comparison nss/lib/freebl/pqg.c @ 0:1e5118fa0cb1

This is NSS with a Cmake Buildsyste To compile a static NSS library for Windows we've used the Chromium-NSS fork and added a Cmake buildsystem to compile it statically for Windows. See README.chromium for chromium changes and README.trustbridge for our modifications.
author Andre Heinecke <andre.heinecke@intevation.de>
date Mon, 28 Jul 2014 10:47:06 +0200
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:1e5118fa0cb1
1 /* This Source Code Form is subject to the terms of the Mozilla Public
2 * License, v. 2.0. If a copy of the MPL was not distributed with this
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
4
5 /*
6 * PQG parameter generation/verification. Based on FIPS 186-3.
7 */
8 #ifdef FREEBL_NO_DEPEND
9 #include "stubs.h"
10 #endif
11
12 #include "prerr.h"
13 #include "secerr.h"
14
15 #include "prtypes.h"
16 #include "blapi.h"
17 #include "secitem.h"
18 #include "mpi.h"
19 #include "mpprime.h"
20 #include "mplogic.h"
21 #include "secmpi.h"
22
23 #define MAX_ITERATIONS 1000 /* Maximum number of iterations of primegen */
24
25 typedef enum {
26 FIPS186_1_TYPE, /* Probablistic */
27 FIPS186_3_TYPE, /* Probablistic */
28 FIPS186_3_ST_TYPE /* Shawe-Taylor provable */
29 } pqgGenType;
30
31 /*
32 * These test iterations are quite a bit larger than we previously had.
33 * This is because FIPS 186-3 is worried about the primes in PQG generation.
34 * It may be possible to purposefully construct composites which more
35 * iterations of Miller-Rabin than the for your normal randomly selected
36 * numbers.There are 3 ways to counter this: 1) use one of the cool provably
37 * prime algorithms (which would require a lot more work than DSA-2 deservers.
38 * 2) add a Lucas primality test (which requires coding a Lucas primality test,
39 * or 3) use a larger M-R test count. I chose the latter. It increases the time
40 * that it takes to prove the selected prime, but it shouldn't increase the
41 * overall time to run the algorithm (non-primes should still faile M-R
42 * realively quickly). If you want to get that last bit of performance,
43 * implement Lucas and adjust these two functions. See FIPS 186-3 Appendix C
44 * and F for more information.
45 */
46 int prime_testcount_p(int L, int N)
47 {
48 switch (L) {
49 case 1024:
50 return 40;
51 case 2048:
52 return 56;
53 case 3072:
54 return 64;
55 default:
56 break;
57 }
58 return 50; /* L = 512-960 */
59 }
60
61 /* The q numbers are different if you run M-R followd by Lucas. I created
62 * a separate function so if someone wanted to add the Lucas check, they
63 * could do so fairly easily */
64 int prime_testcount_q(int L, int N)
65 {
66 return prime_testcount_p(L,N);
67 }
68
69 /*
70 * generic function to make sure our input matches DSA2 requirements
71 * this gives us one place to go if we need to bump the requirements in the
72 * future.
73 */
74 static SECStatus
75 pqg_validate_dsa2(unsigned int L, unsigned int N)
76 {
77
78 switch (L) {
79 case 1024:
80 if (N != DSA1_Q_BITS) {
81 PORT_SetError(SEC_ERROR_INVALID_ARGS);
82 return SECFailure;
83 }
84 break;
85 case 2048:
86 if ((N != 224) && (N != 256)) {
87 PORT_SetError(SEC_ERROR_INVALID_ARGS);
88 return SECFailure;
89 }
90 break;
91 case 3072:
92 if (N != 256) {
93 PORT_SetError(SEC_ERROR_INVALID_ARGS);
94 return SECFailure;
95 }
96 break;
97 default:
98 PORT_SetError(SEC_ERROR_INVALID_ARGS);
99 return SECFailure;
100 }
101 return SECSuccess;
102 }
103
104 static unsigned int
105 pqg_get_default_N(unsigned int L)
106 {
107 unsigned int N = 0;
108 switch (L) {
109 case 1024:
110 N = DSA1_Q_BITS;
111 break;
112 case 2048:
113 N = 224;
114 break;
115 case 3072:
116 N = 256;
117 break;
118 default:
119 PORT_SetError(SEC_ERROR_INVALID_ARGS);
120 break; /* N already set to zero */
121 }
122 return N;
123 }
124
125 /*
126 * Select the lowest hash algorithm usable
127 */
128 static HASH_HashType
129 getFirstHash(unsigned int L, unsigned int N)
130 {
131 if (N < 224) {
132 return HASH_AlgSHA1;
133 }
134 if (N < 256) {
135 return HASH_AlgSHA224;
136 }
137 if (N < 384) {
138 return HASH_AlgSHA256;
139 }
140 if (N < 512) {
141 return HASH_AlgSHA384;
142 }
143 return HASH_AlgSHA512;
144 }
145
146 /*
147 * find the next usable hash algorthim
148 */
149 static HASH_HashType
150 getNextHash(HASH_HashType hashtype)
151 {
152 switch (hashtype) {
153 case HASH_AlgSHA1:
154 hashtype = HASH_AlgSHA224;
155 break;
156 case HASH_AlgSHA224:
157 hashtype = HASH_AlgSHA256;
158 break;
159 case HASH_AlgSHA256:
160 hashtype = HASH_AlgSHA384;
161 break;
162 case HASH_AlgSHA384:
163 hashtype = HASH_AlgSHA512;
164 break;
165 case HASH_AlgSHA512:
166 default:
167 hashtype = HASH_AlgTOTAL;
168 break;
169 }
170 return hashtype;
171 }
172
173 static unsigned int
174 HASH_ResultLen(HASH_HashType type)
175 {
176 const SECHashObject *hash_obj = HASH_GetRawHashObject(type);
177 if (hash_obj == NULL) {
178 return 0;
179 }
180 return hash_obj->length;
181 }
182
183 static SECStatus
184 HASH_HashBuf(HASH_HashType type, unsigned char *dest,
185 const unsigned char *src, PRUint32 src_len)
186 {
187 const SECHashObject *hash_obj = HASH_GetRawHashObject(type);
188 void *hashcx = NULL;
189 unsigned int dummy;
190
191 if (hash_obj == NULL) {
192 return SECFailure;
193 }
194
195 hashcx = hash_obj->create();
196 if (hashcx == NULL) {
197 return SECFailure;
198 }
199 hash_obj->begin(hashcx);
200 hash_obj->update(hashcx,src,src_len);
201 hash_obj->end(hashcx,dest, &dummy, hash_obj->length);
202 hash_obj->destroy(hashcx, PR_TRUE);
203 return SECSuccess;
204 }
205
206 unsigned int
207 PQG_GetLength(const SECItem *obj)
208 {
209 unsigned int len = obj->len;
210
211 if (obj->data == NULL) {
212 return 0;
213 }
214 if (len > 1 && obj->data[0] == 0) {
215 len--;
216 }
217 return len;
218 }
219
220 SECStatus
221 PQG_Check(const PQGParams *params)
222 {
223 unsigned int L,N;
224 SECStatus rv = SECSuccess;
225
226 if (params == NULL) {
227 PORT_SetError(SEC_ERROR_INVALID_ARGS);
228 return SECFailure;
229 }
230
231 L = PQG_GetLength(&params->prime)*PR_BITS_PER_BYTE;
232 N = PQG_GetLength(&params->subPrime)*PR_BITS_PER_BYTE;
233
234 if (L < 1024) {
235 int j;
236
237 /* handle DSA1 pqg parameters with less thatn 1024 bits*/
238 if ( N != DSA1_Q_BITS ) {
239 PORT_SetError(SEC_ERROR_INVALID_ARGS);
240 return SECFailure;
241 }
242 j = PQG_PBITS_TO_INDEX(L);
243 if ( j < 0 ) {
244 PORT_SetError(SEC_ERROR_INVALID_ARGS);
245 rv = SECFailure;
246 }
247 } else {
248 /* handle DSA2 parameters (includes DSA1, 1024 bits) */
249 rv = pqg_validate_dsa2(L, N);
250 }
251 return rv;
252 }
253
254 HASH_HashType
255 PQG_GetHashType(const PQGParams *params)
256 {
257 unsigned int L,N;
258
259 if (params == NULL) {
260 PORT_SetError(SEC_ERROR_INVALID_ARGS);
261 return HASH_AlgNULL;
262 }
263
264 L = PQG_GetLength(&params->prime)*PR_BITS_PER_BYTE;
265 N = PQG_GetLength(&params->subPrime)*PR_BITS_PER_BYTE;
266 return getFirstHash(L, N);
267 }
268
269 /* Get a seed for generating P and Q. If in testing mode, copy in the
270 ** seed from FIPS 186-1 appendix 5. Otherwise, obtain bytes from the
271 ** global random number generator.
272 */
273 static SECStatus
274 getPQseed(SECItem *seed, PLArenaPool* arena)
275 {
276 SECStatus rv;
277
278 if (!seed->data) {
279 seed->data = (unsigned char*)PORT_ArenaZAlloc(arena, seed->len);
280 }
281 if (!seed->data) {
282 PORT_SetError(SEC_ERROR_NO_MEMORY);
283 return SECFailure;
284 }
285 rv = RNG_GenerateGlobalRandomBytes(seed->data, seed->len);
286 /*
287 * NIST CMVP disallows a sequence of 20 bytes with the most
288 * significant byte equal to 0. Perhaps they interpret
289 * "a sequence of at least 160 bits" as "a number >= 2^159".
290 * So we always set the most significant bit to 1. (bug 334533)
291 */
292 seed->data[0] |= 0x80;
293 return rv;
294 }
295
296 /* Generate a candidate h value. If in testing mode, use the h value
297 ** specified in FIPS 186-1 appendix 5, h = 2. Otherwise, obtain bytes
298 ** from the global random number generator.
