k1 == NULL) { | |
142 return ECPoint_mul(group, k2, px, py, rx, ry); | |
143 } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) { | |
144 return ECPoint_mul(group, k1, NULL, NULL, rx, ry); | |
145 } | |
146 | |
147 /* initialize precomputation table */ | |
148 for (i = 0; i < 4; i++) { | |
149 for (j = 0; j < 4; j++) { | |
150 MP_DIGITS(&precomp[i][j][0]) = 0; | |
151 MP_DIGITS(&precomp[i][j][1]) = 0; | |
152 } | |
153 } | |
154 for (i = 0; i < 4; i++) { | |
155 for (j = 0; j < 4; j++) { | |
156 MP_CHECKOK( mp_init_size(&precomp[i][j][0], | |
157 ECL_MAX_FIELD_SIZE_DIGITS) ); | |
158 MP_CHECKOK( mp_init_size(&precomp[i][j][1], | |
159 ECL_MAX_FIELD_SIZE_DIGITS) ); | |
160 } | |
161 } | |
162 | |
163 /* fill precomputation table */ | |
164 /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */ | |
165 if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) { | |
166 a = k2; | |
167 b = k1; | |
168 if (group->meth->field_enc) { | |
169 MP_CHECKOK(group->meth-> | |
170 field_enc(px, &precomp[1][0][0], group->meth)); | |
171 MP_CHECKOK(group->meth-> | |
172 field_enc(py, &precomp[1][0][1], group->meth)); | |
173 } else { | |
174 MP_CHECKOK(mp_copy(px, &precomp[1][0][0])); | |
175 MP_CHECKOK(mp_copy(py, &precomp[1][0][1])); | |
176 } | |
177 MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0])); | |
178 MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1])); | |
179 } else { | |
180 a = k1; | |
181 b = k2; | |
182 MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0])); | |
183 MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1])); | |
184 if (group->meth->field_enc) { | |
185 MP_CHECKOK(group->meth-> | |
186 field_enc(px, &precomp[0][1][0], group->meth)); | |
187 MP_CHECKOK(group->meth-> | |
188 field_enc(py, &precomp[0][1][1], group->meth)); | |
189 } else { | |
190 MP_CHECKOK(mp_copy(px, &precomp[0][1][0])); | |
191 MP_CHECKOK(mp_copy(py, &precomp[0][1][1])); | |
192 } | |
193 } | |
194 /* precompute [*][0][*] */ | |
195 mp_zero(&precomp[0][0][0]); | |
196 mp_zero(&precomp[0][0][1]); | |
197 MP_CHECKOK(group-> | |
198 point_dbl(&precomp[1][0][0], &precomp[1][0][1], | |
199 &precomp[2][0][0], &precomp[2][0][1], group)); | |
200 MP_CHECKOK(group-> | |
201 point_add(&precomp[1][0][0], &precomp[1][0][1], | |
202 &precomp[2][0][0], &precomp[2][0][1], | |
203 &precomp[3][0][0], &precomp[3][0][1], group)); | |
204 /* precompute [*][1][*] */ | |
205 for (i = 1; i < 4; i++) { | |
206 MP_CHECKOK(group-> | |
207 point_add(&precomp[0][1][0], &precomp[0][1][1], | |
208 &precomp[i][0][0], &precomp[i][0][1], | |
209 &precomp[i][1][0], &precomp[i][1][1], group)); | |
210 } | |
211 /* precompute [*][2][*] */ | |
212 MP_CHECKOK(group-> | |
213 point_dbl(&precomp[0][1][0], &precomp[0][1][1], | |
214 &precomp[0][2][0], &precomp[0][2][1], group)); | |
215 for (i = 1; i < 4; i++) { | |
216 MP_CHECKOK(group-> | |
217 point_add(&precomp[0][2][0], &precomp[0][2][1], | |
218 &precomp[i][0][0], &precomp[i][0][1], | |
219 &precomp[i][2][0], &precomp[i][2][1], group)); | |
220 } | |
221 /* precompute [*][3][*] */ | |
222 MP_CHECKOK(group-> | |
