Mercurial > trustbridge > nss-cmake-static
comparison nss/lib/freebl/mpi/mpprime.c @ 0:1e5118fa0cb1
This is NSS with a Cmake Buildsyste
To compile a static NSS library for Windows we've used the
Chromium-NSS fork and added a Cmake buildsystem to compile
it statically for Windows. See README.chromium for chromium
changes and README.trustbridge for our modifications.
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Mon, 28 Jul 2014 10:47:06 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:1e5118fa0cb1 |
---|---|
1 /* | |
2 * mpprime.c | |
3 * | |
4 * Utilities for finding and working with prime and pseudo-prime | |
5 * integers | |
6 * | |
7 * This Source Code Form is subject to the terms of the Mozilla Public | |
8 * License, v. 2.0. If a copy of the MPL was not distributed with this | |
9 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | |
10 | |
11 #include "mpi-priv.h" | |
12 #include "mpprime.h" | |
13 #include "mplogic.h" | |
14 #include <stdlib.h> | |
15 #include <string.h> | |
16 | |
17 #define SMALL_TABLE 0 /* determines size of hard-wired prime table */ | |
18 | |
19 #define RANDOM() rand() | |
20 | |
21 #include "primes.c" /* pull in the prime digit table */ | |
22 | |
23 /* | |
24 Test if any of a given vector of digits divides a. If not, MP_NO | |
25 is returned; otherwise, MP_YES is returned and 'which' is set to | |
26 the index of the integer in the vector which divided a. | |
27 */ | |
28 mp_err s_mpp_divp(mp_int *a, const mp_digit *vec, int size, int *which); | |
29 | |
30 /* {{{ mpp_divis(a, b) */ | |
31 | |
32 /* | |
33 mpp_divis(a, b) | |
34 | |
35 Returns MP_YES if a is divisible by b, or MP_NO if it is not. | |
36 */ | |
37 | |
38 mp_err mpp_divis(mp_int *a, mp_int *b) | |
39 { | |
40 mp_err res; | |
41 mp_int rem; | |
42 | |
43 if((res = mp_init(&rem)) != MP_OKAY) | |
44 return res; | |
45 | |
46 if((res = mp_mod(a, b, &rem)) != MP_OKAY) | |
47 goto CLEANUP; | |
48 | |
49 if(mp_cmp_z(&rem) == 0) | |
50 res = MP_YES; | |
51 else | |
52 res = MP_NO; | |
53 | |
54 CLEANUP: | |
55 mp_clear(&rem); | |
56 return res; | |
57 | |
58 } /* end mpp_divis() */ | |
59 | |
60 /* }}} */ | |
61 | |
62 /* {{{ mpp_divis_d(a, d) */ | |
63 | |
64 /* | |
65 mpp_divis_d(a, d) | |
66 | |
67 Return MP_YES if a is divisible by d, or MP_NO if it is not. | |
68 */ | |
69 | |
70 mp_err mpp_divis_d(mp_int *a, mp_digit d) | |
71 { | |
72 mp_err res; | |
73 mp_digit rem; | |
74 | |
75 ARGCHK(a != NULL, MP_BADARG); | |
76 | |
77 if(d == 0) | |
78 return MP_NO; | |
79 | |
80 if((res = mp_mod_d(a, d, &rem)) != MP_OKAY) | |
81 return res; | |
82 | |
83 if(rem == 0) | |
84 return MP_YES; | |
85 else | |
86 return MP_NO; | |
87 | |
88 } /* end mpp_divis_d() */ | |
89 | |
90 /* }}} */ | |
91 | |
92 /* {{{ mpp_random(a) */ | |
93 | |
94 /* | |
95 mpp_random(a) | |
96 | |
97 Assigns a random value to a. This value is generated using the | |
98 standard C library's rand() function, so it should not be used for | |
99 cryptographic purposes, but it should be fine for primality testing, | |
100 since all we really care about there is good statistical properties. | |
101 | |
102 As many digits as a currently has are filled with random digits. | |
103 */ | |
104 | |
105 mp_err mpp_random(mp_int *a) | |
106 | |
107 { | |
108 mp_digit next = 0; | |
109 unsigned int ix, jx; | |
110 | |
111 ARGCHK(a != NULL, MP_BADARG); | |
112 | |
113 for(ix = 0; ix < USED(a); ix++) { | |