299 */
300 static SECStatus
301 generate_h_candidate(SECItem *hit, mp_int *H)
302 {
303 SECStatus rv = SECSuccess;
304 mp_err err = MP_OKAY;
305 #ifdef FIPS_186_1_A5_TEST
306 memset(hit->data, 0, hit->len);
307 hit->data[hit->len-1] = 0x02;
308 #else
309 rv = RNG_GenerateGlobalRandomBytes(hit->data, hit->len);
310 #endif
311 if (rv)
312 return SECFailure;
313 err = mp_read_unsigned_octets(H, hit->data, hit->len);
314 if (err) {
315 MP_TO_SEC_ERROR(err);
316 return SECFailure;
317 }
318 return SECSuccess;
319 }
320
321 static SECStatus
322 addToSeed(const SECItem * seed,
323 unsigned long addend,
324 int seedlen, /* g in 186-1 */
325 SECItem * seedout)
326 {
327 mp_int s, sum, modulus, tmp;
328 mp_err err = MP_OKAY;
329 SECStatus rv = SECSuccess;
330 MP_DIGITS(&s) = 0;
331 MP_DIGITS(&sum) = 0;
332 MP_DIGITS(&modulus) = 0;
333 MP_DIGITS(&tmp) = 0;
334 CHECK_MPI_OK( mp_init(&s) );
335 CHECK_MPI_OK( mp_init(&sum) );
336 CHECK_MPI_OK( mp_init(&modulus) );
337 SECITEM_TO_MPINT(*seed, &s); /* s = seed */
338 /* seed += addend */
339 if (addend < MP_DIGIT_MAX) {
340 CHECK_MPI_OK( mp_add_d(&s, (mp_digit)addend, &s) );
341 } else {
342 CHECK_MPI_OK( mp_init(&tmp) );
343 CHECK_MPI_OK( mp_set_ulong(&tmp, addend) );
344 CHECK_MPI_OK( mp_add(&s, &tmp, &s) );
345 }
346 /*sum = s mod 2**seedlen */
347 CHECK_MPI_OK( mp_div_2d(&s, (mp_digit)seedlen, NULL, &sum) );
348 if (seedout->data != NULL) {
349 SECITEM_ZfreeItem(seedout, PR_FALSE);
350 }
351 MPINT_TO_SECITEM(&sum, seedout, NULL);
352 cleanup:
353 mp_clear(&s);
354 mp_clear(&sum);
355 mp_clear(&modulus);
356 mp_clear(&tmp);
357 if (err) {
358 MP_TO_SEC_ERROR(err);
359 return SECFailure;
360 }
361 return rv;
362 }
363
364 /* Compute Hash[(SEED + addend) mod 2**g]
365 ** Result is placed in shaOutBuf.
366 ** This computation is used in steps 2 and 7 of FIPS 186 Appendix 2.2 and
367 ** step 11.2 of FIPS 186-3 Appendix A.1.1.2 .
368 */
369 static SECStatus
370 addToSeedThenHash(HASH_HashType hashtype,
371 const SECItem * seed,
372 unsigned long addend,
373 int seedlen, /* g in 186-1 */
374 unsigned char * hashOutBuf)
375 {
376 SECItem str = { 0, 0, 0 };
377 SECStatus rv;
378 rv = addToSeed(seed, addend, seedlen, &str);
379 if (rv != SECSuccess) {
380 return rv;
381 }
382 rv = HASH_HashBuf(hashtype, hashOutBuf, str.data, str.len);/* hash result */
383 if (str.data)
384 SECITEM_ZfreeItem(&str, PR_FALSE);
385 return rv;
386 }
387
388 /*
389 ** Perform steps 2 and 3 of FIPS 186-1, appendix 2.2.
390 ** Generate Q from seed.
391 */
392 static SECStatus
393 makeQfromSeed(
394 unsigned int g, /* input. Length of seed in bits. */
395 const SECItem * seed, /* input. */
396 mp_int * Q) /* output. */
397 {
398 unsigned char sha1[SHA1_LENGTH];
399 unsigned char sha2[SHA1_LENGTH];
400 unsigned char U[SHA1_LENGTH];
401 SECStatus rv = SECSuccess;
402 mp_err err = MP_OKAY;
403 int i;
404 /* ******************************************************************
405 ** Step 2.
406 ** "Compute U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]."
407 **/
408 CHECK_SEC_OK( SHA1_HashBuf(sha1, seed->data, seed->len) );
409 CHECK_SEC_OK( addToSeedThenHash(HASH_AlgSHA1, seed, 1, g, sha2) );
410 for (i=0; i<SHA1_LENGTH; ++i)
411 U[i] = sha1[i] ^ sha2[i];
412 /* ******************************************************************
413 ** Step 3.
414 ** "Form Q from U by setting the most signficant bit (the 2**159 bit)
415 ** and the least signficant bit to 1. In terms of boolean operations,
416 ** Q = U OR 2**159 OR 1. Note that 2**159 < Q < 2**160."
417 */
418 U[0] |= 0x80; /* U is MSB first */
419 U[SHA1_LENGTH-1] |= 0x01;
420 err = mp_read_unsigned_octets(Q, U, SHA1_LENGTH);
421 cleanup:
422 memset(U, 0, SHA1_LENGTH);
423 memset(sha1, 0, SHA1_LENGTH);
424 memset(sha2, 0, SHA1_LENGTH);
425 if (err) {
426 MP_TO_SEC_ERROR(err);
427 return SECFailure;
428 }
429 return rv;
430 }
431
432 /*
433 ** Perform steps 6 and 7 of FIPS 186-3, appendix A.1.1.2.
434 ** Generate Q from seed.
435 */
436 static SECStatus
437 makeQ2fromSeed(
438 HASH_HashType hashtype, /* selected Hashing algorithm */
439 unsigned int N, /* input. Length of q in bits. */
440 const SECItem * seed, /* input. */
441 mp_int * Q) /* output. */
442 {
443 unsigned char U[HASH_LENGTH_MAX];
444 SECStatus rv = SECSuccess;
445 mp_err err = MP_OKAY;
446 int N_bytes = N/PR_BITS_PER_BYTE; /* length of N in bytes rather than bits */
447 int hashLen = HASH_ResultLen(hashtype);
448 int offset = 0;
449
450 /* ******************************************************************
451 ** Step 6.
452 ** "Compute U = hash[SEED] mod 2**N-1]."
453 **/
454 CHECK_SEC_OK( HASH_HashBuf(hashtype, U, seed->data, seed->len) );
455 /* mod 2**N . Step 7 will explicitly set the top bit to 1, so no need
456 * to handle mod 2**N-1 */
457 if (hashLen > N_bytes) {
458 offset = hashLen - N_bytes;
459 }
460 /* ******************************************************************
461 ** Step 7.
462 ** computed_q = 2**(N-1) + U + 1 - (U mod 2)
463 **
464 ** This is the same as:
465 ** computed_q = 2**(N-1) | U | 1;
466 */
467 U[offset] |= 0x80; /* U is MSB first */
468 U[hashLen-1] |= 0x01;
469 err = mp_read_unsigned_octets(Q, &U[offset], N_bytes);
470 cleanup:
471 memset(U, 0, HASH_LENGTH_MAX);
472 if (err) {
473 MP_TO_SEC_ERROR(err);
474 return SECFailure;
475 }
476 return rv;
477 }
478
479 /*
480 ** Perform steps from FIPS 186-3, Appendix A.1.2.1 and Appendix C.6
481 **
482 ** This generates a provable prime from two smaller prime. The resulting
483 ** prime p will have q0 as a multiple of p-1. q0 can be 1.
484 **
485 ** This implments steps 4 thorough 22 of FIPS 186-3 A.1.2.1 and
486 ** steps 16 through 34 of FIPS 186-2 C.6
487 */
488 #define MAX_ST_SEED_BITS (HASH_LENGTH_MAX*PR_BITS_PER_BYTE)
489 SECStatus
490 makePrimefromPrimesShaweTaylor(
491 HASH_HashType hashtype, /* selected Hashing algorithm */
492 unsigned int length, /* input. Length of prime in bits. */
493 mp_int * c0, /* seed prime */
494 mp_int * q, /* sub prime, can be 1 */
495 mp_int * prime, /* output. */
496 SECItem * prime_seed, /* input/output. */
497 int * prime_gen_counter) /* input/output. */
498 {
499 mp_int c;
500 mp_int c0_2;
501 mp_int t;
502 mp_int a;
503 mp_int z;
504 mp_int two_length_minus_1;
505 SECStatus rv = SECFailure;
506 int hashlen = HASH_ResultLen(hashtype);
507 int outlen = hashlen*PR_BITS_PER_BYTE;
508 int offset;
509 unsigned char bit, mask;
510 /* x needs to hold roundup(L/outlen)*outlen.
511 * This can be no larger than L+outlen-1, So we set it's size to
512 * our max L + max outlen and know we are safe */
513 unsigned char x[DSA_MAX_P_BITS/8+HASH_LENGTH_MAX];
514 mp_err err = MP_OKAY;
515 int i;
516 int iterations;
517 int old_counter;
518
519 MP_DIGITS(&c) = 0;
520 MP_DIGITS(&c0_2) = 0;
521 MP_DIGITS(&t) = 0;
522 MP_DIGITS(&a) = 0;
523 MP_DIGITS(&z) = 0;
524 MP_DIGITS(&two_length_minus_1) = 0;
525 CHECK_MPI_OK( mp_init(&c) );
526 CHECK_MPI_OK( mp_init(&c0_2) );
527 CHECK_MPI_OK( mp_init(&t) );
528 CHECK_MPI_OK( mp_init(&a) );
529 CHECK_MPI_OK( mp_init(&z) );
530 CHECK_MPI_OK( mp_init(&two_length_minus_1) );
531
532
533 /*
534 ** There is a slight mapping of variable names depending on which
535 ** FIPS 186 steps are being carried out. The mapping is as follows:
536 ** variable A.1.2.1 C.6
537 ** c0 p0 c0
538 ** q q 1
539 ** c p c
540 ** c0_2 2*p0*q 2*c0
541 ** length L length
542 ** prime_seed pseed prime_seed
543 ** prime_gen_counter pgen_counter prime_gen_counter
544 **
545 ** Also note: or iterations variable is actually iterations+1, since
546 ** iterations+1 works better in C.
547 */
548
549 /* Step 4/16 iterations = ceiling(length/outlen)-1 */
550 iterations = (length+outlen-1)/outlen; /* NOTE: iterations +1 */
551 /* Step 5/17 old_counter = prime_gen_counter */
552 old_counter = *prime_gen_counter;
553 /*
554 ** Comment: Generate a pseudorandom integer x in the interval
555 ** [2**(lenght-1), 2**length].