223 point_add(&precomp[0][1][0], &precomp[0][1][1], | |
224 &precomp[0][2][0], &precomp[0][2][1], | |
225 &precomp[0][3][0], &precomp[0][3][1], group)); | |
226 for (i = 1; i < 4; i++) { | |
227 MP_CHECKOK(group-> | |
228 point_add(&precomp[0][3][0], &precomp[0][3][1], | |
229 &precomp[i][0][0], &precomp[i][0][1], | |
230 &precomp[i][3][0], &precomp[i][3][1], group)); | |
231 } | |
232 | |
233 d = (mpl_significant_bits(a) + 1) / 2; | |
234 | |
235 /* R = inf */ | |
236 mp_zero(rx); | |
237 mp_zero(ry); | |
238 | |
239 for (i = d - 1; i >= 0; i--) { | |
240 ai = MP_GET_BIT(a, 2 * i + 1); | |
241 ai <<= 1; | |
242 ai |= MP_GET_BIT(a, 2 * i); | |
243 bi = MP_GET_BIT(b, 2 * i + 1); | |
244 bi <<= 1; | |
245 bi |= MP_GET_BIT(b, 2 * i); | |
246 /* R = 2^2 * R */ | |
247 MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group)); | |
248 MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group)); | |
249 /* R = R + (ai * A + bi * B) */ | |
250 MP_CHECKOK(group-> | |
251 point_add(rx, ry, &precomp[ai][bi][0], | |
252 &precomp[ai][bi][1], rx, ry, group)); | |
253 } | |
254 | |
255 if (group->meth->field_dec) { | |
256 MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth)); | |
257 MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth)); | |
258 } | |
259 | |
260 CLEANUP: | |
261 for (i = 0; i < 4; i++) { | |
262 for (j = 0; j < 4; j++) { | |
263 mp_clear(&precomp[i][j][0]); | |
264 mp_clear(&precomp[i][j][1]); | |
265 } | |
266 } | |
267 return res; | |
268 } | |
269 | |
270 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + | |
271 * k2 * P(x, y), where G is the generator (base point) of the group of | |
272 * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL. | |
273 * Input and output values are assumed to be NOT field-encoded. */ | |
274 mp_err | |
275 ECPoints_mul(const ECGroup *group, const mp_int *k1, const mp_int *k2, | |
276 const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry) | |
277 { | |
278 mp_err res = MP_OKAY; | |
279 mp_int k1t, k2t; | |
280 const mp_int *k1p, *k2p; | |
281 | |
282 MP_DIGITS(&k1t) = 0; | |
283 MP_DIGITS(&k2t) = 0; | |
284 | |
285 ARGCHK(group != NULL, MP_BADARG); | |
286 | |
287 /* want scalar to be less than or equal to group order */ | |
288 if (k1 != NULL) { | |
289 if (mp_cmp(k1, &group->order) >= 0) { | |
290 MP_CHECKOK(mp_init(&k1t)); | |
291 MP_CHECKOK(mp_mod(k1, &group->order, &k1t)); | |
292 k1p = &k1t; | |
293 } else { | |
294 k1p = k1; | |
295 } | |
296 } else { | |
297 k1p = k1; | |
298 } | |
299 if (k2 != NULL) { | |
300 if (mp_cmp(k2, &group->order) >= 0) { | |
301 MP_CHECKOK(mp_init(&k2t)); | |
302 MP_CHECKOK(mp_mod(k2, &group->order, &k2t)); | |
303 k2p = &k2t; | |
304 } else { | |
305 k2p = k2; | |
306 } | |
307 } else { | |
308 k2p = k2; | |
309 } | |
310 | |
311 /* if points_mul is defined, then use it */ | |
312 if (group->points_mul) { | |
313 res = group->points_mul(k1p, k2p, px, py, rx, ry, group); | |
314 } else { | |
315 res = ec_pts_mul_simul_w2(k1p, k2p, px, py, rx, ry, group); | |
316 } | |
317 | |
318 CLEANUP: | |
319 mp_clear(&k1t); | |
320 mp_clear(&k2t); | |
321 return res; | |
322 } |