Mercurial > trustbridge > nss-cmake-static
comparison nss/lib/freebl/rsa.c @ 0:1e5118fa0cb1
This is NSS with a Cmake Buildsyste
To compile a static NSS library for Windows we've used the
Chromium-NSS fork and added a Cmake buildsystem to compile
it statically for Windows. See README.chromium for chromium
changes and README.trustbridge for our modifications.
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Mon, 28 Jul 2014 10:47:06 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:1e5118fa0cb1 |
---|---|
1 /* This Source Code Form is subject to the terms of the Mozilla Public | |
2 * License, v. 2.0. If a copy of the MPL was not distributed with this | |
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | |
4 | |
5 /* | |
6 * RSA key generation, public key op, private key op. | |
7 */ | |
8 #ifdef FREEBL_NO_DEPEND | |
9 #include "stubs.h" | |
10 #endif | |
11 | |
12 #include "secerr.h" | |
13 | |
14 #include "prclist.h" | |
15 #include "nssilock.h" | |
16 #include "prinit.h" | |
17 #include "blapi.h" | |
18 #include "mpi.h" | |
19 #include "mpprime.h" | |
20 #include "mplogic.h" | |
21 #include "secmpi.h" | |
22 #include "secitem.h" | |
23 #include "blapii.h" | |
24 | |
25 /* | |
26 ** Number of times to attempt to generate a prime (p or q) from a random | |
27 ** seed (the seed changes for each iteration). | |
28 */ | |
29 #define MAX_PRIME_GEN_ATTEMPTS 10 | |
30 /* | |
31 ** Number of times to attempt to generate a key. The primes p and q change | |
32 ** for each attempt. | |
33 */ | |
34 #define MAX_KEY_GEN_ATTEMPTS 10 | |
35 | |
36 /* Blinding Parameters max cache size */ | |
37 #define RSA_BLINDING_PARAMS_MAX_CACHE_SIZE 20 | |
38 | |
39 /* exponent should not be greater than modulus */ | |
40 #define BAD_RSA_KEY_SIZE(modLen, expLen) \ | |
41 ((expLen) > (modLen) || (modLen) > RSA_MAX_MODULUS_BITS/8 || \ | |
42 (expLen) > RSA_MAX_EXPONENT_BITS/8) | |
43 | |
44 struct blindingParamsStr; | |
45 typedef struct blindingParamsStr blindingParams; | |
46 | |
47 struct blindingParamsStr { | |
48 blindingParams *next; | |
49 mp_int f, g; /* blinding parameter */ | |
50 int counter; /* number of remaining uses of (f, g) */ | |
51 }; | |
52 | |
53 /* | |
54 ** RSABlindingParamsStr | |
55 ** | |
56 ** For discussion of Paul Kocher's timing attack against an RSA private key | |
57 ** operation, see http://www.cryptography.com/timingattack/paper.html. The | |
58 ** countermeasure to this attack, known as blinding, is also discussed in | |
59 ** the Handbook of Applied Cryptography, 11.118-11.119. | |
60 */ | |
61 struct RSABlindingParamsStr | |
62 { | |
63 /* Blinding-specific parameters */ | |
64 PRCList link; /* link to list of structs */ | |
65 SECItem modulus; /* list element "key" */ | |
66 blindingParams *free, *bp; /* Blinding parameters queue */ | |
67 blindingParams array[RSA_BLINDING_PARAMS_MAX_CACHE_SIZE]; | |
68 }; | |
69 typedef struct RSABlindingParamsStr RSABlindingParams; | |
70 | |
71 /* | |
72 ** RSABlindingParamsListStr | |
73 ** | |
74 ** List of key-specific blinding params. The arena holds the volatile pool | |
75 ** of memory for each entry and the list itself. The lock is for list | |
76 ** operations, in this case insertions and iterations, as well as control | |
77 ** of the counter for each set of blinding parameters. | |
78 */ | |
79 struct RSABlindingParamsListStr | |
80 { | |
81 PZLock *lock; /* Lock for the list */ | |
82 PRCondVar *cVar; /* Condidtion Variable */ | |
83 int waitCount; /* Number of threads waiting on cVar */ | |
