Mercurial > trustbridge > nss-cmake-static
comparison nss/lib/freebl/mpi/mp_gf2m.c @ 0:1e5118fa0cb1
This is NSS with a Cmake Buildsyste
To compile a static NSS library for Windows we've used the
Chromium-NSS fork and added a Cmake buildsystem to compile
it statically for Windows. See README.chromium for chromium
changes and README.trustbridge for our modifications.
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Mon, 28 Jul 2014 10:47:06 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:1e5118fa0cb1 |
---|---|
1 /* This Source Code Form is subject to the terms of the Mozilla Public | |
2 * License, v. 2.0. If a copy of the MPL was not distributed with this | |
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | |
4 | |
5 #include "mp_gf2m.h" | |
6 #include "mp_gf2m-priv.h" | |
7 #include "mplogic.h" | |
8 #include "mpi-priv.h" | |
9 | |
10 const mp_digit mp_gf2m_sqr_tb[16] = | |
11 { | |
12 0, 1, 4, 5, 16, 17, 20, 21, | |
13 64, 65, 68, 69, 80, 81, 84, 85 | |
14 }; | |
15 | |
16 /* Multiply two binary polynomials mp_digits a, b. | |
17 * Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1. | |
18 * Output in two mp_digits rh, rl. | |
19 */ | |
20 #if MP_DIGIT_BITS == 32 | |
21 void | |
22 s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b) | |
23 { | |
24 register mp_digit h, l, s; | |
25 mp_digit tab[8], top2b = a >> 30; | |
26 register mp_digit a1, a2, a4; | |
27 | |
28 a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1; | |
29 | |
30 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2; | |
31 tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4; | |
32 | |
33 s = tab[b & 0x7]; l = s; | |
34 s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29; | |
35 s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26; | |
36 s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23; | |
37 s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20; | |
38 s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17; | |
39 s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14; | |
40 s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11; | |
41 s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8; | |
42 s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5; | |
43 s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2; | |
44 | |
45 /* compensate for the top two bits of a */ | |
46 | |
47 if (top2b & 01) { l ^= b << 30; h ^= b >> 2; } | |
48 if (top2b & 02) { l ^= b << 31; h ^= b >> 1; } | |
49 | |
50 *rh = h; *rl = l; | |
51 } | |
52 #else | |
53 void | |
54 s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b) | |
55 { | |
56 register mp_digit h, l, s; | |
57 mp_digit tab[16], top3b = a >> 61; | |
58 register mp_digit a1, a2, a4, a8; | |
59 | |
60 a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; | |
61 a4 = a2 << 1; a8 = a4 << 1; | |
62 tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2; | |
63 tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4; | |
64 tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8; | |
65 tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8; | |