114 for(jx = 0; jx < sizeof(mp_digit); jx++) { | |
115 next = (next << CHAR_BIT) | (RANDOM() & UCHAR_MAX); | |
116 } | |
117 DIGIT(a, ix) = next; | |
118 } | |
119 | |
120 return MP_OKAY; | |
121 | |
122 } /* end mpp_random() */ | |
123 | |
124 /* }}} */ | |
125 | |
126 /* {{{ mpp_random_size(a, prec) */ | |
127 | |
128 mp_err mpp_random_size(mp_int *a, mp_size prec) | |
129 { | |
130 mp_err res; | |
131 | |
132 ARGCHK(a != NULL && prec > 0, MP_BADARG); | |
133 | |
134 if((res = s_mp_pad(a, prec)) != MP_OKAY) | |
135 return res; | |
136 | |
137 return mpp_random(a); | |
138 | |
139 } /* end mpp_random_size() */ | |
140 | |
141 /* }}} */ | |
142 | |
143 /* {{{ mpp_divis_vector(a, vec, size, which) */ | |
144 | |
145 /* | |
146 mpp_divis_vector(a, vec, size, which) | |
147 | |
148 Determines if a is divisible by any of the 'size' digits in vec. | |
149 Returns MP_YES and sets 'which' to the index of the offending digit, | |
150 if it is; returns MP_NO if it is not. | |
151 */ | |
152 | |
153 mp_err mpp_divis_vector(mp_int *a, const mp_digit *vec, int size, int *which) | |
154 { | |
155 ARGCHK(a != NULL && vec != NULL && size > 0, MP_BADARG); | |
156 | |
157 return s_mpp_divp(a, vec, size, which); | |
158 | |
159 } /* end mpp_divis_vector() */ | |
160 | |
161 /* }}} */ | |
162 | |
163 /* {{{ mpp_divis_primes(a, np) */ | |
164 | |
165 /* | |
166 mpp_divis_primes(a, np) | |
167 | |
168 Test whether a is divisible by any of the first 'np' primes. If it | |
169 is, returns MP_YES and sets *np to the value of the digit that did | |
170 it. If not, returns MP_NO. | |
171 */ | |
172 mp_err mpp_divis_primes(mp_int *a, mp_digit *np) | |
173 { | |
174 int size, which; | |
175 mp_err res; | |
176 | |
177 ARGCHK(a != NULL && np != NULL, MP_BADARG); | |
178 | |
179 size = (int)*np; | |
180 if(size > prime_tab_size) | |
181 size = prime_tab_size; | |
182 | |
183 res = mpp_divis_vector(a, prime_tab, size, &which); | |
184 if(res == MP_YES) | |
185 *np = prime_tab[which]; | |
186 | |
187 return res; | |
188 | |
189 } /* end mpp_divis_primes() */ | |
190 | |
191 /* }}} */ | |
192 | |
193 /* {{{ mpp_fermat(a, w) */ | |
194 | |
195 /* | |
196 Using w as a witness, try pseudo-primality testing based on Fermat's | |
197 little theorem. If a is prime, and (w, a) = 1, then w^a == w (mod | |
198 a). So, we compute z = w^a (mod a) and compare z to w; if they are | |
199 equal, the test passes and we return MP_YES. Otherwise, we return | |
200 MP_NO. | |
201 */ | |
202 mp_err mpp_fermat(mp_int *a, mp_digit w) | |
203 { | |
204 mp_int base, test; | |
205 mp_err res; | |
206 | |
207 if((res = mp_init(&base)) != MP_OKAY) | |
208 return res; | |
209 | |
210 mp_set(&base, w); | |
211 | |
212 if((res = mp_init(&test)) != MP_OKAY) | |
213 goto TEST; | |
214 | |
215 /* Compute test = base^a (mod a) */ | |
216 if((res = mp_exptmod(&base, a, a, &test)) != MP_OKAY) | |
217 goto CLEANUP; | |
218 | |
219 | |
220 if(mp_cmp(&base, &test) == 0) | |
221 res = MP_YES; | |
222 else | |
223 res = MP_NO; | |
224 | |
225 CLEANUP: | |
226 mp_clear(&test); | |
227 TEST: | |
228 mp_clear(&base); | |
229 | |
230 return res; | |
231 | |
232 } /* end mpp_fermat() */ | |
233 | |
234 /* }}} */ | |
235 | |
236 /* | |
237 Perform the fermat test on each of the primes in a list until | |
238 a) one of them shows a is not prime, or | |
239 b) the list is exhausted. | |
240 Returns: MP_YES if it passes tests. | |