84 PRCList head; /* Pointer to the list */ | |
85 }; | |
86 | |
87 /* | |
88 ** The master blinding params list. | |
89 */ | |
90 static struct RSABlindingParamsListStr blindingParamsList = { 0 }; | |
91 | |
92 /* Number of times to reuse (f, g). Suggested by Paul Kocher */ | |
93 #define RSA_BLINDING_PARAMS_MAX_REUSE 50 | |
94 | |
95 /* Global, allows optional use of blinding. On by default. */ | |
96 /* Cannot be changed at the moment, due to thread-safety issues. */ | |
97 static PRBool nssRSAUseBlinding = PR_TRUE; | |
98 | |
99 static SECStatus | |
100 rsa_build_from_primes(mp_int *p, mp_int *q, | |
101 mp_int *e, PRBool needPublicExponent, | |
102 mp_int *d, PRBool needPrivateExponent, | |
103 RSAPrivateKey *key, unsigned int keySizeInBits) | |
104 { | |
105 mp_int n, phi; | |
106 mp_int psub1, qsub1, tmp; | |
107 mp_err err = MP_OKAY; | |
108 SECStatus rv = SECSuccess; | |
109 MP_DIGITS(&n) = 0; | |
110 MP_DIGITS(&phi) = 0; | |
111 MP_DIGITS(&psub1) = 0; | |
112 MP_DIGITS(&qsub1) = 0; | |
113 MP_DIGITS(&tmp) = 0; | |
114 CHECK_MPI_OK( mp_init(&n) ); | |
115 CHECK_MPI_OK( mp_init(&phi) ); | |
116 CHECK_MPI_OK( mp_init(&psub1) ); | |
117 CHECK_MPI_OK( mp_init(&qsub1) ); | |
118 CHECK_MPI_OK( mp_init(&tmp) ); | |
119 /* 1. Compute n = p*q */ | |
120 CHECK_MPI_OK( mp_mul(p, q, &n) ); | |
121 /* verify that the modulus has the desired number of bits */ | |
122 if ((unsigned)mpl_significant_bits(&n) != keySizeInBits) { | |
123 PORT_SetError(SEC_ERROR_NEED_RANDOM); | |
124 rv = SECFailure; | |
125 goto cleanup; | |
126 } | |
127 | |
128 /* at least one exponent must be given */ | |
129 PORT_Assert(!(needPublicExponent && needPrivateExponent)); | |
130 | |
131 /* 2. Compute phi = (p-1)*(q-1) */ | |
132 CHECK_MPI_OK( mp_sub_d(p, 1, &psub1) ); | |
133 CHECK_MPI_OK( mp_sub_d(q, 1, &qsub1) ); | |
134 if (needPublicExponent || needPrivateExponent) { | |
135 CHECK_MPI_OK( mp_mul(&psub1, &qsub1, &phi) ); | |
136 /* 3. Compute d = e**-1 mod(phi) */ | |
137 /* or e = d**-1 mod(phi) as necessary */ | |
138 if (needPublicExponent) { | |
139 err = mp_invmod(d, &phi, e); | |
140 } else { | |
141 err = mp_invmod(e, &phi, d); | |
142 } | |
143 } else { | |
144 err = MP_OKAY; | |
145 } | |
146 /* Verify that phi(n) and e have no common divisors */ | |
147 if (err != MP_OKAY) { | |
148 if (err == MP_UNDEF) { | |
149 PORT_SetError(SEC_ERROR_NEED_RANDOM); | |
150 err = MP_OKAY; /* to keep PORT_SetError from being called again */ | |
151 rv = SECFailure; | |
152 } | |
153 goto cleanup; | |
154 } | |
155 | |
156 /* 4. Compute exponent1 = d mod (p-1) */ | |
157 CHECK_MPI_OK( mp_mod(d, &psub1, &tmp) ); | |
158 MPINT_TO_SECITEM(&tmp, &key->exponent1, key->arena); | |
159 /* 5. Compute exponent2 = d mod (q-1) */ | |
160 CHECK_MPI_OK( mp_mod(d, &qsub1, &tmp) ); | |
161 MPINT_TO_SECITEM(&tmp, &key->exponent2, key->arena); | |
162 /* 6. Compute coefficient = q**-1 mod p */ | |
163 CHECK_MPI_OK( mp_invmod(q, p, &tmp) ); | |
164 MPINT_TO_SECITEM(&tmp, &key->coefficient, key->arena); | |
165 | |
166 /* copy our calculated results, overwrite what is there */ | |
167 key->modulus.data = NULL; | |
168 MPINT_TO_SECITEM(&n, &key->modulus, key->arena); | |
169 key->privateExponent.data = NULL; | |
170 MPINT_TO_SECITEM(d, &key->privateExponent, key->arena); | |
171 key->publicExponent.data = NULL; | |
172 MPINT_TO_SECITEM(e, &key->publicExponent, key->arena); | |
173 key->prime1.data = NULL; | |
174 MPINT_TO_SECITEM(p, &key->prime1, key->arena); | |
175 key->prime2.data = NULL; | |