556 **
557 ** Step 6/18 x = 0
558 */
559 PORT_Memset(x, 0, sizeof(x));
560 /*
561 ** Step 7/19 for i = 0 to iterations do
562 ** x = x + (HASH(prime_seed + i) * 2^(i*outlen))
563 */
564 for (i=0; i < iterations; i++) {
565 /* is bigger than prime_seed should get to */
566 CHECK_SEC_OK( addToSeedThenHash(hashtype, prime_seed, i,
567 MAX_ST_SEED_BITS,&x[(iterations - i - 1)*hashlen]));
568 }
569 /* Step 8/20 prime_seed = prime_seed + iterations + 1 */
570 CHECK_SEC_OK(addToSeed(prime_seed, iterations, MAX_ST_SEED_BITS,
571 prime_seed));
572 /*
573 ** Step 9/21 x = 2 ** (length-1) + x mod 2 ** (length-1)
574 **
575 ** This step mathematically sets the high bit and clears out
576 ** all the other bits higher than length. 'x' is stored
577 ** in the x array, MSB first. The above formula gives us an 'x'
578 ** which is length bytes long and has the high bit set. We also know
579 ** that length <= iterations*outlen since
580 ** iterations=ceiling(length/outlen). First we find the offset in
581 ** bytes into the array where the high bit is.
582 */
583 offset = (outlen*iterations - length)/PR_BITS_PER_BYTE;
584 /* now we want to set the 'high bit', since length may not be a
585 * multiple of 8,*/
586 bit = 1 << ((length-1) & 0x7); /* select the proper bit in the byte */
587 /* we need to zero out the rest of the bits in the byte above */
588 mask = (bit-1);
589 /* now we set it */
590 x[offset] = (mask & x[offset]) | bit;
591 /*
592 ** Comment: Generate a candidate prime c in the interval
593 ** [2**(lenght-1), 2**length].
594 **
595 ** Step 10 t = ceiling(x/(2q(p0)))
596 ** Step 22 t = ceiling(x/(2(c0)))
597 */
598 CHECK_MPI_OK( mp_read_unsigned_octets(&t, &x[offset],
599 hashlen*iterations - offset ) ); /* t = x */
600 CHECK_MPI_OK( mp_mul(c0, q, &c0_2) ); /* c0_2 is now c0*q */
601 CHECK_MPI_OK( mp_add(&c0_2, &c0_2, &c0_2) ); /* c0_2 is now 2*q*c0 */
602 CHECK_MPI_OK( mp_add(&t, &c0_2, &t) ); /* t = x+2*q*c0 */
603 CHECK_MPI_OK( mp_sub_d(&t, (mp_digit) 1, &t) ); /* t = x+2*q*c0 -1 */
604 /* t = floor((x+2qc0-1)/2qc0) = ceil(x/2qc0) */
605 CHECK_MPI_OK( mp_div(&t, &c0_2, &t, NULL) );
606 /*
607 ** step 11: if (2tqp0 +1 > 2**length), then t = ceiling(2**(length-1)/2qp0)
608 ** step 12: t = 2tqp0 +1.
609 **
610 ** step 23: if (2tc0 +1 > 2**length), then t = ceiling(2**(length-1)/2c0)
611 ** step 24: t = 2tc0 +1.
612 */
613 CHECK_MPI_OK( mp_2expt(&two_length_minus_1, length-1) );
614 step_23:
615 CHECK_MPI_OK( mp_mul(&t, &c0_2, &c) ); /* c = t*2qc0 */
616 CHECK_MPI_OK( mp_add_d(&c, (mp_digit)1, &c) ); /* c= 2tqc0 + 1*/
617 if (mpl_significant_bits(&c) > length) { /* if c > 2**length */
618 CHECK_MPI_OK( mp_sub_d(&c0_2, (mp_digit) 1, &t) ); /* t = 2qc0-1 */
619 /* t = 2**(length-1) + 2qc0 -1 */
620 CHECK_MPI_OK( mp_add(&two_length_minus_1,&t, &t) );
621 /* t = floor((2**(length-1)+2qc0 -1)/2qco)
622 * = ceil(2**(lenght-2)/2qc0) */
623 CHECK_MPI_OK( mp_div(&t, &c0_2, &t, NULL) );
624 CHECK_MPI_OK( mp_mul(&t, &c0_2, &c) );
625 CHECK_MPI_OK( mp_add_d(&c, (mp_digit)1, &c) ); /* c= 2tqc0 + 1*/
626 }
627 /* Step 13/25 prime_gen_counter = prime_gen_counter + 1*/
628 (*prime_gen_counter)++;
629 /*
630 ** Comment: Test the candidate prime c for primality; first pick an
631 ** integer a between 2 and c-2.
632 **
633 ** Step 14/26 a=0
634 */
635 PORT_Memset(x, 0, sizeof(x)); /* use x for a */
636 /*
637 ** Step 15/27 for i = 0 to iterations do
638 ** a = a + (HASH(prime_seed + i) * 2^(i*outlen))
639 **
640 ** NOTE: we reuse the x array for 'a' initially.
641 */
642 for (i=0; i < iterations; i++) {
643 /* MAX_ST_SEED_BITS is bigger than prime_seed should get to */
644 CHECK_SEC_OK(addToSeedThenHash(hashtype, prime_seed, i,
645 MAX_ST_SEED_BITS,&x[(iterations - i - 1)*hashlen]));
646 }
647 /* Step 16/28 prime_seed = prime_seed + iterations + 1 */
648 CHECK_SEC_OK(addToSeed(prime_seed, iterations, MAX_ST_SEED_BITS,
649 prime_seed));
650 /* Step 17/29 a = 2 + (a mod (c-3)). */
651 CHECK_MPI_OK( mp_read_unsigned_octets(&a, x, iterations*hashlen) );
652 CHECK_MPI_OK( mp_sub_d(&c, (mp_digit) 3, &z) ); /* z = c -3 */
653 CHECK_MPI_OK( mp_mod(&a, &z, &a) ); /* a = a mod c -3 */
654 CHECK_MPI_OK( mp_add_d(&a, (mp_digit) 2, &a) ); /* a = 2 + a mod c -3 */
655 /*
656 ** Step 18 z = a**(2tq) mod p.
657 ** Step 30 z = a**(2t) mod c.
658 */
659 CHECK_MPI_OK( mp_mul(&t, q, &z) ); /* z = tq */
660 CHECK_MPI_OK( mp_add(&z, &z, &z) ); /* z = 2tq */
661 CHECK_MPI_OK( mp_exptmod(&a, &z, &c, &z) ); /* z = a**(2tq) mod c */
662 /*
663 ** Step 19 if (( 1 == GCD(z-1,p)) and ( 1 == z**p0 mod p )), then
664 ** Step 31 if (( 1 == GCD(z-1,c)) and ( 1 == z**c0 mod c )), then
665 */
666 CHECK_MPI_OK( mp_sub_d(&z, (mp_digit) 1, &a) );
667 CHECK_MPI_OK( mp_gcd(&a,&c,&a ));
668 if (mp_cmp_d(&a, (mp_digit)1) == 0) {
669 CHECK_MPI_OK( mp_exptmod(&z, c0, &c, &a) );
670 if (mp_cmp_d(&a, (mp_digit)1) == 0) {
671 /* Step 31.1 prime = c */
672 CHECK_MPI_OK( mp_copy(&c, prime) );
673 /*
674 ** Step 31.2 return Success, prime, prime_seed,
675 ** prime_gen_counter
676 */
677 rv = SECSuccess;
678 goto cleanup;
679 }
680 }
681 /*
682 ** Step 20/32 If (prime_gen_counter > 4 * length + old_counter then
683 ** return (FAILURE, 0, 0, 0).
684 ** NOTE: the test is reversed, so we fall through on failure to the
685 ** cleanup routine
686 */
687 if (*prime_gen_counter < (4*length + old_counter)) {
688 /* Step 21/33 t = t + 1 */
689 CHECK_MPI_OK( mp_add_d(&t, (mp_digit) 1, &t) );
690 /* Step 22/34 Go to step 23/11 */
691 goto step_23;
692 }
693
694 /* if (prime_gencont > (4*length + old_counter), fall through to failure */
695 rv = SECFailure; /* really is already set, but paranoia is good */
696
697 cleanup:
698 mp_clear(&c);
699 mp_clear(&c0_2);
700 mp_clear(&t);
701 mp_clear(&a);
702 mp_clear(&z);
703 mp_clear(&two_length_minus_1);
704 if (err) {
705 MP_TO_SEC_ERROR(err);
706 rv = SECFailure;
707 }
708 if (rv == SECFailure) {
709 mp_zero(prime);
710 if (prime_seed->data) {
711 SECITEM_FreeItem(prime_seed, PR_FALSE);
712 }
713 *prime_gen_counter = 0;
714 }
715 return rv;
716 }
717
718 /*
719 ** Perform steps from FIPS 186-3, Appendix C.6
720 **
721 ** This generates a provable prime from a seed
722 */
723 SECStatus
724 makePrimefromSeedShaweTaylor(
725 HASH_HashType hashtype, /* selected Hashing algorithm */
726 unsigned int length, /* input. Length of prime in bits. */
727 const SECItem * input_seed, /* input. */
728 mp_int * prime, /* output. */
729 SECItem * prime_seed, /* output. */
730 int * prime_gen_counter) /* output. */
731 {
732 mp_int c;
733 mp_int c0;
734 mp_int one;
735 SECStatus rv = SECFailure;
736 int hashlen = HASH_ResultLen(hashtype);
737 int outlen = hashlen*PR_BITS_PER_BYTE;
738 int offset;
739 unsigned char bit, mask;
740 unsigned char x[HASH_LENGTH_MAX*2];
741 mp_digit dummy;
742 mp_err err = MP_OKAY;
743 int i;
744
745 MP_DIGITS(&c) = 0;
746 MP_DIGITS(&c0) = 0;
747 MP_DIGITS(&one) = 0;
748 CHECK_MPI_OK( mp_init(&c) );
749 CHECK_MPI_OK( mp_init(&c0) );
750 CHECK_MPI_OK( mp_init(&one) );
751
752 /* Step 1. if length < 2 then return (FAILURE, 0, 0, 0) */
753 if (length < 2) {
754 rv = SECFailure;
755 goto cleanup;
756 }
757 /* Step 2. if length >= 33 then goto step 14 */
758 if (length >= 33) {
759 mp_zero(&one);
760 CHECK_MPI_OK( mp_add_d(&one, (mp_digit) 1, &one) );
761
762 /* Step 14 (status, c0, prime_seed, prime_gen_counter) =
763 ** (ST_Random_Prime((ceil(length/2)+1, input_seed)
764 */
765 rv = makePrimefromSeedShaweTaylor(hashtype, (length+1)/2+1,
766 input_seed, &c0, prime_seed, prime_gen_counter);
767 /* Step 15 if FAILURE is returned, return (FAILURE, 0, 0, 0). */
768 if (rv != SECSuccess) {
769 goto cleanup;
770 }
771 /* Steps 16-34 */
772 rv = makePrimefromPrimesShaweTaylor(hashtype,length, &c0, &one,
773 prime, prime_seed, prime_gen_counter);
774 goto cleanup; /* we're done, one way or the other */
775 }
776 /* Step 3 prime_seed = input_seed */
777 CHECK_SEC_OK(SECITEM_CopyItem(NULL, prime_seed, input_seed));
778 /* Step 4 prime_gen_count = 0 */
779 *prime_gen_counter = 0;
780
781 step_5:
782 /* Step 5 c = Hash(prime_seed) xor Hash(prime_seed+1). */
783 CHECK_SEC_OK(HASH_HashBuf(hashtype, x, prime_seed->data, prime_seed->len) );
784 CHECK_SEC_OK(addToSeedThenHash(hashtype, prime_seed, 1,
785 MAX_ST_SEED_BITS, &x[hashlen]) );
786 for (i=0; i < hashlen; i++) {
787 x[i] = x[i] ^ x[i+hashlen];
788 }
789 /* Step 6 c = 2**length-1 + c mod 2**length-1 */
790 /* This step mathematically sets the high bit and clears out
791 ** all the other bits higher than length. Right now c is stored
792 ** in the x array, MSB first. The above formula gives us a c which
793 ** is length bytes long and has the high bit set. We also know that
794 ** length < outlen since the smallest outlen is 160 bits and the largest
795 ** length at this point is 32 bits. So first we find the offset in bytes
796 ** into the array where the high bit is.
