comparison nss/lib/freebl/ecl/ecp_aff.c @ 0:1e5118fa0cb1

This is NSS with a Cmake Buildsyste To compile a static NSS library for Windows we've used the Chromium-NSS fork and added a Cmake buildsystem to compile it statically for Windows. See README.chromium for chromium changes and README.trustbridge for our modifications.
author Andre Heinecke <andre.heinecke@intevation.de>
date Mon, 28 Jul 2014 10:47:06 +0200
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:1e5118fa0cb1
1 /* This Source Code Form is subject to the terms of the Mozilla Public
2 * License, v. 2.0. If a copy of the MPL was not distributed with this
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
4
5 #include "ecp.h"
6 #include "mplogic.h"
7 #include <stdlib.h>
8
9 /* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
10 mp_err
11 ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py)
12 {
13
14 if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) {
15 return MP_YES;
16 } else {
17 return MP_NO;
18 }
19
20 }
21
22 /* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
23 mp_err
24 ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py)
25 {
26 mp_zero(px);
27 mp_zero(py);
28 return MP_OKAY;
29 }
30
31 /* Computes R = P + Q based on IEEE P1363 A.10.1. Elliptic curve points P,
32 * Q, and R can all be identical. Uses affine coordinates. Assumes input
33 * is already field-encoded using field_enc, and returns output that is
34 * still field-encoded. */
35 mp_err
36 ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
37 const mp_int *qy, mp_int *rx, mp_int *ry,
38 const ECGroup *group)
39 {
40 mp_err res = MP_OKAY;
41 mp_int lambda, temp, tempx, tempy;
42
43 MP_DIGITS(&lambda) = 0;
44 MP_DIGITS(&temp) = 0;
45 MP_DIGITS(&tempx) = 0;
46 MP_DIGITS(&tempy) = 0;
47 MP_CHECKOK(mp_init(&lambda));
48 MP_CHECKOK(mp_init(&temp));
49 MP_CHECKOK(mp_init(&tempx));
50 MP_CHECKOK(mp_init(&tempy));
51 /* if P = inf, then R = Q */
52 if (ec_GFp_pt_is_inf_aff(px, py) == 0) {
53 MP_CHECKOK(mp_copy(qx, rx));
54 MP_CHECKOK(mp_copy(qy, ry));
55 res = MP_OKAY;
56 goto CLEANUP;
57 }
58 /* if Q = inf, then R = P */
59 if (ec_GFp_pt_is_inf_aff(qx, qy) == 0) {
60 MP_CHECKOK(mp_copy(px, rx));
61 MP_CHECKOK(mp_copy(py, ry));
62 res = MP_OKAY;
63 goto CLEANUP;
64 }
65 /* if px != qx, then lambda = (py-qy) / (px-qx) */
66 if (mp_cmp(px, qx) != 0) {
67 MP_CHECKOK(group->meth->field_sub(py, qy, &tempy, group->meth));
68 MP_CHECKOK(group->meth->field_sub(px, qx, &tempx, group->meth));
69 MP_CHECKOK(group->meth->
70 field_div(&tempy, &tempx, &lambda, group->meth));
71 } else {
72 /* if py != qy or qy = 0, then R = inf */
73 if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qy) == 0)) {
74 mp_zero(rx);
75 mp_zero(ry);
76 res = MP_OKAY;
77 goto CLEANUP;
78 }
79 /* lambda = (3qx^2+a) / (2qy) */
80 MP_CHECKOK(group->meth->field_sqr(qx, &tempx, group->meth));
81 MP_CHECKOK(mp_set_int(&temp, 3));
82 if (group->meth->field_enc) {
83 MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
84 }
85 MP_CHECKOK(group->meth->
86 field_mul(&tempx, &temp, &tempx, group->meth));
87 MP_CHECKOK(group->meth->
88 field_add(&tempx, &group->curvea, &tempx, group->meth));
89 MP_CHECKOK(mp_set_int(&temp, 2));
90 if (group->meth->field_enc) {
91 MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
92 }
93 MP_CHECKOK(group->meth->field_mul(qy, &temp, &tempy, group->meth));
94 MP_CHECKOK(group->meth->
95 field_div(&tempx, &tempy, &lambda, group->meth));
96 }
97 /* rx = lambda^2 - px - qx */
98 MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth));
