comparison nss/lib/freebl/gcm.c @ 0:1e5118fa0cb1

This is NSS with a Cmake Buildsyste To compile a static NSS library for Windows we've used the Chromium-NSS fork and added a Cmake buildsystem to compile it statically for Windows. See README.chromium for chromium changes and README.trustbridge for our modifications.
author Andre Heinecke <andre.heinecke@intevation.de>
date Mon, 28 Jul 2014 10:47:06 +0200
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:1e5118fa0cb1
1 /* This Source Code Form is subject to the terms of the Mozilla Public
2 * License, v. 2.0. If a copy of the MPL was not distributed with this
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
4
5 #ifdef FREEBL_NO_DEPEND
6 #include "stubs.h"
7 #endif
8 #include "blapii.h"
9 #include "blapit.h"
10 #include "gcm.h"
11 #include "ctr.h"
12 #include "secerr.h"
13 #include "prtypes.h"
14 #include "pkcs11t.h"
15
16 #include <limits.h>
17
18 /**************************************************************************
19 * First implement the Galois hash function of GCM (gcmHash) *
20 **************************************************************************/
21 #define GCM_HASH_LEN_LEN 8 /* gcm hash defines lengths to be 64 bits */
22
23 typedef struct gcmHashContextStr gcmHashContext;
24
25 static SECStatus gcmHash_InitContext(gcmHashContext *hash,
26 const unsigned char *H,
27 unsigned int blocksize);
28 static void gcmHash_DestroyContext(gcmHashContext *ghash, PRBool freeit);
29 static SECStatus gcmHash_Update(gcmHashContext *ghash,
30 const unsigned char *buf, unsigned int len,
31 unsigned int blocksize);
32 static SECStatus gcmHash_Sync(gcmHashContext *ghash, unsigned int blocksize);
33 static SECStatus gcmHash_Final(gcmHashContext *gcm, unsigned char *outbuf,
34 unsigned int *outlen, unsigned int maxout,
35 unsigned int blocksize);
36 static SECStatus gcmHash_Reset(gcmHashContext *ghash,
37 const unsigned char *inbuf,
38 unsigned int inbufLen, unsigned int blocksize);
39
40 /* compile time defines to select how the GF2 multiply is calculated.
41 * There are currently 2 algorithms implemented here: MPI and ALGORITHM_1.
42 *
43 * MPI uses the GF2m implemented in mpi to support GF2 ECC.
44 * ALGORITHM_1 is the Algorithm 1 in both NIST SP 800-38D and
45 * "The Galois/Counter Mode of Operation (GCM)", McGrew & Viega.
46 */
47 #if !defined(GCM_USE_ALGORITHM_1) && !defined(GCM_USE_MPI)
48 #define GCM_USE_MPI 1 /* MPI is about 5x faster with the
49 * same or less complexity. It's possible to use
50 * tables to speed things up even more */
51 #endif
52
53 /* GCM defines the bit string to be LSB first, which is exactly
54 * opposite everyone else, including hardware. build array
55 * to reverse everything. */
56 static const unsigned char gcm_byte_rev[256] = {
57 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
58 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
59 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
60 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
61 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
62 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
63 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
64 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
65 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
66 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
67 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
68 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
69 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
70 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
71 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