797 */
798 offset = (outlen - length)/PR_BITS_PER_BYTE;
799 /* now we want to set the 'high bit'. We have to calculate this since
800 * length may not be a multiple of 8.*/
801 bit = 1 << ((length-1) & 0x7); /* select the proper bit in the byte */
802 /* we need to zero out the rest of the bits in the byte above */
803 mask = (bit-1);
804 /* now we set it */
805 x[offset] = (mask & x[offset]) | bit;
806 /* Step 7 c = c*floor(c/2) + 1 */
807 /* set the low bit. much easier to find (the end of the array) */
808 x[hashlen-1] |= 1;
809 /* now that we've set our bits, we can create our candidate "c" */
810 CHECK_MPI_OK( mp_read_unsigned_octets(&c, &x[offset], hashlen-offset) );
811 /* Step 8 prime_gen_counter = prime_gen_counter + 1 */
812 (*prime_gen_counter)++;
813 /* Step 9 prime_seed = prime_seed + 2 */
814 CHECK_SEC_OK(addToSeed(prime_seed, 2, MAX_ST_SEED_BITS, prime_seed));
815 /* Step 10 Perform deterministic primality test on c. For example, since
816 ** c is small, it's primality can be tested by trial division, See
817 ** See Appendic C.7.
818 **
819 ** We in fact test with trial division. mpi has a built int trial divider
820 ** that divides all divisors up to 2^16.
821 */
822 if (prime_tab[prime_tab_size-1] < 0xFFF1) {
823 /* we aren't testing all the primes between 0 and 2^16, we really
824 * can't use this construction. Just fail. */
825 rv = SECFailure;
826 goto cleanup;
827 }
828 dummy = prime_tab_size;
829 err = mpp_divis_primes(&c, &dummy);
830 /* Step 11 if c is prime then */
831 if (err == MP_NO) {
832 /* Step 11.1 prime = c */
833 CHECK_MPI_OK( mp_copy(&c, prime) );
834 /* Step 11.2 return SUCCESS prime, prime_seed, prime_gen_counter */
835 err = MP_OKAY;
836 rv = SECSuccess;
837 goto cleanup;
838 } else if (err != MP_YES) {
839 goto cleanup; /* function failed, bail out */
840 } else {
841 /* reset mp_err */
842 err = MP_OKAY;
843 }
844 /*
845 ** Step 12 if (prime_gen_counter > (4*len))
846 ** then return (FAILURE, 0, 0, 0))
847 ** Step 13 goto step 5
848 */
849 if (*prime_gen_counter <= (4*length)) {
850 goto step_5;
851 }
852 /* if (prime_gencont > 4*length), fall through to failure */
853 rv = SECFailure; /* really is already set, but paranoia is good */
854
855 cleanup:
856 mp_clear(&c);
857 mp_clear(&c0);
858 mp_clear(&one);
859 if (err) {
860 MP_TO_SEC_ERROR(err);
861 rv = SECFailure;
862 }
863 if (rv == SECFailure) {
864 mp_zero(prime);
865 if (prime_seed->data) {
866 SECITEM_FreeItem(prime_seed, PR_FALSE);
867 }
868 *prime_gen_counter = 0;
869 }
870 return rv;
871 }
872
873
874 /*
875 * Find a Q and algorithm from Seed.
876 */
877 static SECStatus
878 findQfromSeed(
879 unsigned int L, /* input. Length of p in bits. */
880 unsigned int N, /* input. Length of q in bits. */
881 unsigned int g, /* input. Length of seed in bits. */
882 const SECItem * seed, /* input. */
883 mp_int * Q, /* input. */
884 mp_int * Q_, /* output. */
885 int * qseed_len, /* output */
886 HASH_HashType *hashtypePtr, /* output. Hash uses */
887 pqgGenType *typePtr) /* output. Generation Type used */
888 {
889 HASH_HashType hashtype;
890 SECItem firstseed = { 0, 0, 0 };
891 SECItem qseed = { 0, 0, 0 };
892 SECStatus rv;
893
894 *qseed_len = 0; /* only set if FIPS186_3_ST_TYPE */
895
896 /* handle legacy small DSA first can only be FIPS186_1_TYPE */
897 if (L < 1024) {
898 rv =makeQfromSeed(g,seed,Q_);
899 if ((rv == SECSuccess) && (mp_cmp(Q,Q_) == 0)) {
900 *hashtypePtr = HASH_AlgSHA1;
901 *typePtr = FIPS186_1_TYPE;
902 return SECSuccess;
903 }
904 return SECFailure;
905 }
906 /* 1024 could use FIPS186_1 or FIPS186_3 algorithms, we need to try
907 * them both */
908 if (L == 1024) {
909 rv = makeQfromSeed(g,seed,Q_);
910 if (rv == SECSuccess) {
911 if (mp_cmp(Q,Q_) == 0) {
912 *hashtypePtr = HASH_AlgSHA1;
913 *typePtr = FIPS186_1_TYPE;
914 return SECSuccess;
915 }
916 }
917 /* fall through for FIPS186_3 types */
918 }
919 /* at this point we know we aren't using FIPS186_1, start trying FIPS186_3
920 * with appropriate hash types */
921 for (hashtype = getFirstHash(L,N); hashtype != HASH_AlgTOTAL;
922 hashtype=getNextHash(hashtype)) {
923 rv = makeQ2fromSeed(hashtype, N, seed, Q_);
924 if (rv != SECSuccess) {
925 continue;
926 }
927 if (mp_cmp(Q,Q_) == 0) {
928 *hashtypePtr = hashtype;
929 *typePtr = FIPS186_3_TYPE;
930 return SECSuccess;
931 }
932 }
933 /*
934 * OK finally try FIPS186_3 Shawe-Taylor
935 */
936 firstseed = *seed;
937 firstseed.len = seed->len/3;
938 for (hashtype = getFirstHash(L,N); hashtype != HASH_AlgTOTAL;
939 hashtype=getNextHash(hashtype)) {
940 int count;
941
942 rv = makePrimefromSeedShaweTaylor(hashtype, N, &firstseed, Q_,
943 &qseed, &count);
944 if (rv != SECSuccess) {
945 continue;
946 }
947 if (mp_cmp(Q,Q_) == 0) {
948 /* check qseed as well... */
949 int offset = seed->len - qseed.len;
950 if ((offset < 0) ||
951 (PORT_Memcmp(&seed->data[offset],qseed.data,qseed.len) != 0)) {
952 /* we found q, but the seeds don't match. This isn't an
953 * accident, someone has been tweeking with the seeds, just
954 * fail a this point. */
955 SECITEM_FreeItem(&qseed,PR_FALSE);
956 return SECFailure;
957 }
958 *qseed_len = qseed.len;
959 *hashtypePtr = hashtype;
960 *typePtr = FIPS186_3_ST_TYPE;
961 SECITEM_FreeItem(&qseed, PR_FALSE);
962 return SECSuccess;
963 }
964 SECITEM_FreeItem(&qseed, PR_FALSE);
965 }
966 /* no hash algorithms found which match seed to Q, fail */
967 return SECFailure;
968 }
969
970
971
972 /*
973 ** Perform steps 7, 8 and 9 of FIPS 186, appendix 2.2.
974 ** which are the same as steps 11.1-11.5 of FIPS 186-2, App A.1.1.2
975 ** Generate P from Q, seed, L, and offset.