99 MP_CHECKOK(group->meth->field_sub(&tempx, px, &tempx, group->meth));
100 MP_CHECKOK(group->meth->field_sub(&tempx, qx, &tempx, group->meth));
101 /* ry = (x1-x2) * lambda - y1 */
102 MP_CHECKOK(group->meth->field_sub(qx, &tempx, &tempy, group->meth));
103 MP_CHECKOK(group->meth->
104 field_mul(&tempy, &lambda, &tempy, group->meth));
105 MP_CHECKOK(group->meth->field_sub(&tempy, qy, &tempy, group->meth));
106 MP_CHECKOK(mp_copy(&tempx, rx));
107 MP_CHECKOK(mp_copy(&tempy, ry));
108
109 CLEANUP:
110 mp_clear(&lambda);
111 mp_clear(&temp);
112 mp_clear(&tempx);
113 mp_clear(&tempy);
114 return res;
115 }
116
117 /* Computes R = P - Q. Elliptic curve points P, Q, and R can all be
118 * identical. Uses affine coordinates. Assumes input is already
119 * field-encoded using field_enc, and returns output that is still
120 * field-encoded. */
121 mp_err
122 ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
123 const mp_int *qy, mp_int *rx, mp_int *ry,
124 const ECGroup *group)
125 {
126 mp_err res = MP_OKAY;
127 mp_int nqy;
128
129 MP_DIGITS(&nqy) = 0;
130 MP_CHECKOK(mp_init(&nqy));
131 /* nqy = -qy */
132 MP_CHECKOK(group->meth->field_neg(qy, &nqy, group->meth));
133 res = group->point_add(px, py, qx, &nqy, rx, ry, group);
134 CLEANUP:
135 mp_clear(&nqy);
136 return res;
137 }
138
139 /* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
140 * affine coordinates. Assumes input is already field-encoded using
141 * field_enc, and returns output that is still field-encoded. */
142 mp_err
143 ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
144 mp_int *ry, const ECGroup *group)
145 {
146 return ec_GFp_pt_add_aff(px, py, px, py, rx, ry, group);
147 }
148
149 /* by default, this routine is unused and thus doesn't need to be compiled */
150 #ifdef ECL_ENABLE_GFP_PT_MUL_AFF
151 /* Computes R = nP based on IEEE P1363 A.10.3. Elliptic curve points P and
152 * R can be identical. Uses affine coordinates. Assumes input is already
153 * field-encoded using field_enc, and returns output that is still
154 * field-encoded. */
155 mp_err
156 ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py,
157 mp_int *rx, mp_int *ry, const ECGroup *group)
158 {
159 mp_err res = MP_OKAY;
160 mp_int k, k3, qx, qy, sx, sy;
161 int b1, b3, i, l;
162
163 MP_DIGITS(&k) = 0;
164 MP_DIGITS(&k3) = 0;
165 MP_DIGITS(&qx) = 0;
166 MP_DIGITS(&qy) = 0;
167 MP_DIGITS(&sx) = 0;
168 MP_DIGITS(&sy) = 0;
169 MP_CHECKOK(mp_init(&k));
170 MP_CHECKOK(mp_init(&k3));
171 MP_CHECKOK(mp_init(&qx));
172 MP_CHECKOK(mp_init(&qy));
173 MP_CHECKOK(mp_init(&sx));
174 MP_CHECKOK(mp_init(&sy));
175
176 /* if n = 0 then r = inf */
177 if (mp_cmp_z(n) == 0) {
178 mp_zero(rx);
179 mp_zero(ry);
180 res = MP_OKAY;
181 goto CLEANUP;
182 }
183 /* Q = P, k = n */
184 MP_CHECKOK(mp_copy(px, &qx));
185 MP_CHECKOK(mp_copy(py, &qy));
186 MP_CHECKOK(mp_copy(n, &k));
187 /* if n < 0 then Q = -Q, k = -k */
188 if (mp_cmp_z(n) < 0) {
189 MP_CHECKOK(group->meth->field_neg(&qy, &qy, group->meth));
190 MP_CHECKOK(mp_neg(&k, &k));
191 }
192 #ifdef ECL_DEBUG /* basic double and add method */
193 l = mpl_significant_bits(&k) - 1;
194 MP_CHECKOK(mp_copy(&qx, &sx));
195 MP_CHECKOK(mp_copy(&qy, &sy));
196 for (i = l - 1; i >= 0; i--) {
197 /* S = 2S */
198 MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
199 /* if k_i = 1, then S = S + Q */
200 if (mpl_get_bit(&k, i) != 0) {
201 MP_CHECKOK(group->
202 point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
203 }
204 }
205 #else /* double and add/subtract method from