72 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
73 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
74 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
75 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
76 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
77 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
78 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
79 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
80 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
81 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
82 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
83 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
84 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
85 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
86 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
87 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
88 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff
89 };
90
91
92 #ifdef GCM_TRACE
93 #include <stdio.h>
94
95 #define GCM_TRACE_X(ghash,label) { \
96 unsigned char _X[MAX_BLOCK_SIZE]; int i; \
97 gcm_getX(ghash, _X, blocksize); \
98 printf(label,(ghash)->m); \
99 for (i=0; i < blocksize; i++) printf("%02x",_X[i]); \
100 printf("\n"); }
101 #define GCM_TRACE_BLOCK(label,buf,blocksize) {\
102 printf(label); \
103 for (i=0; i < blocksize; i++) printf("%02x",buf[i]); \
104 printf("\n"); }
105 #else
106 #define GCM_TRACE_X(ghash,label)
107 #define GCM_TRACE_BLOCK(label,buf,blocksize)
108 #endif
109
110 #ifdef GCM_USE_MPI
111
112 #ifdef GCM_USE_ALGORITHM_1
113 #error "Only define one of GCM_USE_MPI, GCM_USE_ALGORITHM_1"
114 #endif
115 /* use the MPI functions to calculate Xn = (Xn-1^C_i)*H mod poly */
116 #include "mpi.h"
117 #include "secmpi.h"
118 #include "mplogic.h"
119 #include "mp_gf2m.h"
120
121 /* state needed to handle GCM Hash function */
122 struct gcmHashContextStr {
123 mp_int H;
124 mp_int X;
125 mp_int C_i;
126 const unsigned int *poly;
127 unsigned char buffer[MAX_BLOCK_SIZE];
128 unsigned int bufLen;
129 int m; /* XXX what is m? */
130 unsigned char counterBuf[2*GCM_HASH_LEN_LEN];
131 PRUint64 cLen;
132 };
133
134 /* f = x^128 + x^7 + x^2 + x + 1 */
135 static const unsigned int poly_128[] = { 128, 7, 2, 1, 0 };
136
137 /* sigh, GCM defines the bit strings exactly backwards from everything else */
138 static void
139 gcm_reverse(unsigned char *target, const unsigned char *src,
140 unsigned int blocksize)
141 {
142 unsigned int i;
143 for (i=0; i < blocksize; i++) {
144 target[blocksize-i-1] = gcm_byte_rev[src[i]];
145 }
146 }
147
148 /* Initialize a gcmHashContext */
149 static SECStatus
150 gcmHash_InitContext(gcmHashContext *ghash, const unsigned char *H,
151 unsigned int blocksize)
152 {
153 mp_err err = MP_OKAY;
154 unsigned char H_rev[MAX_BLOCK_SIZE];
155
156 MP_DIGITS(&ghash->H) = 0;
157 MP_DIGITS(&ghash->X) = 0;
158 MP_DIGITS(&ghash->C_i) = 0;
159 CHECK_MPI_OK( mp_init(&ghash->H) );
160 CHECK_MPI_OK( mp_init(&ghash->X) );
161 CHECK_MPI_OK( mp_init(&ghash->C_i) );
162
163 mp_zero(&ghash->X);
164 gcm_reverse(H_rev, H, blocksize);
165 CHECK_MPI_OK( mp_read_unsigned_octets(&ghash->H, H_rev, blocksize) );
166
167 /* set the irreducible polynomial. Each blocksize has its own polynomial.
168 * for now only blocksize 16 (=128 bits) is defined */
169 switch (blocksize) {
170 case 16: /* 128 bits */
171 ghash->poly = poly_128;
172 break;
173 default:
174 PORT_SetError(SEC_ERROR_INVALID_ARGS);
175 goto cleanup;
176 }
177 ghash->cLen = 0;
178 ghash->bufLen = 0;
179 ghash->m = 0;
180 PORT_Memset(ghash->counterBuf, 0, sizeof(ghash->counterBuf));
181 return SECSuccess;
182 cleanup:
183 gcmHash_DestroyContext(ghash, PR_FALSE);
184 return SECFailure;
185 }
186
187 /* Destroy a HashContext (Note we zero the digits so this function
188 * is idempotent if called with freeit == PR_FALSE */
189 static void
190 gcmHash_DestroyContext(gcmHashContext *ghash, PRBool freeit)
191 {
192 mp_clear(&ghash->H);
193 mp_clear(&ghash->X);
194 mp_clear(&ghash->C_i);
195 MP_DIGITS(&ghash->H) = 0;
196 MP_DIGITS(&ghash->X) = 0;
197 MP_DIGITS(&ghash->C_i) = 0;
198 if (freeit) {
199 PORT_Free(ghash);
200 }
201 }
202
203 static SECStatus
204 gcm_getX(gcmHashContext *ghash, unsigned char *T, unsigned int blocksize)
205 {
206 int len;
207 mp_err err;
208 unsigned char tmp_buf[MAX_BLOCK_SIZE];
209 unsigned char *X;
210
211 len = mp_unsigned_octet_size(&ghash->X);
212 if (len <= 0) {
213 PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
214 return SECFailure;
215 }
216 X = tmp_buf;
217 PORT_Assert((unsigned int)len <= blocksize);
218 if ((unsigned int)len > blocksize) {
219 PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
220 return SECFailure;
221 }
222 /* zero pad the result */
223 if (len != blocksize) {
224 PORT_Memset(X,0,blocksize-len);
225 X += blocksize-len;
226 }
227
228 err = mp_to_unsigned_octets(&ghash->X, X, len);
229 if (err < 0) {
230 PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
231 return SECFailure;
232 }
233 gcm_reverse(T, tmp_buf, blocksize);
234 return SECSuccess;
235 }
236
237 static SECStatus
238 gcm_HashMult(gcmHashContext *ghash, const unsigned char *buf,
239 unsigned int count, unsigned int blocksize)
240 {
241 SECStatus rv = SECFailure;
242 mp_err err = MP_OKAY;
243 unsigned char tmp_buf[MAX_BLOCK_SIZE];
244 unsigned int i;
245
246 for (i=0; i < count; i++, buf += blocksize) {
247 ghash->m++;
248 gcm_reverse(tmp_buf, buf, blocksize);
249 CHECK_MPI_OK(mp_read_unsigned_octets(&ghash->C_i, tmp_buf, blocksize));
250 CHECK_MPI_OK(mp_badd(&ghash->X, &ghash->C_i, &ghash->C_i));
251 /*
252 * Looking to speed up GCM, this the the place to do it.
253 * There are two areas that can be exploited to speed up this code.
254 *
255 * 1) H is a constant in this multiply. We can precompute H * (0 - 255)
256 * at init time and this becomes an blockize xors of our table lookup.
257 *
258 * 2) poly is a constant for each blocksize. We can calculate the
259 * modulo reduction by a series of adds and shifts.
260 *
261 * For now we are after functionality, so we will go ahead and use
262 * the builtin bmulmod from mpi
263 */
264 CHECK_MPI_OK(mp_bmulmod(&ghash->C_i, &ghash->H,
265 ghash->poly, &ghash->X));
266 GCM_TRACE_X(ghash, "X%d = ")
267 }
268 rv = SECSuccess;
269 cleanup:
270 if (rv != SECSuccess) {
271 MP_TO_SEC_ERROR(err);
272 }
273 return rv;
274 }
275
276 static void
277 gcm_zeroX(gcmHashContext *ghash)
278 {
279 mp_zero(&ghash->X);
280 ghash->m = 0;
281 }
282
283 #endif
284
285 #ifdef GCM_USE_ALGORITHM_1
286 /* use algorithm 1 of McGrew & Viega "The Galois/Counter Mode of Operation" */
287
288 #define GCM_ARRAY_SIZE (MAX_BLOCK_SIZE/sizeof(unsigned long))
289
290 struct gcmHashContextStr {
291 unsigned long H[GCM_ARRAY_SIZE];
292 unsigned long X[GCM_ARRAY_SIZE];
293 unsigned long R;
294 unsigned char buffer[MAX_BLOCK_SIZE];
295 unsigned int bufLen;
296 int m;
297 unsigned char counterBuf[2*GCM_HASH_LEN_LEN];
298 PRUint64 cLen;
299 };
300
301 static void
302 gcm_bytes_to_longs(unsigned long *l, const unsigned char *c, unsigned int len)
303 {
304 int i,j;
305 int array_size = len/sizeof(unsigned long);
306
307 PORT_Assert(len % sizeof(unsigned long) == 0);
308 for (i=0; i < array_size; i++) {
309 unsigned long tmp = 0;
310 int byte_offset = i * sizeof(unsigned long);