976 */
977 static SECStatus
978 makePfromQandSeed(
979 HASH_HashType hashtype, /* selected Hashing algorithm */
980 unsigned int L, /* Length of P in bits. Per FIPS 186. */
981 unsigned int N, /* Length of Q in bits. Per FIPS 186. */
982 unsigned int offset, /* Per FIPS 186, App 2.2. & 186-3 App A.1.1.2 */
983 unsigned int seedlen, /* input. Length of seed in bits. (g in 186-1)*/
984 const SECItem * seed, /* input. */
985 const mp_int * Q, /* input. */
986 mp_int * P) /* output. */
987 {
988 unsigned int j; /* Per FIPS 186-3 App. A.1.1.2 (k in 186-1)*/
989 unsigned int n; /* Per FIPS 186, appendix 2.2. */
990 mp_digit b; /* Per FIPS 186, appendix 2.2. */
991 unsigned int outlen; /* Per FIPS 186-3 App. A.1.1.2 */
992 unsigned int hashlen; /* outlen in bytes */
993 unsigned char V_j[HASH_LENGTH_MAX];
994 mp_int W, X, c, twoQ, V_n, tmp;
995 mp_err err = MP_OKAY;
996 SECStatus rv = SECSuccess;
997 /* Initialize bignums */
998 MP_DIGITS(&W) = 0;
999 MP_DIGITS(&X) = 0;
1000 MP_DIGITS(&c) = 0;
1001 MP_DIGITS(&twoQ) = 0;
1002 MP_DIGITS(&V_n) = 0;
1003 MP_DIGITS(&tmp) = 0;
1004 CHECK_MPI_OK( mp_init(&W) );
1005 CHECK_MPI_OK( mp_init(&X) );
1006 CHECK_MPI_OK( mp_init(&c) );
1007 CHECK_MPI_OK( mp_init(&twoQ) );
1008 CHECK_MPI_OK( mp_init(&tmp) );
1009 CHECK_MPI_OK( mp_init(&V_n) );
1010
1011 hashlen = HASH_ResultLen(hashtype);
1012 outlen = hashlen*PR_BITS_PER_BYTE;
1013
1014 /* L - 1 = n*outlen + b */
1015 n = (L - 1) / outlen;
1016 b = (L - 1) % outlen;
1017
1018 /* ******************************************************************
1019 ** Step 11.1 (Step 7 in 186-1)
1020 ** "for j = 0 ... n let
1021 ** V_j = SHA[(SEED + offset + j) mod 2**seedlen]."
1022 **
1023 ** Step 11.2 (Step 8 in 186-1)
1024 ** "W = V_0 + (V_1 * 2**outlen) + ... + (V_n-1 * 2**((n-1)*outlen))
1025 ** + ((V_n mod 2**b) * 2**(n*outlen))
1026 */
1027 for (j=0; j<n; ++j) { /* Do the first n terms of V_j */
1028 /* Do step 11.1 for iteration j.
1029 ** V_j = HASH[(seed + offset + j) mod 2**g]
1030 */
1031 CHECK_SEC_OK( addToSeedThenHash(hashtype,seed,offset+j, seedlen, V_j) );
1032 /* Do step 11.2 for iteration j.
1033 ** W += V_j * 2**(j*outlen)
1034 */
1035 OCTETS_TO_MPINT(V_j, &tmp, hashlen); /* get bignum V_j */
1036 CHECK_MPI_OK( mpl_lsh(&tmp, &tmp, j*outlen) );/* tmp=V_j << j*outlen */
1037 CHECK_MPI_OK( mp_add(&W, &tmp, &W) ); /* W += tmp */
1038 }
1039 /* Step 11.2, continued.
1040 ** [W += ((V_n mod 2**b) * 2**(n*outlen))]
1041 */
1042 CHECK_SEC_OK( addToSeedThenHash(hashtype, seed, offset + n, seedlen, V_j) );
1043 OCTETS_TO_MPINT(V_j, &V_n, hashlen); /* get bignum V_n */
1044 CHECK_MPI_OK( mp_div_2d(&V_n, b, NULL, &tmp) ); /* tmp = V_n mod 2**b */
1045 CHECK_MPI_OK( mpl_lsh(&tmp, &tmp, n*outlen) ); /* tmp = tmp << n*outlen */
1046 CHECK_MPI_OK( mp_add(&W, &tmp, &W) ); /* W += tmp */
1047 /* Step 11.3, (Step 8 in 186-1)
1048 ** "X = W + 2**(L-1).
1049 ** Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L."
1050 */
1051 CHECK_MPI_OK( mpl_set_bit(&X, (mp_size)(L-1), 1) ); /* X = 2**(L-1) */
1052 CHECK_MPI_OK( mp_add(&X, &W, &X) ); /* X += W */
1053 /*************************************************************
1054 ** Step 11.4. (Step 9 in 186-1)
1055 ** "c = X mod 2q"
1056 */
1057 CHECK_MPI_OK( mp_mul_2(Q, &twoQ) ); /* 2q */
1058 CHECK_MPI_OK( mp_mod(&X, &twoQ, &c) ); /* c = X mod 2q */
1059 /*************************************************************
1060 ** Step 11.5. (Step 9 in 186-1)
1061 ** "p = X - (c - 1).
1062 ** Note that p is congruent to 1 mod 2q."
1063 */
1064 CHECK_MPI_OK( mp_sub_d(&c, 1, &c) ); /* c -= 1 */
1065 CHECK_MPI_OK( mp_sub(&X, &c, P) ); /* P = X - c */
1066 cleanup:
1067 mp_clear(&W);
1068 mp_clear(&X);
1069 mp_clear(&c);
1070 mp_clear(&twoQ);
1071 mp_clear(&V_n);
1072 mp_clear(&tmp);
1073 if (err) {
1074 MP_TO_SEC_ERROR(err);
1075 return SECFailure;
1076 }
1077 return rv;
1078 }
1079
1080 /*
1081 ** Generate G from h, P, and Q.
1082 */
1083 static SECStatus
1084 makeGfromH(const mp_int *P, /* input. */
1085 const mp_int *Q, /* input. */
1086 mp_int *H, /* input and output. */
1087 mp_int *G, /* output. */
1088 PRBool *passed)
1089 {
1090 mp_int exp, pm1;
1091 mp_err err = MP_OKAY;
1092 SECStatus rv = SECSuccess;
1093 *passed = PR_FALSE;
1094 MP_DIGITS(&exp) = 0;
1095 MP_DIGITS(&pm1) = 0;
1096 CHECK_MPI_OK( mp_init(&exp) );
1097 CHECK_MPI_OK( mp_init(&pm1) );
1098 CHECK_MPI_OK( mp_sub_d(P, 1, &pm1) ); /* P - 1 */
1099 if ( mp_cmp(H, &pm1) >= 0) /* H >= P-1 */
1100 CHECK_MPI_OK( mp_sub(H, &pm1, H) ); /* H = H mod (P-1) */
1101 /* Let b = 2**n (smallest power of 2 greater than P).
1102 ** Since P-1 >= b/2, and H < b, quotient(H/(P-1)) = 0 or 1
1103 ** so the above operation safely computes H mod (P-1)
1104 */
1105 /* Check for H = to 0 or 1. Regen H if so. (Regen means return error). */
1106 if (mp_cmp_d(H, 1) <= 0) {
1107 rv = SECFailure;
1108 goto cleanup;
1109 }
1110 /* Compute G, according to the equation G = (H ** ((P-1)/Q)) mod P */
1111 CHECK_MPI_OK( mp_div(&pm1, Q, &exp, NULL) ); /* exp = (P-1)/Q */
1112 CHECK_MPI_OK( mp_exptmod(H, &exp, P, G) ); /* G = H ** exp mod P */
1113 /* Check for G == 0 or G == 1, return error if so. */
1114 if (mp_cmp_d(G, 1) <= 0) {
1115 rv = SECFailure;
1116 goto cleanup;
1117 }
1118 *passed = PR_TRUE;
1119 cleanup:
1120 mp_clear(&exp);
1121 mp_clear(&pm1);
1122 if (err) {
1123 MP_TO_SEC_ERROR(err);
1124 rv = SECFailure;
1125 }
1126 return rv;
1127 }
1128
1129 /*
1130 ** Generate G from seed, index, P, and Q.
1131 */
1132 static SECStatus
1133 makeGfromIndex(HASH_HashType hashtype,
1134 const mp_int *P, /* input. */
1135 const mp_int *Q, /* input. */
1136 const SECItem *seed, /* input. */
1137 unsigned char index, /* input. */
1138 mp_int *G) /* input/output */
1139 {
1140 mp_int e, pm1, W;
1141 unsigned int count;
1142 unsigned char data[HASH_LENGTH_MAX];
1143 unsigned int len;
1144 mp_err err = MP_OKAY;
1145 SECStatus rv = SECSuccess;
1146 const SECHashObject *hashobj;
1147 void *hashcx = NULL;
1148
1149 MP_DIGITS(&e) = 0;
1150 MP_DIGITS(&pm1) = 0;
1151 MP_DIGITS(&W) = 0;
1152 CHECK_MPI_OK( mp_init(&e) );
1153 CHECK_MPI_OK( mp_init(&pm1) );
1154 CHECK_MPI_OK( mp_init(&W) );
1155
1156 /* initialize our hash stuff */
1157 hashobj = HASH_GetRawHashObject(hashtype);
1158 if (hashobj == NULL) {
1159 /* shouldn't happen */
1160 PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
1161 rv = SECFailure;
1162 goto cleanup;
1163 }
1164 hashcx = hashobj->create();
1165 if (hashcx == NULL) {
1166 rv = SECFailure;
1167 goto cleanup;
1168 }
1169
1170 CHECK_MPI_OK( mp_sub_d(P, 1, &pm1) ); /* P - 1 */
1171 /* Step 3 e = (p-1)/q */
1172 CHECK_MPI_OK( mp_div(&pm1, Q, &e, NULL) ); /* e = (P-1)/Q */
1173 /* Steps 4, 5, and 6 */
1174 /* count is a 16 bit value in the spec. We actually represent count
1175 * as more than 16 bits so we can easily detect the 16 bit overflow */
1176 #define MAX_COUNT 0x10000
1177 for (count = 1; count < MAX_COUNT; count++) {
1178 /* step 7
1179 * U = domain_param_seed || "ggen" || index || count
1180 * step 8
1181 * W = HASH(U)
1182 */
1183 hashobj->begin(hashcx);
1184 hashobj->update(hashcx,seed->data,seed->len);
1185 hashobj->update(hashcx, (unsigned char *)"ggen", 4);
1186 hashobj->update(hashcx,&index, 1);
1187 data[0] = (count >> 8) & 0xff;
1188 data[1] = count & 0xff;
1189 hashobj->update(hashcx, data, 2);
1190 hashobj->end(hashcx, data, &len, sizeof(data));
1191 OCTETS_TO_MPINT(data, &W, len);
1192 /* step 9. g = W**e mod p */
1193 CHECK_MPI_OK( mp_exptmod(&W, &e, P, G) );
1194 /* step 10. if (g < 2) then goto step 5 */
1195 /* NOTE: this weird construct is to keep the flow according to the spec.
1196 * the continue puts us back to step 5 of the for loop */
1197 if (mp_cmp_d(G, 2) < 0) {
1198 continue;
1199 }
1200 break; /* step 11 follows step 10 if the test condition is false */
1201 }
1202 if (count >= MAX_COUNT) {
1203 rv = SECFailure; /* last part of step 6 */
1204 }
1205 /* step 11.