66 | |
67 s = tab[b & 0xF]; l = s; | |
68 s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60; | |
69 s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56; | |
70 s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52; | |
71 s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48; | |
72 s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44; | |
73 s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40; | |
74 s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36; | |
75 s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32; | |
76 s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28; | |
77 s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24; | |
78 s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20; | |
79 s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16; | |
80 s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12; | |
81 s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8; | |
82 s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4; | |
83 | |
84 /* compensate for the top three bits of a */ | |
85 | |
86 if (top3b & 01) { l ^= b << 61; h ^= b >> 3; } | |
87 if (top3b & 02) { l ^= b << 62; h ^= b >> 2; } | |
88 if (top3b & 04) { l ^= b << 63; h ^= b >> 1; } | |
89 | |
90 *rh = h; *rl = l; | |
91 } | |
92 #endif | |
93 | |
94 /* Compute xor-multiply of two binary polynomials (a1, a0) x (b1, b0) | |
95 * result is a binary polynomial in 4 mp_digits r[4]. | |
96 * The caller MUST ensure that r has the right amount of space allocated. | |
97 */ | |
98 void | |
99 s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1, | |
100 const mp_digit b0) | |
101 { | |
102 mp_digit m1, m0; | |
103 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ | |
104 s_bmul_1x1(r+3, r+2, a1, b1); | |
105 s_bmul_1x1(r+1, r, a0, b0); | |
106 s_bmul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); | |
107 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ | |
108 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ | |
109 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ | |
110 } | |
111 | |
112 /* Compute xor-multiply of two binary polynomials (a2, a1, a0) x (b2, b1, b0) | |
113 * result is a binary polynomial in 6 mp_digits r[6]. | |
114 * The caller MUST ensure that r has the right amount of space allocated. | |
115 */ | |
116 void | |
117 s_bmul_3x3(mp_digit *r, const mp_digit a2, const mp_digit a1, const mp_digit a0, | |
118 const mp_digit b2, const mp_digit b1, const mp_digit b0) | |
119 { | |
120 mp_digit zm[4]; | |
121 | |
122 s_bmul_1x1(r+5, r+4, a2, b2); /* fill top 2 words */ | |
123 s_bmul_2x2(zm, a1, a2^a0, b1, b2^b0); /* fill middle 4 words */ | |
124 s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */ | |
125 | |
126 zm[3] ^= r[3]; | |
127 zm[2] ^= r[2]; | |
128 zm[1] ^= r[1] ^ r[5]; | |
129 zm[0] ^= r[0] ^ r[4]; | |
130 | |
131 r[5] ^= zm[3]; | |
132 r[4] ^= zm[2]; | |
133 r[3] ^= zm[1]; | |
134 r[2] ^= zm[0]; | |
135 } | |
136 | |
137 /* Compute xor-multiply of two binary polynomials (a3, a2, a1, a0) x (b3, b2, b1, b0) | |
138 * result is a binary polynomial in 8 mp_digits r[8]. | |