311 for (j=sizeof(unsigned long)-1; j >= 0; j--) {
312 tmp = (tmp << PR_BITS_PER_BYTE) | gcm_byte_rev[c[byte_offset+j]];
313 }
314 l[i] = tmp;
315 }
316 }
317
318 static void
319 gcm_longs_to_bytes(const unsigned long *l, unsigned char *c, unsigned int len)
320 {
321 int i,j;
322 int array_size = len/sizeof(unsigned long);
323
324 PORT_Assert(len % sizeof(unsigned long) == 0);
325 for (i=0; i < array_size; i++) {
326 unsigned long tmp = l[i];
327 int byte_offset = i * sizeof(unsigned long);
328 for (j=0; j < sizeof(unsigned long); j++) {
329 c[byte_offset+j] = gcm_byte_rev[tmp & 0xff];
330 tmp = (tmp >> PR_BITS_PER_BYTE);
331 }
332 }
333 }
334
335
336 /* Initialize a gcmHashContext */
337 static SECStatus
338 gcmHash_InitContext(gcmHashContext *ghash, const unsigned char *H,
339 unsigned int blocksize)
340 {
341 PORT_Memset(ghash->X, 0, sizeof(ghash->X));
342 PORT_Memset(ghash->H, 0, sizeof(ghash->H));
343 gcm_bytes_to_longs(ghash->H, H, blocksize);
344
345 /* set the irreducible polynomial. Each blocksize has its own polynommial
346 * for now only blocksize 16 (=128 bits) is defined */
347 switch (blocksize) {
348 case 16: /* 128 bits */
349 ghash->R = (unsigned long) 0x87; /* x^7 + x^2 + x +1 */
350 break;
351 default:
352 PORT_SetError(SEC_ERROR_INVALID_ARGS);
353 goto cleanup;
354 }
355 ghash->cLen = 0;
356 ghash->bufLen = 0;
357 ghash->m = 0;
358 PORT_Memset(ghash->counterBuf, 0, sizeof(ghash->counterBuf));
359 return SECSuccess;
360 cleanup:
361 return SECFailure;
362 }
363
364 /* Destroy a HashContext (Note we zero the digits so this function
365 * is idempotent if called with freeit == PR_FALSE */
366 static void
367 gcmHash_DestroyContext(gcmHashContext *ghash, PRBool freeit)
368 {
369 if (freeit) {
370 PORT_Free(ghash);
371 }
372 }
373
374 static unsigned long
375 gcm_shift_one(unsigned long *t, unsigned int count)
376 {
377 unsigned long carry = 0;
378 unsigned long nextcarry = 0;
379 unsigned int i;
380 for (i=0; i < count; i++) {
381 nextcarry = t[i] >> ((sizeof(unsigned long)*PR_BITS_PER_BYTE)-1);
382 t[i] = (t[i] << 1) | carry;
383 carry = nextcarry;
384 }
385 return carry;
386 }
387
388 static SECStatus
389 gcm_getX(gcmHashContext *ghash, unsigned char *T, unsigned int blocksize)
390 {
391 gcm_longs_to_bytes(ghash->X, T, blocksize);
392 return SECSuccess;
393 }
394
395 #define GCM_XOR(t, s, len) \
396 for (l=0; l < len; l++) t[l] ^= s[l]
397
398 static SECStatus
399 gcm_HashMult(gcmHashContext *ghash, const unsigned char *buf,
400 unsigned int count, unsigned int blocksize)
401 {
402 unsigned long C_i[GCM_ARRAY_SIZE];
403 unsigned int arraysize = blocksize/sizeof(unsigned long);
404 unsigned int i, j, k, l;
405
406 for (i=0; i < count; i++, buf += blocksize) {
407 ghash->m++;
408 gcm_bytes_to_longs(C_i, buf, blocksize);
409 GCM_XOR(C_i, ghash->X, arraysize);
410 /* multiply X = C_i * H */
411 PORT_Memset(ghash->X, 0, sizeof(ghash->X));
412 for (j=0; j < arraysize; j++) {
413 unsigned long H = ghash->H[j];
414 for (k=0; k < sizeof(unsigned long)*PR_BITS_PER_BYTE; k++) {
415 if (H & 1) {
416 GCM_XOR(ghash->X, C_i, arraysize);
417 }
418 if (gcm_shift_one(C_i, arraysize)) {
419 C_i[0] = C_i[0] ^ ghash->R;
420 }
421 H = H >> 1;
422 }
423 }
424 GCM_TRACE_X(ghash, "X%d = ")
425 }
426 return SECSuccess;
427 }
428
429
430 static void
431 gcm_zeroX(gcmHashContext *ghash)
432 {
433 PORT_Memset(ghash->X, 0, sizeof(ghash->X));
434 ghash->m = 0;
435 }
436 #endif
437
438 /*
439 * implement GCM GHASH using the freebl GHASH function. The gcm_HashMult
440 * function always takes blocksize lengths of data. gcmHash_Update will
441 * format the data properly.