1206 * return valid G */
1207 cleanup:
1208 PORT_Memset(data, 0, sizeof(data));
1209 if (hashcx) {
1210 hashobj->destroy(hashcx, PR_TRUE);
1211 }
1212 mp_clear(&e);
1213 mp_clear(&pm1);
1214 mp_clear(&W);
1215 if (err) {
1216 MP_TO_SEC_ERROR(err);
1217 rv = SECFailure;
1218 }
1219 return rv;
1220 }
1221
1222 /* This code uses labels and gotos, so that it can follow the numbered
1223 ** steps in the algorithms from FIPS 186-3 appendix A.1.1.2 very closely,
1224 ** and so that the correctness of this code can be easily verified.
1225 ** So, please forgive the ugly c code.
1226 **/
1227 static SECStatus
1228 pqg_ParamGen(unsigned int L, unsigned int N, pqgGenType type,
1229 unsigned int seedBytes, PQGParams **pParams, PQGVerify **pVfy)
1230 {
1231 unsigned int n; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */
1232 unsigned int b; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */
1233 unsigned int seedlen; /* Per FIPS 186-3 app A.1.1.2 (was 'g' 186-1)*/
1234 unsigned int counter; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */
1235 unsigned int offset; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */
1236 unsigned int outlen; /* Per FIPS 186-3, appendix A.1.1.2. */
1237 unsigned int maxCount;
1238 HASH_HashType hashtype;
1239 SECItem *seed; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */
1240 PLArenaPool *arena = NULL;
1241 PQGParams *params = NULL;
1242 PQGVerify *verify = NULL;
1243 PRBool passed;
1244 SECItem hit = { 0, 0, 0 };
1245 SECItem firstseed = { 0, 0, 0 };
1246 SECItem qseed = { 0, 0, 0 };
1247 SECItem pseed = { 0, 0, 0 };
1248 mp_int P, Q, G, H, l, p0;
1249 mp_err err = MP_OKAY;
1250 SECStatus rv = SECFailure;
1251 int iterations = 0;
1252
1253
1254 /* Step 1. L and N already checked by caller*/
1255 /* Step 2. if (seedlen < N) return INVALID; */
1256 if (seedBytes < N/PR_BITS_PER_BYTE || !pParams || !pVfy) {
1257 PORT_SetError(SEC_ERROR_INVALID_ARGS);
1258 return SECFailure;
1259 }
1260 /* Initialize an arena for the params. */
1261 arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
1262 if (!arena) {
1263 PORT_SetError(SEC_ERROR_NO_MEMORY);
1264 return SECFailure;
1265 }
1266 params = (PQGParams *)PORT_ArenaZAlloc(arena, sizeof(PQGParams));
1267 if (!params) {
1268 PORT_SetError(SEC_ERROR_NO_MEMORY);
1269 PORT_FreeArena(arena, PR_TRUE);
1270 return SECFailure;
1271 }
1272 params->arena = arena;
1273 /* Initialize an arena for the verify. */
1274 arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
1275 if (!arena) {
1276 PORT_SetError(SEC_ERROR_NO_MEMORY);
1277 PORT_FreeArena(params->arena, PR_TRUE);
1278 return SECFailure;
1279 }
1280 verify = (PQGVerify *)PORT_ArenaZAlloc(arena, sizeof(PQGVerify));
1281 if (!verify) {
1282 PORT_SetError(SEC_ERROR_NO_MEMORY);
1283 PORT_FreeArena(arena, PR_TRUE);
1284 PORT_FreeArena(params->arena, PR_TRUE);
1285 return SECFailure;
1286 }
1287 verify->arena = arena;
1288 seed = &verify->seed;
1289 arena = NULL;
1290 /* Initialize bignums */
1291 MP_DIGITS(&P) = 0;
1292 MP_DIGITS(&Q) = 0;
1293 MP_DIGITS(&G) = 0;
1294 MP_DIGITS(&H) = 0;
1295 MP_DIGITS(&l) = 0;
1296 MP_DIGITS(&p0) = 0;
1297 CHECK_MPI_OK( mp_init(&P) );
1298 CHECK_MPI_OK( mp_init(&Q) );
1299 CHECK_MPI_OK( mp_init(&G) );
1300 CHECK_MPI_OK( mp_init(&H) );
1301 CHECK_MPI_OK( mp_init(&l) );
1302 CHECK_MPI_OK( mp_init(&p0) );
1303
1304 /* Select Hash and Compute lengths. */
1305 /* getFirstHash gives us the smallest acceptable hash for this key
1306 * strength */
1307 hashtype = getFirstHash(L,N);
1308 outlen = HASH_ResultLen(hashtype)*PR_BITS_PER_BYTE;
1309
1310 /* Step 3: n = Ceil(L/outlen)-1; (same as n = Floor((L-1)/outlen)) */
1311 n = (L - 1) / outlen;
1312 /* Step 4: b = L -1 - (n*outlen); (same as n = (L-1) mod outlen) */
1313 b = (L - 1) % outlen;
1314 seedlen = seedBytes * PR_BITS_PER_BYTE; /* bits in seed */
1315 step_5:
1316 /* ******************************************************************
1317 ** Step 5. (Step 1 in 186-1)
1318 ** "Choose an abitrary sequence of at least N bits and call it SEED.
1319 ** Let g be the length of SEED in bits."
1320 */
1321 if (++iterations > MAX_ITERATIONS) { /* give up after a while */
1322 PORT_SetError(SEC_ERROR_NEED_RANDOM);
1323 goto cleanup;
1324 }
1325 seed->len = seedBytes;
1326 CHECK_SEC_OK( getPQseed(seed, verify->arena) );
1327 /* ******************************************************************
1328 ** Step 6. (Step 2 in 186-1)
1329 **
1330 ** "Compute U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]. (186-1)"
1331 ** "Compute U = HASH[SEED] 2**(N-1). (186-3)"
1332 **
1333 ** Step 7. (Step 3 in 186-1)
1334 ** "Form Q from U by setting the most signficant bit (the 2**159 bit)
1335 ** and the least signficant bit to 1. In terms of boolean operations,
1336 ** Q = U OR 2**159 OR 1. Note that 2**159 < Q < 2**160. (186-1)"
1337 **
1338 ** "q = 2**(N-1) + U + 1 - (U mod 2) (186-3)
1339 **
1340 ** Note: Both formulations are the same for U < 2**(N-1) and N=160
1341 **
1342 ** If using Shawe-Taylor, We do the entire A.1.2.1.2 setps in the block
1343 ** FIPS186_3_ST_TYPE.
1344 */
1345 if (type == FIPS186_1_TYPE) {
1346 CHECK_SEC_OK( makeQfromSeed(seedlen, seed, &Q) );
1347 } else if (type == FIPS186_3_TYPE) {
1348 CHECK_SEC_OK( makeQ2fromSeed(hashtype, N, seed, &Q) );
1349 } else {
1350 /* FIPS186_3_ST_TYPE */
1351 int qgen_counter, pgen_counter;
1352
1353 /* Step 1 (L,N) already checked for acceptability */
1354
1355 firstseed = *seed;
1356 qgen_counter = 0;
1357 /* Step 2. Use N and firstseed to generate random prime q
1358 * using Apendix C.6 */
1359 CHECK_SEC_OK( makePrimefromSeedShaweTaylor(hashtype, N, &firstseed, &Q,
1360 &qseed, &qgen_counter) );
1361 /* Step 3. Use floor(L/2+1) and qseed to generate random prime p0
1362 * using Appendix C.6 */
1363 pgen_counter = 0;
1364 CHECK_SEC_OK( makePrimefromSeedShaweTaylor(hashtype, (L+1)/2+1,
1365 &qseed, &p0, &pseed, &pgen_counter) );
1366 /* Steps 4-22 FIPS 186-3 appendix A.1.2.1.2 */
1367 CHECK_SEC_OK( makePrimefromPrimesShaweTaylor(hashtype, L,
1368 &p0, &Q, &P, &pseed, &pgen_counter) );
1369
1370 /* combine all the seeds */
1371 seed->len = firstseed.len +qseed.len + pseed.len;
1372 seed->data = PORT_ArenaZAlloc(verify->arena, seed->len);
1373 if (seed->data == NULL) {
1374 goto cleanup;
1375 }
1376 PORT_Memcpy(seed->data, firstseed.data, firstseed.len);
1377 PORT_Memcpy(seed->data+firstseed.len, pseed.data, pseed.len);
1378 PORT_Memcpy(seed->data+firstseed.len+pseed.len, qseed.data, qseed.len);
1379 counter = 0 ; /* (qgen_counter << 16) | pgen_counter; */
1380
1381 /* we've generated both P and Q now, skip to generating G */
1382 goto generate_G;
1383 }
1384 /* ******************************************************************
1385 ** Step 8. (Step 4 in 186-1)
1386 ** "Use a robust primality testing algorithm to test whether q is prime."
1387 **
1388 ** Appendix 2.1 states that a Rabin test with at least 50 iterations
1389 ** "will give an acceptable probability of error."
1390 */
1391 /*CHECK_SEC_OK( prm_RabinTest(&Q, &passed) );*/
1392 err = mpp_pprime(&Q, prime_testcount_q(L,N));
1393 passed = (err == MP_YES) ? SECSuccess : SECFailure;
1394 /* ******************************************************************
1395 ** Step 9. (Step 5 in 186-1) "If q is not prime, goto step 5 (1 in 186-1)."
1396 */
1397 if (passed != SECSuccess)
1398 goto step_5;
1399 /* ******************************************************************
1400 ** Step 10.
1401 ** offset = 1;
1402 **( Step 6b 186-1)"Let counter = 0 and offset = 2."
1403 */
1404 offset = (type == FIPS186_1_TYPE) ? 2 : 1;
1405 /*
1406 ** Step 11. (Step 6a,13a,14 in 186-1)
1407 ** For counter - 0 to (4L-1) do
1408 **
1409 */
1410 maxCount = L >= 1024 ? (4*L - 1) : 4095;
1411 for (counter = 0; counter <= maxCount; counter++) {
1412 /* ******************************************************************
1413 ** Step 11.1 (Step 7 in 186-1)
1414 ** "for j = 0 ... n let
1415 ** V_j = HASH[(SEED + offset + j) mod 2**seedlen]."
1416 **
1417 ** Step 11.2 (Step 8 in 186-1)
1418 ** "W = V_0 + V_1*2**outlen+...+ V_n-1 * 2**((n-1)*outlen) +
1419 ** ((Vn* mod 2**b)*2**(n*outlen))"
1420 ** Step 11.3 (Step 8 in 186-1)
1421 ** "X = W + 2**(L-1)
1422 ** Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L."