139 * The caller MUST ensure that r has the right amount of space allocated. | |
140 */ | |
141 void s_bmul_4x4(mp_digit *r, const mp_digit a3, const mp_digit a2, const mp_digit a1, | |
142 const mp_digit a0, const mp_digit b3, const mp_digit b2, const mp_digit b1, | |
143 const mp_digit b0) | |
144 { | |
145 mp_digit zm[4]; | |
146 | |
147 s_bmul_2x2(r+4, a3, a2, b3, b2); /* fill top 4 words */ | |
148 s_bmul_2x2(zm, a3^a1, a2^a0, b3^b1, b2^b0); /* fill middle 4 words */ | |
149 s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */ | |
150 | |
151 zm[3] ^= r[3] ^ r[7]; | |
152 zm[2] ^= r[2] ^ r[6]; | |
153 zm[1] ^= r[1] ^ r[5]; | |
154 zm[0] ^= r[0] ^ r[4]; | |
155 | |
156 r[5] ^= zm[3]; | |
157 r[4] ^= zm[2]; | |
158 r[3] ^= zm[1]; | |
159 r[2] ^= zm[0]; | |
160 } | |
161 | |
162 /* Compute addition of two binary polynomials a and b, | |
163 * store result in c; c could be a or b, a and b could be equal; | |
164 * c is the bitwise XOR of a and b. | |
165 */ | |
166 mp_err | |
167 mp_badd(const mp_int *a, const mp_int *b, mp_int *c) | |
168 { | |
169 mp_digit *pa, *pb, *pc; | |
170 mp_size ix; | |
171 mp_size used_pa, used_pb; | |
172 mp_err res = MP_OKAY; | |
173 | |
174 /* Add all digits up to the precision of b. If b had more | |
175 * precision than a initially, swap a, b first | |
176 */ | |
177 if (MP_USED(a) >= MP_USED(b)) { | |
178 pa = MP_DIGITS(a); | |
179 pb = MP_DIGITS(b); | |
180 used_pa = MP_USED(a); | |
181 used_pb = MP_USED(b); | |
182 } else { | |
183 pa = MP_DIGITS(b); | |
184 pb = MP_DIGITS(a); | |
185 used_pa = MP_USED(b); | |
186 used_pb = MP_USED(a); | |
187 } | |
188 | |
189 /* Make sure c has enough precision for the output value */ | |
190 MP_CHECKOK( s_mp_pad(c, used_pa) ); | |
191 | |
192 /* Do word-by-word xor */ | |
193 pc = MP_DIGITS(c); | |
194 for (ix = 0; ix < used_pb; ix++) { | |
195 (*pc++) = (*pa++) ^ (*pb++); | |
196 } | |
197 | |
198 /* Finish the rest of digits until we're actually done */ | |
199 for (; ix < used_pa; ++ix) { | |
200 *pc++ = *pa++; | |
201 } | |
202 | |
203 MP_USED(c) = used_pa; | |
204 MP_SIGN(c) = ZPOS; | |
205 s_mp_clamp(c); | |
206 | |
207 CLEANUP: | |
208 return res; | |
209 } | |
210 | |
211 #define s_mp_div2(a) MP_CHECKOK( mpl_rsh((a), (a), 1) ); | |
212 | |
213 /* Compute binary polynomial multiply d = a * b */ | |
214 static void | |
215 s_bmul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d) | |
216 { | |
217 mp_digit a_i, a0b0, a1b1, carry = 0; | |
218 while (a_len--) { | |
219 a_i = *a++; | |
220 s_bmul_1x1(&a1b1, &a0b0, a_i, b); | |
221 *d++ = a0b0 ^ carry; | |
222 carry = a1b1; | |
223 } | |
224 *d = carry; | |
225 } | |
226 | |
227 /* Compute binary polynomial xor multiply accumulate d ^= a * b */ | |
228 static void | |
229 s_bmul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d) | |
230 { | |
231 mp_digit a_i, a0b0, a1b1, carry = 0; | |
232 while (a_len--) { | |
233 a_i = *a++; | |
234 s_bmul_1x1(&a1b1, &a0b0, a_i, b); | |
235 *d++ ^= a0b0 ^ carry; | |
236 carry = a1b1; | |
237 } | |
238 *d ^= carry; | |
239 } | |
240 | |