442 */
443 static SECStatus
444 gcmHash_Update(gcmHashContext *ghash, const unsigned char *buf,
445 unsigned int len, unsigned int blocksize)
446 {
447 unsigned int blocks;
448 SECStatus rv;
449
450 ghash->cLen += (len*PR_BITS_PER_BYTE);
451
452 /* first deal with the current buffer of data. Try to fill it out so
453 * we can hash it */
454 if (ghash->bufLen) {
455 unsigned int needed = PR_MIN(len, blocksize - ghash->bufLen);
456 if (needed != 0) {
457 PORT_Memcpy(ghash->buffer+ghash->bufLen, buf, needed);
458 }
459 buf += needed;
460 len -= needed;
461 ghash->bufLen += needed;
462 if (len == 0) {
463 /* didn't add enough to hash the data, nothing more do do */
464 return SECSuccess;
465 }
466 PORT_Assert(ghash->bufLen == blocksize);
467 /* hash the buffer and clear it */
468 rv = gcm_HashMult(ghash, ghash->buffer, 1, blocksize);
469 PORT_Memset(ghash->buffer, 0, blocksize);
470 ghash->bufLen = 0;
471 if (rv != SECSuccess) {
472 return SECFailure;
473 }
474 }
475 /* now hash any full blocks remaining in the data stream */
476 blocks = len/blocksize;
477 if (blocks) {
478 rv = gcm_HashMult(ghash, buf, blocks, blocksize);
479 if (rv != SECSuccess) {
480 return SECFailure;
481 }
482 buf += blocks*blocksize;
483 len -= blocks*blocksize;
484 }
485
486 /* save any remainder in the buffer to be hashed with the next call */
487 if (len != 0) {
488 PORT_Memcpy(ghash->buffer, buf, len);
489 ghash->bufLen = len;
490 }
491 return SECSuccess;
492 }
493
494 /*
495 * write out any partial blocks zero padded through the GHASH engine,
496 * save the lengths for the final completion of the hash
497 */
498 static SECStatus
499 gcmHash_Sync(gcmHashContext *ghash, unsigned int blocksize)
500 {
501 int i;
502 SECStatus rv;
503
504 /* copy the previous counter to the upper block */
505 PORT_Memcpy(ghash->counterBuf, &ghash->counterBuf[GCM_HASH_LEN_LEN],
506 GCM_HASH_LEN_LEN);
507 /* copy the current counter in the lower block */
508 for (i=0; i < GCM_HASH_LEN_LEN; i++) {
509 ghash->counterBuf[GCM_HASH_LEN_LEN+i] =
510 (ghash->cLen >> ((GCM_HASH_LEN_LEN-1-i)*PR_BITS_PER_BYTE)) & 0xff;
511 }
512 ghash->cLen = 0;
513
514 /* now zero fill the buffer and hash the last block */
515 if (ghash->bufLen) {
516 PORT_Memset(ghash->buffer+ghash->bufLen, 0, blocksize - ghash->bufLen);
517 rv = gcm_HashMult(ghash, ghash->buffer, 1, blocksize);
518 PORT_Memset(ghash->buffer, 0, blocksize);
519 ghash->bufLen = 0;
520 if (rv != SECSuccess) {
521 return SECFailure;
522 }
523 }
524 return SECSuccess;
525 }
526
527 /*
528 * This does the final sync, hashes the lengths, then returns
529 * "T", the hashed output.
