Mercurial > trustbridge > nss-cmake-static
comparison nss/lib/freebl/ecl/ecp_jm.c @ 0:1e5118fa0cb1
This is NSS with a Cmake Buildsyste
To compile a static NSS library for Windows we've used the
Chromium-NSS fork and added a Cmake buildsystem to compile
it statically for Windows. See README.chromium for chromium
changes and README.trustbridge for our modifications.
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Mon, 28 Jul 2014 10:47:06 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:1e5118fa0cb1 |
---|---|
1 /* This Source Code Form is subject to the terms of the Mozilla Public | |
2 * License, v. 2.0. If a copy of the MPL was not distributed with this | |
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | |
4 | |
5 #include "ecp.h" | |
6 #include "ecl-priv.h" | |
7 #include "mplogic.h" | |
8 #include <stdlib.h> | |
9 | |
10 #define MAX_SCRATCH 6 | |
11 | |
12 /* Computes R = 2P. Elliptic curve points P and R can be identical. Uses | |
13 * Modified Jacobian coordinates. | |
14 * | |
15 * Assumes input is already field-encoded using field_enc, and returns | |
16 * output that is still field-encoded. | |
17 * | |
18 */ | |
19 mp_err | |
20 ec_GFp_pt_dbl_jm(const mp_int *px, const mp_int *py, const mp_int *pz, | |
21 const mp_int *paz4, mp_int *rx, mp_int *ry, mp_int *rz, | |
22 mp_int *raz4, mp_int scratch[], const ECGroup *group) | |
23 { | |
24 mp_err res = MP_OKAY; | |
25 mp_int *t0, *t1, *M, *S; | |
26 | |
27 t0 = &scratch[0]; | |
28 t1 = &scratch[1]; | |
29 M = &scratch[2]; | |
30 S = &scratch[3]; | |
31 | |
32 #if MAX_SCRATCH < 4 | |
33 #error "Scratch array defined too small " | |
34 #endif | |
35 | |
36 /* Check for point at infinity */ | |
37 if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) { | |
38 /* Set r = pt at infinity by setting rz = 0 */ | |
39 | |
40 MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz)); | |
41 goto CLEANUP; | |
42 } | |
43 | |
44 /* M = 3 (px^2) + a*(pz^4) */ | |
45 MP_CHECKOK(group->meth->field_sqr(px, t0, group->meth)); | |
46 MP_CHECKOK(group->meth->field_add(t0, t0, M, group->meth)); | |
47 MP_CHECKOK(group->meth->field_add(t0, M, t0, group->meth)); | |
48 MP_CHECKOK(group->meth->field_add(t0, paz4, M, group->meth)); | |
49 | |
50 /* rz = 2 * py * pz */ | |
51 MP_CHECKOK(group->meth->field_mul(py, pz, S, group->meth)); | |
52 MP_CHECKOK(group->meth->field_add(S, S, rz, group->meth)); | |
53 | |
54 /* t0 = 2y^2 , t1 = 8y^4 */ | |
55 MP_CHECKOK(group->meth->field_sqr(py, t0, group->meth)); | |
56 MP_CHECKOK(group->meth->field_add(t0, t0, t0, group->meth)); | |
57 MP_CHECKOK(group->meth->field_sqr(t0, t1, group->meth)); | |
58 MP_CHECKOK(group->meth->field_add(t1, t1, t1, group->meth)); | |
59 | |
60 /* S = 4 * px * py^2 = 2 * px * t0 */ | |
61 MP_CHECKOK(group->meth->field_mul(px, t0, S, group->meth)); | |
62 MP_CHECKOK(group->meth->field_add(S, S, S, group->meth)); | |
63 | |
64 | |
65 /* rx = M^2 - 2S */ | |
66 MP_CHECKOK(group->meth->field_sqr(M, rx, group->meth)); | |
67 MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth)); | |
68 MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth)); | |
69 | |
70 /* ry = M * (S - rx) - t1 */ | |
71 MP_CHECKOK(group->meth->field_sub(S, rx, S, group->meth)); | |
72 MP_CHECKOK(group->meth->field_mul(S, M, ry, group->meth)); | |
73 MP_CHECKOK(group->meth->field_sub(ry, t1, ry, group->meth)); | |
74 | |
75 /* ra*z^4 = 2*t1*(apz4) */ | |
76 MP_CHECKOK(group->meth->field_mul(paz4, t1, raz4, group->meth)); | |
77 MP_CHECKOK(group->meth->field_add(raz4, raz4, raz4, group->meth)); | |
78 | |
79 | |
80 CLEANUP: | |
81 return res; | |
82 } | |
83 | |
84 /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is | |