241 /* Compute binary polynomial xor multiply c = a * b. | |
242 * All parameters may be identical. | |
243 */ | |
244 mp_err | |
245 mp_bmul(const mp_int *a, const mp_int *b, mp_int *c) | |
246 { | |
247 mp_digit *pb, b_i; | |
248 mp_int tmp; | |
249 mp_size ib, a_used, b_used; | |
250 mp_err res = MP_OKAY; | |
251 | |
252 MP_DIGITS(&tmp) = 0; | |
253 | |
254 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); | |
255 | |
256 if (a == c) { | |
257 MP_CHECKOK( mp_init_copy(&tmp, a) ); | |
258 if (a == b) | |
259 b = &tmp; | |
260 a = &tmp; | |
261 } else if (b == c) { | |
262 MP_CHECKOK( mp_init_copy(&tmp, b) ); | |
263 b = &tmp; | |
264 } | |
265 | |
266 if (MP_USED(a) < MP_USED(b)) { | |
267 const mp_int *xch = b; /* switch a and b if b longer */ | |
268 b = a; | |
269 a = xch; | |
270 } | |
271 | |
272 MP_USED(c) = 1; MP_DIGIT(c, 0) = 0; | |
273 MP_CHECKOK( s_mp_pad(c, USED(a) + USED(b)) ); | |
274 | |
275 pb = MP_DIGITS(b); | |
276 s_bmul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c)); | |
277 | |
278 /* Outer loop: Digits of b */ | |
279 a_used = MP_USED(a); | |
280 b_used = MP_USED(b); | |
281 MP_USED(c) = a_used + b_used; | |
282 for (ib = 1; ib < b_used; ib++) { | |
283 b_i = *pb++; | |
284 | |
285 /* Inner product: Digits of a */ | |
286 if (b_i) | |
287 s_bmul_d_add(MP_DIGITS(a), a_used, b_i, MP_DIGITS(c) + ib); | |
288 else | |
289 MP_DIGIT(c, ib + a_used) = b_i; | |
290 } | |
291 | |
292 s_mp_clamp(c); | |
293 | |
294 SIGN(c) = ZPOS; | |
295 | |
296 CLEANUP: | |
297 mp_clear(&tmp); | |
298 return res; | |
299 } | |
300 | |
301 | |
302 /* Compute modular reduction of a and store result in r. | |
303 * r could be a. | |
304 * For modular arithmetic, the irreducible polynomial f(t) is represented | |
305 * as an array of int[], where f(t) is of the form: | |
306 * f(t) = t^p[0] + t^p[1] + ... + t^p[k] | |
307 * where m = p[0] > p[1] > ... > p[k] = 0. | |
308 */ | |
309 mp_err | |
310 mp_bmod(const mp_int *a, const unsigned int p[], mp_int *r) | |
311 { | |
312 int j, k; | |
313 int n, dN, d0, d1; | |
314 mp_digit zz, *z, tmp; | |
315 mp_size used; | |
316 mp_err res = MP_OKAY; | |
317 | |
318 /* The algorithm does the reduction in place in r, | |
319 * if a != r, copy a into r first so reduction can be done in r | |
320 */ | |
321 if (a != r) { | |
322 MP_CHECKOK( mp_copy(a, r) ); | |
323 } | |
324 z = MP_DIGITS(r); | |
325 | |
326 /* start reduction */ | |
327 /*dN = p[0] / MP_DIGIT_BITS; */ | |
328 dN = p[0] >> MP_DIGIT_BITS_LOG_2; | |
329 used = MP_USED(r); | |
330 | |
331 for (j = used - 1; j > dN;) { | |
332 | |
333 zz = z[j]; | |
334 if (zz == 0) { | |
335 j--; continue; | |
336 } | |
337 z[j] = 0; | |
338 | |
339 for (k = 1; p[k] > 0; k++) { | |
340 /* reducing component t^p[k] */ | |
341 n = p[0] - p[k]; | |
342 /*d0 = n % MP_DIGIT_BITS; */ | |
343 d0 = n & MP_DIGIT_BITS_MASK; | |
344 d1 = MP_DIGIT_BITS - d0; | |
345 /*n /= MP_DIGIT_BITS; */ | |
346 n >>= MP_DIGIT_BITS_LOG_2; | |
347 z[j-n] ^= (zz>>d0); | |
348 if (d0) | |
349 z[j-n-1] ^= (zz<<d1); | |
350 } | |
351 | |
352 /* reducing component t^0 */ | |