530 */
531 static SECStatus
532 gcmHash_Final(gcmHashContext *ghash, unsigned char *outbuf,
533 unsigned int *outlen, unsigned int maxout,
534 unsigned int blocksize)
535 {
536 unsigned char T[MAX_BLOCK_SIZE];
537 SECStatus rv;
538
539 rv = gcmHash_Sync(ghash, blocksize);
540 if (rv != SECSuccess) {
541 return SECFailure;
542 }
543
544 rv = gcm_HashMult(ghash, ghash->counterBuf, (GCM_HASH_LEN_LEN*2)/blocksize,
545 blocksize);
546 if (rv != SECSuccess) {
547 return SECFailure;
548 }
549
550 GCM_TRACE_X(ghash, "GHASH(H,A,C) = ")
551
552 rv = gcm_getX(ghash, T, blocksize);
553 if (rv != SECSuccess) {
554 return SECFailure;
555 }
556
557 if (maxout > blocksize) maxout = blocksize;
558 PORT_Memcpy(outbuf, T, maxout);
559 *outlen = maxout;
560 return SECSuccess;
561 }
562
563 SECStatus
564 gcmHash_Reset(gcmHashContext *ghash, const unsigned char *AAD,
565 unsigned int AADLen, unsigned int blocksize)
566 {
567 SECStatus rv;
568
569 ghash->cLen = 0;
570 PORT_Memset(ghash->counterBuf, 0, GCM_HASH_LEN_LEN*2);
571 ghash->bufLen = 0;
572 gcm_zeroX(ghash);
573
574 /* now kick things off by hashing the Additional Authenticated Data */
575 if (AADLen != 0) {
576 rv = gcmHash_Update(ghash, AAD, AADLen, blocksize);
577 if (rv != SECSuccess) {
578 return SECFailure;
579 }
580 rv = gcmHash_Sync(ghash, blocksize);
581 if (rv != SECSuccess) {
582 return SECFailure;
583 }
584 }
585 return SECSuccess;
586 }
587
588 /**************************************************************************
589 * Now implement the GCM using gcmHash and CTR *
590 **************************************************************************/
591
592 /* state to handle the full GCM operation (hash and counter) */
593 struct GCMContextStr {
594 gcmHashContext ghash_context;
595 CTRContext ctr_context;
596 unsigned long tagBits;
597 unsigned char tagKey[MAX_BLOCK_SIZE];
598 };
599
600 GCMContext *
601 GCM_CreateContext(void *context, freeblCipherFunc cipher,
602 const unsigned char *params, unsigned int blocksize)
603 {
604 GCMContext *gcm = NULL;
605 gcmHashContext *ghash;
606 unsigned char H[MAX_BLOCK_SIZE];
607 unsigned int tmp;
608 PRBool freeCtr = PR_FALSE;
609 PRBool freeHash = PR_FALSE;
610 const CK_GCM_PARAMS *gcmParams = (const CK_GCM_PARAMS *)params;
611 CK_AES_CTR_PARAMS ctrParams;
612 SECStatus rv;
613
614 if (blocksize > MAX_BLOCK_SIZE || blocksize > sizeof(ctrParams.cb)) {
615 PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
616 return NULL;
617 }
618 gcm = PORT_ZNew(GCMContext);
619 if (gcm == NULL) {
620 return NULL;
621 }
622 /* first fill in the ghash context */
623 ghash = &gcm->ghash_context;
624 PORT_Memset(H, 0, blocksize);
625 rv = (*cipher)(context, H, &tmp, blocksize, H, blocksize, blocksize);
626 if (rv != SECSuccess) {
627 goto loser;
628 }
629 rv = gcmHash_InitContext(ghash, H, blocksize);
630 if (rv != SECSuccess) {
631 goto loser;
632 }
633 freeHash = PR_TRUE;
634
635 /* fill in the Counter context */
636 ctrParams.ulCounterBits = 32;
637 PORT_Memset(ctrParams.cb, 0, sizeof(ctrParams.cb));
638 if ((blocksize == 16) && (gcmParams->ulIvLen == 12)) {
639 PORT_Memcpy(ctrParams.cb, gcmParams->pIv, gcmParams->ulIvLen);
640 ctrParams.cb[blocksize-1] = 1;
641 } else {
642 rv = gcmHash_Update(ghash, gcmParams->pIv, gcmParams->ulIvLen,
643 blocksize);
644 if (rv != SECSuccess) {
645 goto loser;
646 }
647 rv = gcmHash_Final(ghash, ctrParams.cb, &tmp, blocksize, blocksize);
648 if (rv != SECSuccess) {
649 goto loser;
650 }
651 }
652 rv = CTR_InitContext(&gcm->ctr_context, context, cipher,
653 (unsigned char *)&ctrParams, blocksize);
654 if (rv != SECSuccess) {
655 goto loser;
656 }
657 freeCtr = PR_TRUE;
658
659 /* fill in the gcm structure */
660 gcm->tagBits = gcmParams->ulTagBits; /* save for final step */
661 /* calculate the final tag key. NOTE: gcm->tagKey is zero to start with.