1423 **
1424 ** Step 11.4 (Step 9 in 186-1).
1425 ** "c = X mod 2q"
1426 **
1427 ** Step 11.5 (Step 9 in 186-1).
1428 ** " p = X - (c - 1).
1429 ** Note that p is congruent to 1 mod 2q."
1430 */
1431 CHECK_SEC_OK( makePfromQandSeed(hashtype, L, N, offset, seedlen,
1432 seed, &Q, &P) );
1433 /*************************************************************
1434 ** Step 11.6. (Step 10 in 186-1)
1435 ** "if p < 2**(L-1), then goto step 11.9. (step 13 in 186-1)"
1436 */
1437 CHECK_MPI_OK( mpl_set_bit(&l, (mp_size)(L-1), 1) ); /* l = 2**(L-1) */
1438 if (mp_cmp(&P, &l) < 0)
1439 goto step_11_9;
1440 /************************************************************
1441 ** Step 11.7 (step 11 in 186-1)
1442 ** "Perform a robust primality test on p."
1443 */
1444 /*CHECK_SEC_OK( prm_RabinTest(&P, &passed) );*/
1445 err = mpp_pprime(&P, prime_testcount_p(L, N));
1446 passed = (err == MP_YES) ? SECSuccess : SECFailure;
1447 /* ******************************************************************
1448 ** Step 11.8. "If p is determined to be primed return VALID
1449 ** values of p, q, seed and counter."
1450 */
1451 if (passed == SECSuccess)
1452 break;
1453 step_11_9:
1454 /* ******************************************************************
1455 ** Step 11.9. "offset = offset + n + 1."
1456 */
1457 offset += n + 1;
1458 }
1459 /* ******************************************************************
1460 ** Step 12. "goto step 5."
1461 **
1462 ** NOTE: if counter <= maxCount, then we exited the loop at Step 11.8
1463 ** and now need to return p,q, seed, and counter.
1464 */
1465 if (counter > maxCount)
1466 goto step_5;
1467
1468 generate_G:
1469 /* ******************************************************************
1470 ** returning p, q, seed and counter
1471 */
1472 if (type == FIPS186_1_TYPE) {
1473 /* Generate g, This is called the "Unverifiable Generation of g
1474 * in FIPA186-3 Appedix A.2.1. For compatibility we maintain
1475 * this version of the code */
1476 SECITEM_AllocItem(NULL, &hit, L/8); /* h is no longer than p */
1477 if (!hit.data) goto cleanup;
1478 do {
1479 /* loop generate h until 1<h<p-1 and (h**[(p-1)/q])mod p > 1 */
1480 CHECK_SEC_OK( generate_h_candidate(&hit, &H) );
1481 CHECK_SEC_OK( makeGfromH(&P, &Q, &H, &G, &passed) );
1482 } while (passed != PR_TRUE);
1483 MPINT_TO_SECITEM(&H, &verify->h, verify->arena);
1484 } else {
1485 unsigned char index = 1; /* default to 1 */
1486 verify->h.data = (unsigned char *)PORT_ArenaZAlloc(verify->arena, 1);
1487 if (verify->h.data == NULL) { goto cleanup; }
1488 verify->h.len = 1;
1489 verify->h.data[0] = index;
1490 /* Generate g, using the FIPS 186-3 Appendix A.23 */
1491 CHECK_SEC_OK(makeGfromIndex(hashtype, &P, &Q, seed, index, &G) );
1492 }
1493 /* All generation is done. Now, save the PQG params. */
1494 MPINT_TO_SECITEM(&P, &params->prime, params->arena);
1495 MPINT_TO_SECITEM(&Q, &params->subPrime, params->arena);
1496 MPINT_TO_SECITEM(&G, &params->base, params->arena);
1497 verify->counter = counter;
1498 *pParams = params;
1499 *pVfy = verify;
1500 cleanup:
1501 if (pseed.data) {
1502 PORT_Free(pseed.data);
1503 }
1504 if (qseed.data) {
1505 PORT_Free(qseed.data);
1506 }
1507 mp_clear(&P);
1508 mp_clear(&Q);
1509 mp_clear(&G);
1510 mp_clear(&H);
1511 mp_clear(&l);
1512 mp_clear(&p0);
1513 if (err) {
1514 MP_TO_SEC_ERROR(err);
1515 rv = SECFailure;
1516 }
1517 if (rv) {
1518 PORT_FreeArena(params->arena, PR_TRUE);
1519 PORT_FreeArena(verify->arena, PR_TRUE);
1520 }
1521 if (hit.data) {
1522 SECITEM_FreeItem(&hit, PR_FALSE);
1523 }
1524 return rv;
1525 }
1526
1527 SECStatus
1528 PQG_ParamGen(unsigned int j, PQGParams **pParams, PQGVerify **pVfy)
1529 {
1530 unsigned int L; /* Length of P in bits. Per FIPS 186. */
1531 unsigned int seedBytes;
1532
1533 if (j > 8 || !pParams || !pVfy) {
1534 PORT_SetError(SEC_ERROR_INVALID_ARGS);
1535 return SECFailure;
1536 }
1537 L = 512 + (j * 64); /* bits in P */
1538 seedBytes = L/8;
1539 return pqg_ParamGen(L, DSA1_Q_BITS, FIPS186_1_TYPE, seedBytes,
1540 pParams, pVfy);
1541 }
1542
1543 SECStatus
1544 PQG_ParamGenSeedLen(unsigned int j, unsigned int seedBytes,
1545 PQGParams **pParams, PQGVerify **pVfy)
1546 {
1547 unsigned int L; /* Length of P in bits. Per FIPS 186. */
1548
1549 if (j > 8 || !pParams || !pVfy) {
1550 PORT_SetError(SEC_ERROR_INVALID_ARGS);
1551 return SECFailure;
1552 }
1553 L = 512 + (j * 64); /* bits in P */
1554 return pqg_ParamGen(L, DSA1_Q_BITS, FIPS186_1_TYPE, seedBytes,
1555 pParams, pVfy);
1556 }
1557
1558 SECStatus
1559 PQG_ParamGenV2(unsigned int L, unsigned int N, unsigned int seedBytes,
1560 PQGParams **pParams, PQGVerify **pVfy)
1561 {
1562 if (N == 0) {
1563 N = pqg_get_default_N(L);
1564 }
1565 if (seedBytes == 0) {
1566 /* seedBytes == L/8 for probable primes, N/8 for Shawe-Taylor Primes */
1567 seedBytes = N/8;
1568 }
1569 if (pqg_validate_dsa2(L,N) != SECSuccess) {
1570 /* error code already set */
1571 return SECFailure;
1572 }
1573 return pqg_ParamGen(L, N, FIPS186_3_ST_TYPE, seedBytes, pParams, pVfy);
1574 }
1575
1576
1577 /*
1578 * verify can use vfy structures returned from either FIPS186-1 or
1579 * FIPS186-2, and can handle differences in selected Hash functions to
1580 * generate the parameters.
1581 */
1582 SECStatus
1583 PQG_VerifyParams(const PQGParams *params,
1584 const PQGVerify *vfy, SECStatus *result)
1585 {
1586 SECStatus rv = SECSuccess;
1587 unsigned int g, n, L, N, offset, outlen;
1588 mp_int p0, P, Q, G, P_, Q_, G_, r, h;
1589 mp_err err = MP_OKAY;
1590 int j;
1591 unsigned int counter_max = 0; /* handle legacy L < 1024 */
1592 int qseed_len;
1593 SECItem pseed_ = {0, 0, 0};
1594 HASH_HashType hashtype;
1595 pqgGenType type;
1596
1597 #define CHECKPARAM(cond) \
1598 if (!(cond)) { \
1599 *result = SECFailure; \
1600 goto cleanup; \
1601 }
1602 if (!params || !vfy || !result) {
1603 PORT_SetError(SEC_ERROR_INVALID_ARGS);
1604 return SECFailure;
1605 }
1606 /* always need at least p, q, and seed for any meaningful check */
1607 if ((params->prime.len == 0) || (params->subPrime.len == 0) ||
1608 (vfy->seed.len == 0)) {
1609 PORT_SetError(SEC_ERROR_INVALID_ARGS);
1610 return SECFailure;
1611 }
1612 /* we want to either check PQ or G or both. If we don't have G, make
1613 * sure we have count so we can check P. */
1614 if ((params->base.len == 0) && (vfy->counter == -1)) {
1615 PORT_SetError(SEC_ERROR_INVALID_ARGS);
1616 return SECFailure;
1617 }
1618
1619 MP_DIGITS(&p0) = 0;
1620 MP_DIGITS(&P) = 0;
1621 MP_DIGITS(&Q) = 0;
1622 MP_DIGITS(&G) = 0;
1623 MP_DIGITS(&P_) = 0;
1624 MP_DIGITS(&Q_) = 0;
1625 MP_DIGITS(&G_) = 0;
1626 MP_DIGITS(&r) = 0;
1627 MP_DIGITS(&h) = 0;
1628 CHECK_MPI_OK( mp_init(&p0) );
1629 CHECK_MPI_OK( mp_init(&P) );
1630 CHECK_MPI_OK( mp_init(&Q) );
1631 CHECK_MPI_OK( mp_init(&G) );
1632 CHECK_MPI_OK( mp_init(&P_) );
1633 CHECK_MPI_OK( mp_init(&Q_) );
1634 CHECK_MPI_OK( mp_init(&G_) );
1635 CHECK_MPI_OK( mp_init(&r) );
1636 CHECK_MPI_OK( mp_init(&h) );
1637 *result = SECSuccess;
1638 SECITEM_TO_MPINT(params->prime, &P);
1639 SECITEM_TO_MPINT(params->subPrime, &Q);
1640 /* if G isn't specified, just check P and Q */
1641 if (params->base.len != 0) {
1642 SECITEM_TO_MPINT(params->base, &G);
1643 }
1644 /* 1. Check (L,N) pair */
1645 N = mpl_significant_bits(&Q);
1646 L = mpl_significant_bits(&P);
1647 if (L < 1024) {
1648 /* handle DSA1 pqg parameters with less thatn 1024 bits*/
1649 CHECKPARAM( N == DSA1_Q_BITS );
1650 j = PQG_PBITS_TO_INDEX(L);
1651 CHECKPARAM( j >= 0 && j <= 8 );
1652 counter_max = 4096;
1653 } else {
1654 /* handle DSA2 parameters (includes DSA1, 1024 bits) */
1655 CHECKPARAM(pqg_validate_dsa2(L, N) == SECSuccess);
1656 counter_max = 4*L;
1657 }
1658 /* 3. G < P */
1659 if (params->base.len != 0) {
1660 CHECKPARAM( mp_cmp(&G, &P) < 0 );
1661 }
1662 /* 4. P % Q == 1 */
1663 CHECK_MPI_OK( mp_mod(&P, &Q, &r) );
1664 CHECKPARAM( mp_cmp_d(&r, 1) == 0 );
1665 /* 5. Q is prime */
1666 CHECKPARAM( mpp_pprime(&Q, prime_testcount_q(L,N)) == MP_YES );
1667 /* 6. P is prime */
1668 CHECKPARAM( mpp_pprime(&P, prime_testcount_p(L,N)) == MP_YES );
1669 /* Steps 7-12 are done only if the optional PQGVerify is supplied. */
1670 /* continue processing P */
1671 /* 7. counter < 4*L */
1672 CHECKPARAM( (vfy->counter == -1) || (vfy->counter < counter_max) );
1673 /* 8. g >= N and g < 2*L (g is length of seed in bits) */
1674 g = vfy->seed.len * 8;
1675 CHECKPARAM( g >= N && g < counter_max/2 );
1676 /* 9. Q generated from SEED matches Q in PQGParams. */
1677 /* This function checks all possible hash and generation types to
1678 * find a Q_ which matches Q. */
1679 CHECKPARAM( findQfromSeed(L, N, g, &vfy->seed, &Q, &Q_, &qseed_len,
1680 &hashtype, &type) == SECSuccess );
1681 CHECKPARAM( mp_cmp(&Q, &Q_) == 0 );
1682 if (type == FIPS186_3_ST_TYPE) {
1683 SECItem qseed = { 0, 0, 0 };
1684 SECItem pseed = { 0, 0, 0 };
1685 int first_seed_len;
1686 int pgen_counter = 0;
1687
1688 /* extract pseed and qseed from domain_parameter_seed, which is
1689 * first_seed || pseed || qseed. qseed is first_seed + small_integer
1690 * pseed is qseed + small_integer. This means most of the time
1691 * first_seed.len == qseed.len == pseed.len. Rarely qseed.len and/or
1692 * pseed.len will be one greater than first_seed.len, so we can
1693 * depend on the fact that
1694 * first_seed.len = floor(domain_parameter_seed.len/3).