353 n = dN; | |
354 /*d0 = p[0] % MP_DIGIT_BITS;*/ | |
355 d0 = p[0] & MP_DIGIT_BITS_MASK; | |
356 d1 = MP_DIGIT_BITS - d0; | |
357 z[j-n] ^= (zz >> d0); | |
358 if (d0) | |
359 z[j-n-1] ^= (zz << d1); | |
360 | |
361 } | |
362 | |
363 /* final round of reduction */ | |
364 while (j == dN) { | |
365 | |
366 /* d0 = p[0] % MP_DIGIT_BITS; */ | |
367 d0 = p[0] & MP_DIGIT_BITS_MASK; | |
368 zz = z[dN] >> d0; | |
369 if (zz == 0) break; | |
370 d1 = MP_DIGIT_BITS - d0; | |
371 | |
372 /* clear up the top d1 bits */ | |
373 if (d0) { | |
374 z[dN] = (z[dN] << d1) >> d1; | |
375 } else { | |
376 z[dN] = 0; | |
377 } | |
378 *z ^= zz; /* reduction t^0 component */ | |
379 | |
380 for (k = 1; p[k] > 0; k++) { | |
381 /* reducing component t^p[k]*/ | |
382 /* n = p[k] / MP_DIGIT_BITS; */ | |
383 n = p[k] >> MP_DIGIT_BITS_LOG_2; | |
384 /* d0 = p[k] % MP_DIGIT_BITS; */ | |
385 d0 = p[k] & MP_DIGIT_BITS_MASK; | |
386 d1 = MP_DIGIT_BITS - d0; | |
387 z[n] ^= (zz << d0); | |
388 tmp = zz >> d1; | |
389 if (d0 && tmp) | |
390 z[n+1] ^= tmp; | |
391 } | |
392 } | |
393 | |
394 s_mp_clamp(r); | |
395 CLEANUP: | |
396 return res; | |
397 } | |
398 | |
399 /* Compute the product of two polynomials a and b, reduce modulo p, | |
400 * Store the result in r. r could be a or b; a could be b. | |
401 */ | |
402 mp_err | |
403 mp_bmulmod(const mp_int *a, const mp_int *b, const unsigned int p[], mp_int *r) | |
404 { | |
405 mp_err res; | |
406 | |
407 if (a == b) return mp_bsqrmod(a, p, r); | |
408 if ((res = mp_bmul(a, b, r) ) != MP_OKAY) | |
409 return res; | |
410 return mp_bmod(r, p, r); | |
411 } | |
412 | |
413 /* Compute binary polynomial squaring c = a*a mod p . | |
414 * Parameter r and a can be identical. | |
415 */ | |
416 | |
417 mp_err | |
418 mp_bsqrmod(const mp_int *a, const unsigned int p[], mp_int *r) | |
419 { | |
420 mp_digit *pa, *pr, a_i; | |
421 mp_int tmp; | |
422 mp_size ia, a_used; | |
423 mp_err res; | |
424 | |
425 ARGCHK(a != NULL && r != NULL, MP_BADARG); | |
426 MP_DIGITS(&tmp) = 0; | |
427 | |
428 if (a == r) { | |
429 MP_CHECKOK( mp_init_copy(&tmp, a) ); | |
430 a = &tmp; | |
431 } | |
432 | |
433 MP_USED(r) = 1; MP_DIGIT(r, 0) = 0; | |
434 MP_CHECKOK( s_mp_pad(r, 2*USED(a)) ); | |
435 | |
436 pa = MP_DIGITS(a); | |
437 pr = MP_DIGITS(r); | |
438 a_used = MP_USED(a); | |
439 MP_USED(r) = 2 * a_used; | |
440 | |
441 for (ia = 0; ia < a_used; ia++) { | |
442 a_i = *pa++; | |
443 *pr++ = gf2m_SQR0(a_i); | |
444 *pr++ = gf2m_SQR1(a_i); | |
445 } | |
446 | |
447 MP_CHECKOK( mp_bmod(r, p, r) ); | |
448 s_mp_clamp(r); | |
449 SIGN(r) = ZPOS; | |
450 | |
451 CLEANUP: | |
452 mp_clear(&tmp); | |
453 return res; | |
454 } | |
455 | |
456 /* Compute binary polynomial y/x mod p, y divided by x, reduce modulo p. | |
457 * Store the result in r. r could be x or y, and x could equal y. | |
458 * Uses algorithm Modular_Division_GF(2^m) from | |
459 * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to | |
460 * the Great Divide". | |
461 */ | |
462 int | |
463 mp_bdivmod(const mp_int *y, const mp_int *x, const mp_int *pp, | |