176 MPINT_TO_SECITEM(q, &key->prime2, key->arena); | |
177 cleanup: | |
178 mp_clear(&n); | |
179 mp_clear(&phi); | |
180 mp_clear(&psub1); | |
181 mp_clear(&qsub1); | |
182 mp_clear(&tmp); | |
183 if (err) { | |
184 MP_TO_SEC_ERROR(err); | |
185 rv = SECFailure; | |
186 } | |
187 return rv; | |
188 } | |
189 static SECStatus | |
190 generate_prime(mp_int *prime, int primeLen) | |
191 { | |
192 mp_err err = MP_OKAY; | |
193 SECStatus rv = SECSuccess; | |
194 unsigned long counter = 0; | |
195 int piter; | |
196 unsigned char *pb = NULL; | |
197 pb = PORT_Alloc(primeLen); | |
198 if (!pb) { | |
199 PORT_SetError(SEC_ERROR_NO_MEMORY); | |
200 goto cleanup; | |
201 } | |
202 for (piter = 0; piter < MAX_PRIME_GEN_ATTEMPTS; piter++) { | |
203 CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(pb, primeLen) ); | |
204 pb[0] |= 0xC0; /* set two high-order bits */ | |
205 pb[primeLen-1] |= 0x01; /* set low-order bit */ | |
206 CHECK_MPI_OK( mp_read_unsigned_octets(prime, pb, primeLen) ); | |
207 err = mpp_make_prime(prime, primeLen * 8, PR_FALSE, &counter); | |
208 if (err != MP_NO) | |
209 goto cleanup; | |
210 /* keep going while err == MP_NO */ | |
211 } | |
212 cleanup: | |
213 if (pb) | |
214 PORT_ZFree(pb, primeLen); | |
215 if (err) { | |
216 MP_TO_SEC_ERROR(err); | |
217 rv = SECFailure; | |
218 } | |
219 return rv; | |
220 } | |
221 | |
222 /* | |
223 ** Generate and return a new RSA public and private key. | |
224 ** Both keys are encoded in a single RSAPrivateKey structure. | |
225 ** "cx" is the random number generator context | |
226 ** "keySizeInBits" is the size of the key to be generated, in bits. | |
227 ** 512, 1024, etc. | |
228 ** "publicExponent" when not NULL is a pointer to some data that | |
229 ** represents the public exponent to use. The data is a byte | |
230 ** encoded integer, in "big endian" order. | |
231 */ | |
232 RSAPrivateKey * | |
233 RSA_NewKey(int keySizeInBits, SECItem *publicExponent) | |
234 { | |
235 unsigned int primeLen; | |
236 mp_int p, q, e, d; | |
237 int kiter; | |
238 mp_err err = MP_OKAY; | |
239 SECStatus rv = SECSuccess; | |
240 int prerr = 0; | |
241 RSAPrivateKey *key = NULL; | |
242 PLArenaPool *arena = NULL; | |
243 /* Require key size to be a multiple of 16 bits. */ | |
244 if (!publicExponent || keySizeInBits % 16 != 0 || | |
245 BAD_RSA_KEY_SIZE(keySizeInBits/8, publicExponent->len)) { | |
246 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
247 return NULL; | |
248 } | |
249 /* 1. Allocate arena & key */ | |
250 arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); | |
251 if (!arena) { | |
252 PORT_SetError(SEC_ERROR_NO_MEMORY); | |
253 return NULL; | |
254 } | |
255 key = PORT_ArenaZNew(arena, RSAPrivateKey); | |
256 if (!key) { | |
257 PORT_SetError(SEC_ERROR_NO_MEMORY); | |
258 PORT_FreeArena(arena, PR_TRUE); | |
259 return NULL; | |
260 } | |
261 key->arena = arena; | |
262 /* length of primes p and q (in bytes) */ | |
263 primeLen = keySizeInBits / (2 * PR_BITS_PER_BYTE); | |
264 MP_DIGITS(&p) = 0; | |
265 MP_DIGITS(&q) = 0; | |
266 MP_DIGITS(&e) = 0; | |
267 MP_DIGITS(&d) = 0; | |
268 CHECK_MPI_OK( mp_init(&p) ); | |
269 CHECK_MPI_OK( mp_init(&q) ); | |
270 CHECK_MPI_OK( mp_init(&e) ); | |
271 CHECK_MPI_OK( mp_init(&d) ); | |
272 /* 2. Set the version number (PKCS1 v1.5 says it should be zero) */ | |
273 SECITEM_AllocItem(arena, &key->version, 1); | |
274 key->version.data[0] = 0; | |
275 /* 3. Set the public exponent */ | |
276 SECITEM_TO_MPINT(*publicExponent, &e); | |
277 kiter = 0; | |
278 do { | |