1695 * findQfromSeed returned qseed.len, so we can calculate pseed.len as
1696 * pseed.len = domain_parameter_seed.len - first_seed.len - qseed.len
1697 * this is probably over kill, since 99.999% of the time they will all
1698 * be equal.
1699 *
1700 * With the lengths, we can now find the offsets;
1701 * first_seed.data = domain_parameter_seed.data + 0
1702 * pseed.data = domain_parameter_seed.data + first_seed.len
1703 * qseed.data = domain_parameter_seed.data
1704 * + domain_paramter_seed.len - qseed.len
1705 *
1706 */
1707 first_seed_len = vfy->seed.len/3;
1708 CHECKPARAM(qseed_len < vfy->seed.len);
1709 CHECKPARAM(first_seed_len*8 > N-1);
1710 CHECKPARAM(first_seed_len+qseed_len < vfy->seed.len);
1711 qseed.len = qseed_len;
1712 qseed.data = vfy->seed.data + vfy->seed.len - qseed.len;
1713 pseed.len = vfy->seed.len - (first_seed_len+qseed_len);
1714 pseed.data = vfy->seed.data + first_seed_len;
1715
1716 /*
1717 * now complete FIPS 186-3 A.1.2.1.2. Step 1 was completed
1718 * above in our initial checks, Step 2 was completed by
1719 * findQfromSeed */
1720
1721 /* Step 3 (status, c0, prime_seed, prime_gen_counter) =
1722 ** (ST_Random_Prime((ceil(length/2)+1, input_seed)
1723 */
1724 CHECK_SEC_OK( makePrimefromSeedShaweTaylor(hashtype, (L+1)/2+1,
1725 &qseed, &p0, &pseed_, &pgen_counter) );
1726 /* Steps 4-22 FIPS 186-3 appendix A.1.2.1.2 */
1727 CHECK_SEC_OK( makePrimefromPrimesShaweTaylor(hashtype, L,
1728 &p0, &Q_, &P_, &pseed_, &pgen_counter) );
1729 CHECKPARAM( mp_cmp(&P, &P_) == 0 );
1730 /* make sure pseed wasn't tampered with (since it is part of
1731 * calculating G) */
1732 CHECKPARAM( SECITEM_CompareItem(&pseed, &pseed_) == SECEqual );
1733 } else if (vfy->counter == -1) {
1734 /* If counter is set to -1, we are really only verifying G, skip
1735 * the remainder of the checks for P */
1736 CHECKPARAM(type != FIPS186_1_TYPE); /* we only do this for DSA2 */
1737 } else {
1738 /* 10. P generated from (L, counter, g, SEED, Q) matches P
1739 * in PQGParams. */
1740 outlen = HASH_ResultLen(hashtype)*PR_BITS_PER_BYTE;
1741 n = (L - 1) / outlen;
1742 offset = vfy->counter * (n + 1) + ((type == FIPS186_1_TYPE) ? 2 : 1);
1743 CHECK_SEC_OK( makePfromQandSeed(hashtype, L, N, offset, g, &vfy->seed,
1744 &Q, &P_) );
1745 CHECKPARAM( mp_cmp(&P, &P_) == 0 );
1746 }
1747
1748 /* now check G, skip if don't have a g */
1749 if (params->base.len == 0) goto cleanup;
1750
1751 /* first Always check that G is OK FIPS186-3 A.2.2 & A.2.4*/
1752 /* 1. 2 < G < P-1 */
1753 /* P is prime, p-1 == zero 1st bit */
1754 CHECK_MPI_OK( mpl_set_bit(&P, 0, 0) );
1755 CHECKPARAM( mp_cmp_d(&G, 2) > 0 && mp_cmp(&G, &P) < 0 );
1756 CHECK_MPI_OK( mpl_set_bit(&P, 0, 1) ); /* set it back */
1757 /* 2. verify g**q mod p == 1 */
1758 CHECK_MPI_OK( mp_exptmod(&G, &Q, &P, &h) ); /* h = G ** Q mod P */
1759 CHECKPARAM(mp_cmp_d(&h, 1) == 0);
1760
1761 /* no h, the above is the best we can do */
1762 if (vfy->h.len == 0) {
1763 if (type != FIPS186_1_TYPE) {
1764 *result = SECWouldBlock;
1765 }
1766 goto cleanup;
1767 }
1768
1769 /*
1770 * If h is one byte and FIPS186-3 was used to generate Q (we've verified
1771 * Q was generated from seed already, then we assume that FIPS 186-3
1772 * appendix A.2.3 was used to generate G. Otherwise we assume A.2.1 was
1773 * used to generate G.
1774 */
1775 if ((vfy->h.len == 1) && (type != FIPS186_1_TYPE)) {
1776 /* A.2.3 */
1777 CHECK_SEC_OK(makeGfromIndex(hashtype, &P, &Q, &vfy->seed,
1778 vfy->h.data[0], &G_) );
1779 CHECKPARAM( mp_cmp(&G, &G_) == 0 );
1780 } else {
1781 int passed;
1782 /* A.2.1 */
1783 SECITEM_TO_MPINT(vfy->h, &h);
1784 /* 11. 1 < h < P-1 */
1785 /* P is prime, p-1 == zero 1st bit */
1786 CHECK_MPI_OK( mpl_set_bit(&P, 0, 0) );
1787 CHECKPARAM( mp_cmp_d(&G, 2) > 0 && mp_cmp(&G, &P) );
1788 CHECK_MPI_OK( mpl_set_bit(&P, 0, 1) ); /* set it back */
1789 /* 12. G generated from h matches G in PQGParams. */
1790 CHECK_SEC_OK( makeGfromH(&P, &Q, &h, &G_, &passed) );
1791 CHECKPARAM( passed && mp_cmp(&G, &G_) == 0 );
1792 }
1793 cleanup:
1794 mp_clear(&p0);
1795 mp_clear(&P);
1796 mp_clear(&Q);
1797 mp_clear(&G);
1798 mp_clear(&P_);
1799 mp_clear(&Q_);
1800 mp_clear(&G_);
1801 mp_clear(&r);
1802 mp_clear(&h);
1803 if (pseed_.data) {
1804 SECITEM_FreeItem(&pseed_,PR_FALSE);
1805 }
1806 if (err) {
1807 MP_TO_SEC_ERROR(err);
1808 rv = SECFailure;
1809 }
1810 return rv;
1811 }
1812
1813 /**************************************************************************
1814 * Free the PQGParams struct and the things it points to. *
1815 **************************************************************************/
1816 void
1817 PQG_DestroyParams(PQGParams *params)
1818 {
1819 if (params == NULL)
1820 return;
1821 if (params->arena != NULL) {
1822 PORT_FreeArena(params->arena, PR_FALSE); /* don't zero it */
1823 } else {
1824 SECITEM_FreeItem(&params->prime, PR_FALSE); /* don't free prime */
1825 SECITEM_FreeItem(&params->subPrime, PR_FALSE); /* don't free subPrime */
1826 SECITEM_FreeItem(&params->base, PR_FALSE); /* don't free base */
1827 PORT_Free(params);
1828 }
1829 }
1830
1831 /**************************************************************************
1832 * Free the PQGVerify struct and the things it points to. *
1833 **************************************************************************/
1834
1835 void
1836 PQG_DestroyVerify(PQGVerify *vfy)
1837 {
1838 if (vfy == NULL)
1839 return;
1840 if (vfy->arena != NULL) {
1841 PORT_FreeArena(vfy->arena, PR_FALSE); /* don't zero it */
1842 } else {
1843 SECITEM_FreeItem(&vfy->seed, PR_FALSE); /* don't free seed */
1844 SECITEM_FreeItem(&vfy->h, PR_FALSE); /* don't free h */
1845 PORT_Free(vfy);
1846 }
1847 }
This site is hosted by Intevation GmbH (Datenschutzerklärung und Impressum | Privacy Policy and Imprint)