comparison nss/lib/freebl/ecl/ecp.h @ 0:1e5118fa0cb1

This is NSS with a Cmake Buildsyste To compile a static NSS library for Windows we've used the Chromium-NSS fork and added a Cmake buildsystem to compile it statically for Windows. See README.chromium for chromium changes and README.trustbridge for our modifications.
author Andre Heinecke <andre.heinecke@intevation.de>
date Mon, 28 Jul 2014 10:47:06 +0200
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:1e5118fa0cb1
1 /* This Source Code Form is subject to the terms of the Mozilla Public
2 * License, v. 2.0. If a copy of the MPL was not distributed with this
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
4
5 #ifndef __ecp_h_
6 #define __ecp_h_
7
8 #include "ecl-priv.h"
9
10 /* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
11 mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py);
12
13 /* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
14 mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py);
15
16 /* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
17 * qy). Uses affine coordinates. */
18 mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py,
19 const mp_int *qx, const mp_int *qy, mp_int *rx,
20 mp_int *ry, const ECGroup *group);
21
22 /* Computes R = P - Q. Uses affine coordinates. */
23 mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py,
24 const mp_int *qx, const mp_int *qy, mp_int *rx,
25 mp_int *ry, const ECGroup *group);
26
27 /* Computes R = 2P. Uses affine coordinates. */
28 mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
29 mp_int *ry, const ECGroup *group);
30
31 /* Validates a point on a GFp curve. */
32 mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);
33
34 #ifdef ECL_ENABLE_GFP_PT_MUL_AFF
35 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
36 * a, b and p are the elliptic curve coefficients and the prime that
37 * determines the field GFp. Uses affine coordinates. */
38 mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px,
39 const mp_int *py, mp_int *rx, mp_int *ry,
40 const ECGroup *group);
41 #endif
42
43 /* Converts a point P(px, py) from affine coordinates to Jacobian
44 * projective coordinates R(rx, ry, rz). */
45 mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
46 mp_int *ry, mp_int *rz, const ECGroup *group);
47
48 /* Converts a point P(px, py, pz) from Jacobian projective coordinates to
49 * affine coordinates R(rx, ry). */
50 mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py,
51 const mp_int *pz, mp_int *rx, mp_int *ry,
52 const ECGroup *group);
53
54 /* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
55 * coordinates. */
56 mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py,
57 const mp_int *pz);
58
59 /* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian
60 * coordinates. */
61 mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz);
62
63 /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
64 * (qx, qy, qz). Uses Jacobian coordinates. */
65 mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py,
66 const mp_int *pz, const mp_int *qx,
67 const mp_int *qy, mp_int *rx, mp_int *ry,
68 mp_int *rz, const ECGroup *group);
69
70 /* Computes R = 2P. Uses Jacobian coordinates. */
71 mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py,
72 const mp_int *pz, mp_int *rx, mp_int *ry,
73 mp_int *rz, const ECGroup *group);
74
75 #ifdef ECL_ENABLE_GFP_PT_MUL_JAC
76 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
77 * a, b and p are the elliptic curve coefficients and the prime that
78 * determines the field GFp. Uses Jacobian coordinates. */
79 mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px,
80 const mp_int *py, mp_int *rx, mp_int *ry,
81 const ECGroup *group);
82 #endif
83
84 /* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator
85 * (base point) of the group of points on the elliptic curve. Allows k1 =
86 * NULL or { k2, P } = NULL. Implemented using mixed Jacobian-affine
87 * coordinates. Input and output values are assumed to be NOT
88 * field-encoded and are in affine form. */
89 mp_err
90 ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
91 const mp_int *py, mp_int *rx, mp_int *ry,
92 const ECGroup *group);
93
94 /* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
95 * curve points P and R can be identical. Uses mixed Modified-Jacobian
96 * co-ordinates for doubling and Chudnovsky Jacobian coordinates for
97 * additions. Assumes input is already field-encoded using field_enc, and
98 * returns output that is still field-encoded. Uses 5-bit window NAF
99 * method (algorithm 11) for scalar-point multiplication from Brown,
100 * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic
101 * Curves Over Prime Fields. */
102 mp_err
103 ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
104 mp_int *rx, mp_int *ry, const ECGroup *group);
105
106 #endif /* __ecp_h_ */
This site is hosted by Intevation GmbH (Datenschutzerklärung und Impressum | Privacy Policy and Imprint)