241 MP_NO if fermat test reveals it is composite | |
242 Some MP error code if some other error occurs. | |
243 */ | |
244 mp_err mpp_fermat_list(mp_int *a, const mp_digit *primes, mp_size nPrimes) | |
245 { | |
246 mp_err rv = MP_YES; | |
247 | |
248 while (nPrimes-- > 0 && rv == MP_YES) { | |
249 rv = mpp_fermat(a, *primes++); | |
250 } | |
251 return rv; | |
252 } | |
253 | |
254 /* {{{ mpp_pprime(a, nt) */ | |
255 | |
256 /* | |
257 mpp_pprime(a, nt) | |
258 | |
259 Performs nt iteration of the Miller-Rabin probabilistic primality | |
260 test on a. Returns MP_YES if the tests pass, MP_NO if one fails. | |
261 If MP_NO is returned, the number is definitely composite. If MP_YES | |
262 is returned, it is probably prime (but that is not guaranteed). | |
263 */ | |
264 | |
265 mp_err mpp_pprime(mp_int *a, int nt) | |
266 { | |
267 mp_err res; | |
268 mp_int x, amo, m, z; /* "amo" = "a minus one" */ | |
269 int iter; | |
270 unsigned int jx; | |
271 mp_size b; | |
272 | |
273 ARGCHK(a != NULL, MP_BADARG); | |
274 | |
275 MP_DIGITS(&x) = 0; | |
276 MP_DIGITS(&amo) = 0; | |
277 MP_DIGITS(&m) = 0; | |
278 MP_DIGITS(&z) = 0; | |
279 | |
280 /* Initialize temporaries... */ | |
281 MP_CHECKOK( mp_init(&amo)); | |
282 /* Compute amo = a - 1 for what follows... */ | |
283 MP_CHECKOK( mp_sub_d(a, 1, &amo) ); | |
284 | |
285 b = mp_trailing_zeros(&amo); | |
286 if (!b) { /* a was even ? */ | |
287 res = MP_NO; | |
288 goto CLEANUP; | |
289 } | |
290 | |
291 MP_CHECKOK( mp_init_size(&x, MP_USED(a)) ); | |
292 MP_CHECKOK( mp_init(&z) ); | |
293 MP_CHECKOK( mp_init(&m) ); | |
294 MP_CHECKOK( mp_div_2d(&amo, b, &m, 0) ); | |
295 | |
296 /* Do the test nt times... */ | |
297 for(iter = 0; iter < nt; iter++) { | |
298 | |
299 /* Choose a random value for 1 < x < a */ | |
300 s_mp_pad(&x, USED(a)); | |
301 mpp_random(&x); | |
302 MP_CHECKOK( mp_mod(&x, a, &x) ); | |
303 if(mp_cmp_d(&x, 1) <= 0) { | |
304 iter--; /* don't count this iteration */ | |
305 continue; /* choose a new x */ | |
306 } | |
307 | |
308 /* Compute z = (x ** m) mod a */ | |
309 MP_CHECKOK( mp_exptmod(&x, &m, a, &z) ); | |
310 | |
311 if(mp_cmp_d(&z, 1) == 0 || mp_cmp(&z, &amo) == 0) { | |
312 res = MP_YES; | |
313 continue; | |
314 } | |
315 | |
316 res = MP_NO; /* just in case the following for loop never executes. */ | |
317 for (jx = 1; jx < b; jx++) { | |
318 /* z = z^2 (mod a) */ | |
319 MP_CHECKOK( mp_sqrmod(&z, a, &z) ); | |
320 res = MP_NO; /* previous line set res to MP_YES */ | |
321 | |
322 if(mp_cmp_d(&z, 1) == 0) { | |
323 break; | |
324 } | |
325 if(mp_cmp(&z, &amo) == 0) { | |
326 res = MP_YES; | |
327 break; | |
328 } | |
329 } /* end testing loop */ | |
330 | |
331 /* If the test passes, we will continue iterating, but a failed | |
332 test means the candidate is definitely NOT prime, so we will | |
333 immediately break out of this loop | |
334 */ | |
335 if(res == MP_NO) | |
336 break; | |
337 | |
338 } /* end iterations loop */ | |
339 | |
340 CLEANUP: | |
341 mp_clear(&m); | |
342 mp_clear(&z); | |
343 mp_clear(&x); | |
344 mp_clear(&amo); | |
345 return res; | |
346 | |
347 } /* end mpp_pprime() */ | |
348 | |
349 /* }}} */ | |
350 | |
351 /* Produce table of composites from list of primes and trial value. | |
352 ** trial must be odd. List of primes must not include 2. | |
353 ** sieve should have dimension >= MAXPRIME/2, where MAXPRIME is largest | |
354 ** prime in list of primes. After this function is finished, | |