85 * (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical. | |
86 * Uses mixed Modified_Jacobian-affine coordinates. Assumes input is | |
87 * already field-encoded using field_enc, and returns output that is still | |
88 * field-encoded. */ | |
89 mp_err | |
90 ec_GFp_pt_add_jm_aff(const mp_int *px, const mp_int *py, const mp_int *pz, | |
91 const mp_int *paz4, const mp_int *qx, | |
92 const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz, | |
93 mp_int *raz4, mp_int scratch[], const ECGroup *group) | |
94 { | |
95 mp_err res = MP_OKAY; | |
96 mp_int *A, *B, *C, *D, *C2, *C3; | |
97 | |
98 A = &scratch[0]; | |
99 B = &scratch[1]; | |
100 C = &scratch[2]; | |
101 D = &scratch[3]; | |
102 C2 = &scratch[4]; | |
103 C3 = &scratch[5]; | |
104 | |
105 #if MAX_SCRATCH < 6 | |
106 #error "Scratch array defined too small " | |
107 #endif | |
108 | |
109 /* If either P or Q is the point at infinity, then return the other | |
110 * point */ | |
111 if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) { | |
112 MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group)); | |
113 MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth)); | |
114 MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth)); | |
115 MP_CHECKOK(group->meth-> | |
116 field_mul(raz4, &group->curvea, raz4, group->meth)); | |
117 goto CLEANUP; | |
118 } | |
119 if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) { | |
120 MP_CHECKOK(mp_copy(px, rx)); | |
121 MP_CHECKOK(mp_copy(py, ry)); | |
122 MP_CHECKOK(mp_copy(pz, rz)); | |
123 MP_CHECKOK(mp_copy(paz4, raz4)); | |
124 goto CLEANUP; | |
125 } | |
126 | |
127 /* A = qx * pz^2, B = qy * pz^3 */ | |
128 MP_CHECKOK(group->meth->field_sqr(pz, A, group->meth)); | |
129 MP_CHECKOK(group->meth->field_mul(A, pz, B, group->meth)); | |
130 MP_CHECKOK(group->meth->field_mul(A, qx, A, group->meth)); | |
131 MP_CHECKOK(group->meth->field_mul(B, qy, B, group->meth)); | |
132 | |
133 /* C = A - px, D = B - py */ | |
134 MP_CHECKOK(group->meth->field_sub(A, px, C, group->meth)); | |
135 MP_CHECKOK(group->meth->field_sub(B, py, D, group->meth)); | |
136 | |
137 /* C2 = C^2, C3 = C^3 */ | |
138 MP_CHECKOK(group->meth->field_sqr(C, C2, group->meth)); | |
139 MP_CHECKOK(group->meth->field_mul(C, C2, C3, group->meth)); | |
140 | |
141 /* rz = pz * C */ | |
142 MP_CHECKOK(group->meth->field_mul(pz, C, rz, group->meth)); | |
143 | |
144 /* C = px * C^2 */ | |
145 MP_CHECKOK(group->meth->field_mul(px, C2, C, group->meth)); | |
146 /* A = D^2 */ | |
147 MP_CHECKOK(group->meth->field_sqr(D, A, group->meth)); | |
148 | |
149 /* rx = D^2 - (C^3 + 2 * (px * C^2)) */ | |
150 MP_CHECKOK(group->meth->field_add(C, C, rx, group->meth)); | |
151 MP_CHECKOK(group->meth->field_add(C3, rx, rx, group->meth)); | |
152 MP_CHECKOK(group->meth->field_sub(A, rx, rx, group->meth)); | |
153 | |
154 /* C3 = py * C^3 */ | |
155 MP_CHECKOK(group->meth->field_mul(py, C3, C3, group->meth)); | |
156 | |
157 /* ry = D * (px * C^2 - rx) - py * C^3 */ | |
158 MP_CHECKOK(group->meth->field_sub(C, rx, ry, group->meth)); | |
159 MP_CHECKOK(group->meth->field_mul(D, ry, ry, group->meth)); | |
160 MP_CHECKOK(group->meth->field_sub(ry, C3, ry, group->meth)); | |
161 | |
162 /* raz4 = a * rz^4 */ | |
163 MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth)); | |
164 MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth)); | |
165 MP_CHECKOK(group->meth-> | |
166 field_mul(raz4, &group->curvea, raz4, group->meth)); | |
167 CLEANUP: | |
168 return res; | |
169 } | |
170 | |
171 /* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic | |
172 * curve points P and R can be identical. Uses mixed Modified-Jacobian | |
173 * co-ordinates for doubling and Chudnovsky Jacobian coordinates for | |