662 * if this assumption changes, we would need to explicitly clear it here */
663 rv = CTR_Update(&gcm->ctr_context, gcm->tagKey, &tmp, blocksize,
664 gcm->tagKey, blocksize, blocksize);
665 if (rv != SECSuccess) {
666 goto loser;
667 }
668
669 /* finally mix in the AAD data */
670 rv = gcmHash_Reset(ghash, gcmParams->pAAD, gcmParams->ulAADLen, blocksize);
671 if (rv != SECSuccess) {
672 goto loser;
673 }
674
675 return gcm;
676
677 loser:
678 if (freeCtr) {
679 CTR_DestroyContext(&gcm->ctr_context, PR_FALSE);
680 }
681 if (freeHash) {
682 gcmHash_DestroyContext(&gcm->ghash_context, PR_FALSE);
683 }
684 if (gcm) {
685 PORT_Free(gcm);
686 }
687 return NULL;
688 }
689
690 void
691 GCM_DestroyContext(GCMContext *gcm, PRBool freeit)
692 {
693 /* these two are statically allocated and will be freed when we free
694 * gcm. call their destroy functions to free up any locally
695 * allocated data (like mp_int's) */
696 CTR_DestroyContext(&gcm->ctr_context, PR_FALSE);
697 gcmHash_DestroyContext(&gcm->ghash_context, PR_FALSE);
698 if (freeit) {
699 PORT_Free(gcm);
700 }
701 }
702
703 static SECStatus
704 gcm_GetTag(GCMContext *gcm, unsigned char *outbuf,
705 unsigned int *outlen, unsigned int maxout,
706 unsigned int blocksize)
707 {
708 unsigned int tagBytes;
709 unsigned int extra;
710 unsigned int i;
711 SECStatus rv;
712
713 tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE-1)) / PR_BITS_PER_BYTE;
714 extra = tagBytes*PR_BITS_PER_BYTE - gcm->tagBits;
715
716 if (outbuf == NULL) {
717 *outlen = tagBytes;
718 PORT_SetError(SEC_ERROR_OUTPUT_LEN);
719 return SECFailure;
720 }
721
722 if (maxout < tagBytes) {
723 *outlen = tagBytes;
724 PORT_SetError(SEC_ERROR_OUTPUT_LEN);
725 return SECFailure;
726 }
727 maxout = tagBytes;
728 rv = gcmHash_Final(&gcm->ghash_context, outbuf, outlen, maxout, blocksize);
729 if (rv != SECSuccess) {
730 return SECFailure;
731 }
732
733 GCM_TRACE_BLOCK("GHASH=", outbuf, blocksize);
734 GCM_TRACE_BLOCK("Y0=", gcm->tagKey, blocksize);
735 for (i=0; i < *outlen; i++) {
736 outbuf[i] ^= gcm->tagKey[i];
737 }
738 GCM_TRACE_BLOCK("Y0=", gcm->tagKey, blocksize);
739 GCM_TRACE_BLOCK("T=", outbuf, blocksize);
740 /* mask off any extra bits we got */
741 if (extra) {
742 outbuf[tagBytes-1] &= ~((1 << extra)-1);
743 }
744 return SECSuccess;
745 }
746
747
748 /*
749 * See The Galois/Counter Mode of Operation, McGrew and Viega.
