Mercurial > trustbridge > nss-cmake-static
comparison nss/lib/freebl/ecl/ecp_521.c @ 0:1e5118fa0cb1
This is NSS with a Cmake Buildsyste
To compile a static NSS library for Windows we've used the
Chromium-NSS fork and added a Cmake buildsystem to compile
it statically for Windows. See README.chromium for chromium
changes and README.trustbridge for our modifications.
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Mon, 28 Jul 2014 10:47:06 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:1e5118fa0cb1 |
---|---|
1 /* This Source Code Form is subject to the terms of the Mozilla Public | |
2 * License, v. 2.0. If a copy of the MPL was not distributed with this | |
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | |
4 | |
5 #include "ecp.h" | |
6 #include "mpi.h" | |
7 #include "mplogic.h" | |
8 #include "mpi-priv.h" | |
9 | |
10 #define ECP521_DIGITS ECL_CURVE_DIGITS(521) | |
11 | |
12 /* Fast modular reduction for p521 = 2^521 - 1. a can be r. Uses | |
13 * algorithm 2.31 from Hankerson, Menezes, Vanstone. Guide to | |
14 * Elliptic Curve Cryptography. */ | |
15 static mp_err | |
16 ec_GFp_nistp521_mod(const mp_int *a, mp_int *r, const GFMethod *meth) | |
17 { | |
18 mp_err res = MP_OKAY; | |
19 int a_bits = mpl_significant_bits(a); | |
20 int i; | |
21 | |
22 /* m1, m2 are statically-allocated mp_int of exactly the size we need */ | |
23 mp_int m1; | |
24 | |
25 mp_digit s1[ECP521_DIGITS] = { 0 }; | |
26 | |
27 MP_SIGN(&m1) = MP_ZPOS; | |
28 MP_ALLOC(&m1) = ECP521_DIGITS; | |
29 MP_USED(&m1) = ECP521_DIGITS; | |
30 MP_DIGITS(&m1) = s1; | |
31 | |
32 if (a_bits < 521) { | |
33 if (a==r) return MP_OKAY; | |
34 return mp_copy(a, r); | |
35 } | |
36 /* for polynomials larger than twice the field size or polynomials | |
37 * not using all words, use regular reduction */ | |
38 if (a_bits > (521*2)) { | |
39 MP_CHECKOK(mp_mod(a, &meth->irr, r)); | |
40 } else { | |
41 #define FIRST_DIGIT (ECP521_DIGITS-1) | |
42 for (i = FIRST_DIGIT; i < MP_USED(a)-1; i++) { | |
43 s1[i-FIRST_DIGIT] = (MP_DIGIT(a, i) >> 9) | |
44 | (MP_DIGIT(a, 1+i) << (MP_DIGIT_BIT-9)); | |
45 } | |
46 s1[i-FIRST_DIGIT] = MP_DIGIT(a, i) >> 9; | |
47 | |
48 if ( a != r ) { | |
49 MP_CHECKOK(s_mp_pad(r,ECP521_DIGITS)); | |
50 for (i = 0; i < ECP521_DIGITS; i++) { | |
51 MP_DIGIT(r,i) = MP_DIGIT(a, i); | |
52 } | |
53 } | |
54 MP_USED(r) = ECP521_DIGITS; | |
55 MP_DIGIT(r,FIRST_DIGIT) &= 0x1FF; | |
56 | |
57 MP_CHECKOK(s_mp_add(r, &m1)); | |
58 if (MP_DIGIT(r, FIRST_DIGIT) & 0x200) { | |
59 MP_CHECKOK(s_mp_add_d(r,1)); | |
60 MP_DIGIT(r,FIRST_DIGIT) &= 0x1FF; | |
61 } else if (s_mp_cmp(r, &meth->irr) == 0) { | |
62 mp_zero(r); | |
63 } | |
64 s_mp_clamp(r); | |
65 } | |
66 | |
67 CLEANUP: | |
68 return res; | |
69 } | |
70 | |
71 /* Compute the square of polynomial a, reduce modulo p521. Store the | |
72 * result in r. r could be a. Uses optimized modular reduction for p521. | |
73 */ | |
74 static mp_err | |
75 ec_GFp_nistp521_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) | |
76 { | |
77 mp_err res = MP_OKAY; | |
78 | |
79 MP_CHECKOK(mp_sqr(a, r)); | |
80 MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth)); | |
81 CLEANUP: | |
82 return res; | |
83 } | |
84 | |
85 /* Compute the product of two polynomials a and b, reduce modulo p521. | |
86 * Store the result in r. r could be a or b; a could be b. Uses | |
87 * optimized modular reduction for p521. */ | |
88 static mp_err | |
89 ec_GFp_nistp521_mul(const mp_int *a, const mp_int *b, mp_int *r, | |
90 const GFMethod *meth) | |
91 { | |
92 mp_err res = MP_OKAY; | |
93 | |
94 MP_CHECKOK(mp_mul(a, b, r)); | |
95 MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth)); | |
96 CLEANUP: | |
97 return res; | |
98 } | |
99 | |
100 /* Divides two field elements. If a is NULL, then returns the inverse of | |
101 * b. */ | |
102 static mp_err | |
103 ec_GFp_nistp521_div(const mp_int *a, const mp_int *b, mp_int *r, | |
104 const GFMethod *meth) | |
105 { | |
106 mp_err res = MP_OKAY; | |
107 mp_int t; | |
108 | |
109 /* If a is NULL, then return the inverse of b, otherwise return a/b. */ | |
110 if (a == NULL) { | |
111 return mp_invmod(b, &meth->irr, r); | |
112 } else { | |
113 /* MPI doesn't support divmod, so we implement it using invmod and | |
114 * mulmod. */ | |
115 MP_CHECKOK(mp_init(&t)); | |
116 MP_CHECKOK(mp_invmod(b, &meth->irr, &t)); | |
117 MP_CHECKOK(mp_mul(a, &t, r)); | |
118 MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth)); | |
119 CLEANUP: | |
120 mp_clear(&t); | |
121 return res; | |
122 } | |
123 } | |
124 | |
125 /* Wire in fast field arithmetic and precomputation of base point for | |
126 * named curves. */ | |
127 mp_err | |
128 ec_group_set_gfp521(ECGroup *group, ECCurveName name) | |
129 { | |
130 if (name == ECCurve_NIST_P521) { | |
131 group->meth->field_mod = &ec_GFp_nistp521_mod; | |
132 group->meth->field_mul = &ec_GFp_nistp521_mul; | |
133 group->meth->field_sqr = &ec_GFp_nistp521_sqr; | |
134 group->meth->field_div = &ec_GFp_nistp521_div; | |
135 } | |
136 return MP_OKAY; | |
137 } |