174 * additions. Assumes input is already field-encoded using field_enc, and | |
175 * returns output that is still field-encoded. Uses 5-bit window NAF | |
176 * method (algorithm 11) for scalar-point multiplication from Brown, | |
177 * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic | |
178 * Curves Over Prime Fields. */ | |
179 mp_err | |
180 ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py, | |
181 mp_int *rx, mp_int *ry, const ECGroup *group) | |
182 { | |
183 mp_err res = MP_OKAY; | |
184 mp_int precomp[16][2], rz, tpx, tpy; | |
185 mp_int raz4; | |
186 mp_int scratch[MAX_SCRATCH]; | |
187 signed char *naf = NULL; | |
188 int i, orderBitSize; | |
189 | |
190 MP_DIGITS(&rz) = 0; | |
191 MP_DIGITS(&raz4) = 0; | |
192 MP_DIGITS(&tpx) = 0; | |
193 MP_DIGITS(&tpy) = 0; | |
194 for (i = 0; i < 16; i++) { | |
195 MP_DIGITS(&precomp[i][0]) = 0; | |
196 MP_DIGITS(&precomp[i][1]) = 0; | |
197 } | |
198 for (i = 0; i < MAX_SCRATCH; i++) { | |
199 MP_DIGITS(&scratch[i]) = 0; | |
200 } | |
201 | |
202 ARGCHK(group != NULL, MP_BADARG); | |
203 ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG); | |
204 | |
205 /* initialize precomputation table */ | |
206 MP_CHECKOK(mp_init(&tpx)); | |
207 MP_CHECKOK(mp_init(&tpy));; | |
208 MP_CHECKOK(mp_init(&rz)); | |
209 MP_CHECKOK(mp_init(&raz4)); | |
210 | |
211 for (i = 0; i < 16; i++) { | |
212 MP_CHECKOK(mp_init(&precomp[i][0])); | |
213 MP_CHECKOK(mp_init(&precomp[i][1])); | |
214 } | |
215 for (i = 0; i < MAX_SCRATCH; i++) { | |
216 MP_CHECKOK(mp_init(&scratch[i])); | |
217 } | |
218 | |
219 /* Set out[8] = P */ | |
220 MP_CHECKOK(mp_copy(px, &precomp[8][0])); | |
221 MP_CHECKOK(mp_copy(py, &precomp[8][1])); | |
222 | |
223 /* Set (tpx, tpy) = 2P */ | |
224 MP_CHECKOK(group-> | |
225 point_dbl(&precomp[8][0], &precomp[8][1], &tpx, &tpy, | |
226 group)); | |
227 | |
228 /* Set 3P, 5P, ..., 15P */ | |
229 for (i = 8; i < 15; i++) { | |
230 MP_CHECKOK(group-> | |
231 point_add(&precomp[i][0], &precomp[i][1], &tpx, &tpy, | |
232 &precomp[i + 1][0], &precomp[i + 1][1], | |
233 group)); | |
234 } | |
235 | |
236 /* Set -15P, -13P, ..., -P */ | |
237 for (i = 0; i < 8; i++) { | |
238 MP_CHECKOK(mp_copy(&precomp[15 - i][0], &precomp[i][0])); | |
239 MP_CHECKOK(group->meth-> | |
240 field_neg(&precomp[15 - i][1], &precomp[i][1], | |
241 group->meth)); | |
242 } | |
243 | |
244 /* R = inf */ | |
245 MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz)); | |
246 | |
247 orderBitSize = mpl_significant_bits(&group->order); | |
248 | |
249 /* Allocate memory for NAF */ | |
250 naf = (signed char *) malloc(sizeof(signed char) * (orderBitSize + 1)); | |
251 if (naf == NULL) { | |
252 res = MP_MEM; | |
253 goto CLEANUP; | |
254 } | |
255 | |
256 /* Compute 5NAF */ | |
257 ec_compute_wNAF(naf, orderBitSize, n, 5); | |
258 | |
259 /* wNAF method */ | |
260 for (i = orderBitSize; i >= 0; i--) { | |
261 /* R = 2R */ | |
262 ec_GFp_pt_dbl_jm(rx, ry, &rz, &raz4, rx, ry, &rz, | |
263 &raz4, scratch, group); | |
264 if (naf[i] != 0) { | |
265 ec_GFp_pt_add_jm_aff(rx, ry, &rz, &raz4, | |
266 &precomp[(naf[i] + 15) / 2][0], | |
267 &precomp[(naf[i] + 15) / 2][1], rx, ry, | |
268 &rz, &raz4, scratch, group); | |
269 } | |
270 } | |
271 | |
272 /* convert result S to affine coordinates */ | |
273 MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group)); | |
274 | |
275 CLEANUP: | |
276 for (i = 0; i < MAX_SCRATCH; i++) { | |
277 mp_clear(&scratch[i]); | |
278 } | |
279 for (i = 0; i < 16; i++) { | |
280 mp_clear(&precomp[i][0]); | |
281 mp_clear(&precomp[i][1]); | |
282 } | |
283 mp_clear(&tpx); | |
284 mp_clear(&tpy); | |
285 mp_clear(&rz); | |
286 mp_clear(&raz4); | |
287 free(naf); | |
288 return res; | |
289 } |