355 ** if sieve[i] is non-zero, then (trial + 2*i) is composite. | |
356 ** Each prime used in the sieve costs one division of trial, and eliminates | |
357 ** one or more values from the search space. (3 eliminates 1/3 of the values | |
358 ** alone!) Each value left in the search space costs 1 or more modular | |
359 ** exponentations. So, these divisions are a bargain! | |
360 */ | |
361 mp_err mpp_sieve(mp_int *trial, const mp_digit *primes, mp_size nPrimes, | |
362 unsigned char *sieve, mp_size nSieve) | |
363 { | |
364 mp_err res; | |
365 mp_digit rem; | |
366 mp_size ix; | |
367 unsigned long offset; | |
368 | |
369 memset(sieve, 0, nSieve); | |
370 | |
371 for(ix = 0; ix < nPrimes; ix++) { | |
372 mp_digit prime = primes[ix]; | |
373 mp_size i; | |
374 if((res = mp_mod_d(trial, prime, &rem)) != MP_OKAY) | |
375 return res; | |
376 | |
377 if (rem == 0) { | |
378 offset = 0; | |
379 } else { | |
380 offset = prime - (rem / 2); | |
381 } | |
382 for (i = offset; i < nSieve ; i += prime) { | |
383 sieve[i] = 1; | |
384 } | |
385 } | |
386 | |
387 return MP_OKAY; | |
388 } | |
389 | |
390 #define SIEVE_SIZE 32*1024 | |
391 | |
392 mp_err mpp_make_prime(mp_int *start, mp_size nBits, mp_size strong, | |
393 unsigned long * nTries) | |
394 { | |
395 mp_digit np; | |
396 mp_err res; | |
397 int i = 0; | |
398 mp_int trial; | |
399 mp_int q; | |
400 mp_size num_tests; | |
401 unsigned char *sieve; | |
402 | |
403 ARGCHK(start != 0, MP_BADARG); | |
404 ARGCHK(nBits > 16, MP_RANGE); | |
405 | |
406 sieve = malloc(SIEVE_SIZE); | |
407 ARGCHK(sieve != NULL, MP_MEM); | |
408 | |
409 MP_DIGITS(&trial) = 0; | |
410 MP_DIGITS(&q) = 0; | |
411 MP_CHECKOK( mp_init(&trial) ); | |
412 MP_CHECKOK( mp_init(&q) ); | |
413 /* values taken from table 4.4, HandBook of Applied Cryptography */ | |
414 if (nBits >= 1300) { | |
415 num_tests = 2; | |
416 } else if (nBits >= 850) { | |
417 num_tests = 3; | |
418 } else if (nBits >= 650) { | |
419 num_tests = 4; | |
420 } else if (nBits >= 550) { | |
421 num_tests = 5; | |
422 } else if (nBits >= 450) { | |
423 num_tests = 6; | |
424 } else if (nBits >= 400) { | |
425 num_tests = 7; | |
426 } else if (nBits >= 350) { | |
427 num_tests = 8; | |
428 } else if (nBits >= 300) { | |
429 num_tests = 9; | |
430 } else if (nBits >= 250) { | |
431 num_tests = 12; | |
432 } else if (nBits >= 200) { | |
433 num_tests = 15; | |
434 } else if (nBits >= 150) { | |
435 num_tests = 18; | |
436 } else if (nBits >= 100) { | |
437 num_tests = 27; | |
438 } else | |
439 num_tests = 50; | |
440 | |
441 if (strong) | |
442 --nBits; | |
443 MP_CHECKOK( mpl_set_bit(start, nBits - 1, 1) ); | |
444 MP_CHECKOK( mpl_set_bit(start, 0, 1) ); | |
445 for (i = mpl_significant_bits(start) - 1; i >= nBits; --i) { | |
446 MP_CHECKOK( mpl_set_bit(start, i, 0) ); | |
447 } | |
448 /* start sieveing with prime value of 3. */ | |
449 MP_CHECKOK(mpp_sieve(start, prime_tab + 1, prime_tab_size - 1, | |
450 sieve, SIEVE_SIZE) ); | |
451 | |
452 #ifdef DEBUG_SIEVE | |
453 res = 0; | |
454 for (i = 0; i < SIEVE_SIZE; ++i) { | |
455 if (!sieve[i]) | |
456 ++res; | |
457 } | |
458 fprintf(stderr,"sieve found %d potential primes.\n", res); | |
459 #define FPUTC(x,y) fputc(x,y) | |
460 #else | |
461 #define FPUTC(x,y) | |
462 #endif | |
463 | |
464 res = MP_NO; | |
465 for(i = 0; i < SIEVE_SIZE; ++i) { | |
466 if (sieve[i]) /* this number is composite */ | |