750 * GCM is basically counter mode with a specific initialization and
751 * built in macing operation.
752 */
753 SECStatus
754 GCM_EncryptUpdate(GCMContext *gcm, unsigned char *outbuf,
755 unsigned int *outlen, unsigned int maxout,
756 const unsigned char *inbuf, unsigned int inlen,
757 unsigned int blocksize)
758 {
759 SECStatus rv;
760 unsigned int tagBytes;
761 unsigned int len;
762
763 tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE-1)) / PR_BITS_PER_BYTE;
764 if (UINT_MAX - inlen < tagBytes) {
765 PORT_SetError(SEC_ERROR_INPUT_LEN);
766 return SECFailure;
767 }
768 if (maxout < inlen + tagBytes) {
769 *outlen = inlen + tagBytes;
770 PORT_SetError(SEC_ERROR_OUTPUT_LEN);
771 return SECFailure;
772 }
773
774 rv = CTR_Update(&gcm->ctr_context, outbuf, outlen, maxout,
775 inbuf, inlen, blocksize);
776 if (rv != SECSuccess) {
777 return SECFailure;
778 }
779 rv = gcmHash_Update(&gcm->ghash_context, outbuf, *outlen, blocksize);
780 if (rv != SECSuccess) {
781 PORT_Memset(outbuf, 0, *outlen); /* clear the output buffer */
782 *outlen = 0;
783 return SECFailure;
784 }
785 rv = gcm_GetTag(gcm, outbuf + *outlen, &len, maxout - *outlen, blocksize);
786 if (rv != SECSuccess) {
787 PORT_Memset(outbuf, 0, *outlen); /* clear the output buffer */
788 *outlen = 0;
789 return SECFailure;
790 };
791 *outlen += len;
792 return SECSuccess;
793 }
794
795 /*
796 * See The Galois/Counter Mode of Operation, McGrew and Viega.
797 * GCM is basically counter mode with a specific initialization and
798 * built in macing operation. NOTE: the only difference between Encrypt
799 * and Decrypt is when we calculate the mac. That is because the mac must
800 * always be calculated on the cipher text, not the plain text, so for
801 * encrypt, we do the CTR update first and for decrypt we do the mac first.
802 */
803 SECStatus
804 GCM_DecryptUpdate(GCMContext *gcm, unsigned char *outbuf,
805 unsigned int *outlen, unsigned int maxout,
806 const unsigned char *inbuf, unsigned int inlen,
807 unsigned int blocksize)
808 {
809 SECStatus rv;
810 unsigned int tagBytes;
811 unsigned char tag[MAX_BLOCK_SIZE];
812 const unsigned char *intag;
813 unsigned int len;
814
815 tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE-1)) / PR_BITS_PER_BYTE;
816
817 /* get the authentication block */
818 if (inlen < tagBytes) {
819 PORT_SetError(SEC_ERROR_INPUT_LEN);
820 return SECFailure;
821 }
822
823 inlen -= tagBytes;
824 intag = inbuf + inlen;
825
826 /* verify the block */
827 rv = gcmHash_Update(&gcm->ghash_context, inbuf, inlen, blocksize);
828 if (rv != SECSuccess) {
829 return SECFailure;
830 }
831 rv = gcm_GetTag(gcm, tag, &len, blocksize, blocksize);
832 if (rv != SECSuccess) {
833 return SECFailure;
834 }
835 /* Don't decrypt if we can't authenticate the encrypted data!
836 * This assumes that if tagBits is not a multiple of 8, intag will
837 * preserve the masked off missing bits. */
838 if (NSS_SecureMemcmp(tag, intag, tagBytes) != 0) {
839 /* force a CKR_ENCRYPTED_DATA_INVALID error at in softoken */
840 PORT_SetError(SEC_ERROR_BAD_DATA);
841 return SECFailure;
842 }
843 /* finish the decryption */
844 return CTR_Update(&gcm->ctr_context, outbuf, outlen, maxout,
845 inbuf, inlen, blocksize);
846 }
This site is hosted by Intevation GmbH (Datenschutzerklärung und Impressum | Privacy Policy and Imprint)