206 * standard */
207 /* k3 = 3 * k */
208 MP_CHECKOK(mp_set_int(&k3, 3));
209 MP_CHECKOK(mp_mul(&k, &k3, &k3));
210 /* S = Q */
211 MP_CHECKOK(mp_copy(&qx, &sx));
212 MP_CHECKOK(mp_copy(&qy, &sy));
213 /* l = index of high order bit in binary representation of 3*k */
214 l = mpl_significant_bits(&k3) - 1;
215 /* for i = l-1 downto 1 */
216 for (i = l - 1; i >= 1; i--) {
217 /* S = 2S */
218 MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
219 b3 = MP_GET_BIT(&k3, i);
220 b1 = MP_GET_BIT(&k, i);
221 /* if k3_i = 1 and k_i = 0, then S = S + Q */
222 if ((b3 == 1) && (b1 == 0)) {
223 MP_CHECKOK(group->
224 point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
225 /* if k3_i = 0 and k_i = 1, then S = S - Q */
226 } else if ((b3 == 0) && (b1 == 1)) {
227 MP_CHECKOK(group->
228 point_sub(&sx, &sy, &qx, &qy, &sx, &sy, group));
229 }
230 }
231 #endif
232 /* output S */
233 MP_CHECKOK(mp_copy(&sx, rx));
234 MP_CHECKOK(mp_copy(&sy, ry));
235
236 CLEANUP:
237 mp_clear(&k);
238 mp_clear(&k3);
239 mp_clear(&qx);
240 mp_clear(&qy);
241 mp_clear(&sx);
242 mp_clear(&sy);
243 return res;
244 }
245 #endif
246
247 /* Validates a point on a GFp curve. */
248 mp_err
249 ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group)
250 {
251 mp_err res = MP_NO;
252 mp_int accl, accr, tmp, pxt, pyt;
253
254 MP_DIGITS(&accl) = 0;
255 MP_DIGITS(&accr) = 0;
256 MP_DIGITS(&tmp) = 0;
257 MP_DIGITS(&pxt) = 0;
258 MP_DIGITS(&pyt) = 0;
259 MP_CHECKOK(mp_init(&accl));
260 MP_CHECKOK(mp_init(&accr));
261 MP_CHECKOK(mp_init(&tmp));
262 MP_CHECKOK(mp_init(&pxt));
263 MP_CHECKOK(mp_init(&pyt));
264
265 /* 1: Verify that publicValue is not the point at infinity */
266 if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
267 res = MP_NO;
268 goto CLEANUP;
269 }
270 /* 2: Verify that the coordinates of publicValue are elements
271 * of the field.
272 */
273 if ((MP_SIGN(px) == MP_NEG) || (mp_cmp(px, &group->meth->irr) >= 0) ||
274 (MP_SIGN(py) == MP_NEG) || (mp_cmp(py, &group->meth->irr) >= 0)) {
275 res = MP_NO;
276 goto CLEANUP;
277 }
278 /* 3: Verify that publicValue is on the curve. */
279 if (group->meth->field_enc) {
280 group->meth->field_enc(px, &pxt, group->meth);
281 group->meth->field_enc(py, &pyt, group->meth);
282 } else {
283 mp_copy(px, &pxt);
284 mp_copy(py, &pyt);
285 }
286 /* left-hand side: y^2 */
287 MP_CHECKOK( group->meth->field_sqr(&pyt, &accl, group->meth) );
288 /* right-hand side: x^3 + a*x + b = (x^2 + a)*x + b by Horner's rule */
289 MP_CHECKOK( group->meth->field_sqr(&pxt, &tmp, group->meth) );
290 MP_CHECKOK( group->meth->field_add(&tmp, &group->curvea, &tmp, group->meth) );
291 MP_CHECKOK( group->meth->field_mul(&tmp, &pxt, &accr, group->meth) );
292 MP_CHECKOK( group->meth->field_add(&accr, &group->curveb, &accr, group->meth) );
293 /* check LHS - RHS == 0 */
294 MP_CHECKOK( group->meth->field_sub(&accl, &accr, &accr, group->meth) );
295 if (mp_cmp_z(&accr) != 0) {
296 res = MP_NO;
297 goto CLEANUP;
298 }
299 /* 4: Verify that the order of the curve times the publicValue
300 * is the point at infinity.
301 */
302 MP_CHECKOK( ECPoint_mul(group, &group->order, px, py, &pxt, &pyt) );
303 if (ec_GFp_pt_is_inf_aff(&pxt, &pyt) != MP_YES) {
304 res = MP_NO;
305 goto CLEANUP;
306 }
307
308 res = MP_YES;
309
310 CLEANUP:
311 mp_clear(&accl);
312 mp_clear(&accr);
313 mp_clear(&tmp);
314 mp_clear(&pxt);
315 mp_clear(&pyt);
316 return res;
317 }
This site is hosted by Intevation GmbH (Datenschutzerklärung und Impressum | Privacy Policy and Imprint)