467 continue; | |
468 MP_CHECKOK( mp_add_d(start, 2 * i, &trial) ); | |
469 FPUTC('.', stderr); | |
470 /* run a Fermat test */ | |
471 res = mpp_fermat(&trial, 2); | |
472 if (res != MP_OKAY) { | |
473 if (res == MP_NO) | |
474 continue; /* was composite */ | |
475 goto CLEANUP; | |
476 } | |
477 | |
478 FPUTC('+', stderr); | |
479 /* If that passed, run some Miller-Rabin tests */ | |
480 res = mpp_pprime(&trial, num_tests); | |
481 if (res != MP_OKAY) { | |
482 if (res == MP_NO) | |
483 continue; /* was composite */ | |
484 goto CLEANUP; | |
485 } | |
486 FPUTC('!', stderr); | |
487 | |
488 if (!strong) | |
489 break; /* success !! */ | |
490 | |
491 /* At this point, we have strong evidence that our candidate | |
492 is itself prime. If we want a strong prime, we need now | |
493 to test q = 2p + 1 for primality... | |
494 */ | |
495 MP_CHECKOK( mp_mul_2(&trial, &q) ); | |
496 MP_CHECKOK( mp_add_d(&q, 1, &q) ); | |
497 | |
498 /* Test q for small prime divisors ... */ | |
499 np = prime_tab_size; | |
500 res = mpp_divis_primes(&q, &np); | |
501 if (res == MP_YES) { /* is composite */ | |
502 mp_clear(&q); | |
503 continue; | |
504 } | |
505 if (res != MP_NO) | |
506 goto CLEANUP; | |
507 | |
508 /* And test with Fermat, as with its parent ... */ | |
509 res = mpp_fermat(&q, 2); | |
510 if (res != MP_YES) { | |
511 mp_clear(&q); | |
512 if (res == MP_NO) | |
513 continue; /* was composite */ | |
514 goto CLEANUP; | |
515 } | |
516 | |
517 /* And test with Miller-Rabin, as with its parent ... */ | |
518 res = mpp_pprime(&q, num_tests); | |
519 if (res != MP_YES) { | |
520 mp_clear(&q); | |
521 if (res == MP_NO) | |
522 continue; /* was composite */ | |
523 goto CLEANUP; | |
524 } | |
525 | |
526 /* If it passed, we've got a winner */ | |
527 mp_exch(&q, &trial); | |
528 mp_clear(&q); | |
529 break; | |
530 | |
531 } /* end of loop through sieved values */ | |
532 if (res == MP_YES) | |
533 mp_exch(&trial, start); | |
534 CLEANUP: | |
535 mp_clear(&trial); | |
536 mp_clear(&q); | |
537 if (nTries) | |
538 *nTries += i; | |
539 if (sieve != NULL) { | |
540 memset(sieve, 0, SIEVE_SIZE); | |
541 free (sieve); | |
542 } | |
543 return res; | |
544 } | |
545 | |
546 /*========================================================================*/ | |
547 /*------------------------------------------------------------------------*/ | |
548 /* Static functions visible only to the library internally */ | |
549 | |
550 /* {{{ s_mpp_divp(a, vec, size, which) */ | |
551 | |
552 /* | |
553 Test for divisibility by members of a vector of digits. Returns | |
554 MP_NO if a is not divisible by any of them; returns MP_YES and sets | |
555 'which' to the index of the offender, if it is. Will stop on the | |
556 first digit against which a is divisible. | |
557 */ | |
558 | |
559 mp_err s_mpp_divp(mp_int *a, const mp_digit *vec, int size, int *which) | |
560 { | |
561 mp_err res; | |
562 mp_digit rem; | |
563 | |
564 int ix; | |
565 | |
566 for(ix = 0; ix < size; ix++) { | |
567 if((res = mp_mod_d(a, vec[ix], &rem)) != MP_OKAY) | |
568 return res; | |
569 | |
570 if(rem == 0) { | |
571 if(which) | |
572 *which = ix; | |
573 return MP_YES; | |
574 } | |
575 } | |
576 | |
577 return MP_NO; | |
578 | |
579 } /* end s_mpp_divp() */ | |
580 | |
581 /* }}} */ | |
582 | |
583 /*------------------------------------------------------------------------*/ | |
584 /* HERE THERE BE DRAGONS */ |