464 const unsigned int p[], mp_int *r) | |
465 { | |
466 mp_int aa, bb, uu; | |
467 mp_int *a, *b, *u, *v; | |
468 mp_err res = MP_OKAY; | |
469 | |
470 MP_DIGITS(&aa) = 0; | |
471 MP_DIGITS(&bb) = 0; | |
472 MP_DIGITS(&uu) = 0; | |
473 | |
474 MP_CHECKOK( mp_init_copy(&aa, x) ); | |
475 MP_CHECKOK( mp_init_copy(&uu, y) ); | |
476 MP_CHECKOK( mp_init_copy(&bb, pp) ); | |
477 MP_CHECKOK( s_mp_pad(r, USED(pp)) ); | |
478 MP_USED(r) = 1; MP_DIGIT(r, 0) = 0; | |
479 | |
480 a = &aa; b= &bb; u=&uu; v=r; | |
481 /* reduce x and y mod p */ | |
482 MP_CHECKOK( mp_bmod(a, p, a) ); | |
483 MP_CHECKOK( mp_bmod(u, p, u) ); | |
484 | |
485 while (!mp_isodd(a)) { | |
486 s_mp_div2(a); | |
487 if (mp_isodd(u)) { | |
488 MP_CHECKOK( mp_badd(u, pp, u) ); | |
489 } | |
490 s_mp_div2(u); | |
491 } | |
492 | |
493 do { | |
494 if (mp_cmp_mag(b, a) > 0) { | |
495 MP_CHECKOK( mp_badd(b, a, b) ); | |
496 MP_CHECKOK( mp_badd(v, u, v) ); | |
497 do { | |
498 s_mp_div2(b); | |
499 if (mp_isodd(v)) { | |
500 MP_CHECKOK( mp_badd(v, pp, v) ); | |
501 } | |
502 s_mp_div2(v); | |
503 } while (!mp_isodd(b)); | |
504 } | |
505 else if ((MP_DIGIT(a,0) == 1) && (MP_USED(a) == 1)) | |
506 break; | |
507 else { | |
508 MP_CHECKOK( mp_badd(a, b, a) ); | |
509 MP_CHECKOK( mp_badd(u, v, u) ); | |
510 do { | |
511 s_mp_div2(a); | |
512 if (mp_isodd(u)) { | |
513 MP_CHECKOK( mp_badd(u, pp, u) ); | |
514 } | |
515 s_mp_div2(u); | |
516 } while (!mp_isodd(a)); | |
517 } | |
518 } while (1); | |
519 | |
520 MP_CHECKOK( mp_copy(u, r) ); | |
521 | |
522 CLEANUP: | |
523 mp_clear(&aa); | |
524 mp_clear(&bb); | |
525 mp_clear(&uu); | |
526 return res; | |
527 | |
528 } | |
529 | |
530 /* Convert the bit-string representation of a polynomial a into an array | |
531 * of integers corresponding to the bits with non-zero coefficient. | |
532 * Up to max elements of the array will be filled. Return value is total | |
533 * number of coefficients that would be extracted if array was large enough. | |
534 */ | |
535 int | |
536 mp_bpoly2arr(const mp_int *a, unsigned int p[], int max) | |
537 { | |
538 int i, j, k; | |
539 mp_digit top_bit, mask; | |
540 | |
541 top_bit = 1; | |
542 top_bit <<= MP_DIGIT_BIT - 1; | |
543 | |
544 for (k = 0; k < max; k++) p[k] = 0; | |
545 k = 0; | |
546 | |
547 for (i = MP_USED(a) - 1; i >= 0; i--) { | |
548 mask = top_bit; | |
549 for (j = MP_DIGIT_BIT - 1; j >= 0; j--) { | |
550 if (MP_DIGITS(a)[i] & mask) { | |
551 if (k < max) p[k] = MP_DIGIT_BIT * i + j; | |
552 k++; | |
553 } | |
554 mask >>= 1; | |
555 } | |
556 } | |
557 | |
558 return k; | |
559 } | |
560 | |
561 /* Convert the coefficient array representation of a polynomial to a | |
562 * bit-string. The array must be terminated by 0. | |
563 */ | |
564 mp_err | |
565 mp_barr2poly(const unsigned int p[], mp_int *a) | |
566 { | |
567 | |
568 mp_err res = MP_OKAY; | |
569 int i; | |
570 | |
571 mp_zero(a); | |
572 for (i = 0; p[i] > 0; i++) { | |
573 MP_CHECKOK( mpl_set_bit(a, p[i], 1) ); | |
574 } | |
575 MP_CHECKOK( mpl_set_bit(a, 0, 1) ); | |
576 | |
577 CLEANUP: | |
578 return res; | |
579 } |