Mercurial > trustbridge > nss-cmake-static
comparison nss/lib/freebl/ecl/ecp.h @ 0:1e5118fa0cb1
This is NSS with a Cmake Buildsyste
To compile a static NSS library for Windows we've used the
Chromium-NSS fork and added a Cmake buildsystem to compile
it statically for Windows. See README.chromium for chromium
changes and README.trustbridge for our modifications.
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Mon, 28 Jul 2014 10:47:06 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:1e5118fa0cb1 |
---|---|
1 /* This Source Code Form is subject to the terms of the Mozilla Public | |
2 * License, v. 2.0. If a copy of the MPL was not distributed with this | |
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | |
4 | |
5 #ifndef __ecp_h_ | |
6 #define __ecp_h_ | |
7 | |
8 #include "ecl-priv.h" | |
9 | |
10 /* Checks if point P(px, py) is at infinity. Uses affine coordinates. */ | |
11 mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py); | |
12 | |
13 /* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */ | |
14 mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py); | |
15 | |
16 /* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx, | |
17 * qy). Uses affine coordinates. */ | |
18 mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, | |
19 const mp_int *qx, const mp_int *qy, mp_int *rx, | |
20 mp_int *ry, const ECGroup *group); | |
21 | |
22 /* Computes R = P - Q. Uses affine coordinates. */ | |
23 mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, | |
24 const mp_int *qx, const mp_int *qy, mp_int *rx, | |
25 mp_int *ry, const ECGroup *group); | |
26 | |
27 /* Computes R = 2P. Uses affine coordinates. */ | |
28 mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx, | |
29 mp_int *ry, const ECGroup *group); | |
30 | |
31 /* Validates a point on a GFp curve. */ | |
32 mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group); | |
33 | |
34 #ifdef ECL_ENABLE_GFP_PT_MUL_AFF | |
35 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters | |
36 * a, b and p are the elliptic curve coefficients and the prime that | |
37 * determines the field GFp. Uses affine coordinates. */ | |
38 mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, | |
39 const mp_int *py, mp_int *rx, mp_int *ry, | |
40 const ECGroup *group); | |
41 #endif | |
42 | |
43 /* Converts a point P(px, py) from affine coordinates to Jacobian | |
44 * projective coordinates R(rx, ry, rz). */ | |
45 mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx, | |
46 mp_int *ry, mp_int *rz, const ECGroup *group); | |
47 | |
48 /* Converts a point P(px, py, pz) from Jacobian projective coordinates to | |
49 * affine coordinates R(rx, ry). */ | |
50 mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, | |
51 const mp_int *pz, mp_int *rx, mp_int *ry, | |
52 const ECGroup *group); | |
53 | |
54 /* Checks if point P(px, py, pz) is at infinity. Uses Jacobian | |
55 * coordinates. */ | |
56 mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, | |
57 const mp_int *pz); | |
58 | |
59 /* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian | |
60 * coordinates. */ | |
61 mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz); | |
62 | |
63 /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is | |
64 * (qx, qy, qz). Uses Jacobian coordinates. */ | |
65 mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, | |
66 const mp_int *pz, const mp_int *qx, | |
67 const mp_int *qy, mp_int *rx, mp_int *ry, | |
68 mp_int *rz, const ECGroup *group); | |
69 | |
70 /* Computes R = 2P. Uses Jacobian coordinates. */ | |
71 mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, | |
72 const mp_int *pz, mp_int *rx, mp_int *ry, | |
73 mp_int *rz, const ECGroup *group); | |
74 | |
75 #ifdef ECL_ENABLE_GFP_PT_MUL_JAC | |
76 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters | |
77 * a, b and p are the elliptic curve coefficients and the prime that | |
78 * determines the field GFp. Uses Jacobian coordinates. */ | |
79 mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, | |
80 const mp_int *py, mp_int *rx, mp_int *ry, | |
81 const ECGroup *group); | |
82 #endif | |
83 | |
84 /* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator | |
85 * (base point) of the group of points on the elliptic curve. Allows k1 = | |
86 * NULL or { k2, P } = NULL. Implemented using mixed Jacobian-affine | |
87 * coordinates. Input and output values are assumed to be NOT | |
88 * field-encoded and are in affine form. */ | |
89 mp_err | |
90 ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px, | |
91 const mp_int *py, mp_int *rx, mp_int *ry, | |
92 const ECGroup *group); | |
93 | |
94 /* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic | |
95 * curve points P and R can be identical. Uses mixed Modified-Jacobian | |
96 * co-ordinates for doubling and Chudnovsky Jacobian coordinates for | |
97 * additions. Assumes input is already field-encoded using field_enc, and | |
98 * returns output that is still field-encoded. Uses 5-bit window NAF | |
99 * method (algorithm 11) for scalar-point multiplication from Brown, | |
100 * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic | |
101 * Curves Over Prime Fields. */ | |
102 mp_err | |
103 ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py, | |
104 mp_int *rx, mp_int *ry, const ECGroup *group); | |
105 | |
106 #endif /* __ecp_h_ */ |