279 prerr = 0; | |
280 PORT_SetError(0); | |
281 CHECK_SEC_OK( generate_prime(&p, primeLen) ); | |
282 CHECK_SEC_OK( generate_prime(&q, primeLen) ); | |
283 /* Assure q < p */ | |
284 if (mp_cmp(&p, &q) < 0) | |
285 mp_exch(&p, &q); | |
286 /* Attempt to use these primes to generate a key */ | |
287 rv = rsa_build_from_primes(&p, &q, | |
288 &e, PR_FALSE, /* needPublicExponent=false */ | |
289 &d, PR_TRUE, /* needPrivateExponent=true */ | |
290 key, keySizeInBits); | |
291 if (rv == SECSuccess) | |
292 break; /* generated two good primes */ | |
293 prerr = PORT_GetError(); | |
294 kiter++; | |
295 /* loop until have primes */ | |
296 } while (prerr == SEC_ERROR_NEED_RANDOM && kiter < MAX_KEY_GEN_ATTEMPTS); | |
297 if (prerr) | |
298 goto cleanup; | |
299 cleanup: | |
300 mp_clear(&p); | |
301 mp_clear(&q); | |
302 mp_clear(&e); | |
303 mp_clear(&d); | |
304 if (err) { | |
305 MP_TO_SEC_ERROR(err); | |
306 rv = SECFailure; | |
307 } | |
308 if (rv && arena) { | |
309 PORT_FreeArena(arena, PR_TRUE); | |
310 key = NULL; | |
311 } | |
312 return key; | |
313 } | |
314 | |
315 mp_err | |
316 rsa_is_prime(mp_int *p) { | |
317 int res; | |
318 | |
319 /* run a Fermat test */ | |
320 res = mpp_fermat(p, 2); | |
321 if (res != MP_OKAY) { | |
322 return res; | |
323 } | |
324 | |
325 /* If that passed, run some Miller-Rabin tests */ | |
326 res = mpp_pprime(p, 2); | |
327 return res; | |
328 } | |
329 | |
330 /* | |
331 * Try to find the two primes based on 2 exponents plus either a prime | |
332 * or a modulus. | |
333 * | |
334 * In: e, d and either p or n (depending on the setting of hasModulus). | |
335 * Out: p,q. | |
336 * | |
337 * Step 1, Since d = e**-1 mod phi, we know that d*e == 1 mod phi, or | |
338 * d*e = 1+k*phi, or d*e-1 = k*phi. since d is less than phi and e is | |
339 * usually less than d, then k must be an integer between e-1 and 1 | |
340 * (probably on the order of e). | |
341 * Step 1a, If we were passed just a prime, we can divide k*phi by that | |
342 * prime-1 and get k*(q-1). This will reduce the size of our division | |
343 * through the rest of the loop. | |
344 * Step 2, Loop through the values k=e-1 to 1 looking for k. k should be on | |
345 * the order or e, and e is typically small. This may take a while for | |
346 * a large random e. We are looking for a k that divides kphi | |
347 * evenly. Once we find a k that divides kphi evenly, we assume it | |
348 * is the true k. It's possible this k is not the 'true' k but has | |
349 * swapped factors of p-1 and/or q-1. Because of this, we | |
350 * tentatively continue Steps 3-6 inside this loop, and may return looking | |
351 * for another k on failure. | |
352 * Step 3, Calculate are tentative phi=kphi/k. Note: real phi is (p-1)*(q-1). | |
353 * Step 4a, if we have a prime, kphi is already k*(q-1), so phi is or tenative | |
354 * q-1. q = phi+1. If k is correct, q should be the right length and | |
355 * prime. | |
356 * Step 4b, It's possible q-1 and k could have swapped factors. We now have a | |
357 * possible solution that meets our criteria. It may not be the only | |
358 * solution, however, so we keep looking. If we find more than one, | |
359 * we will fail since we cannot determine which is the correct | |
360 * solution, and returning the wrong modulus will compromise both | |
361 * moduli. If no other solution is found, we return the unique solution. | |
362 * Step 5a, If we have the modulus (n=pq), then use the following formula to | |
363 * calculate s=(p+q): , phi = (p-1)(q-1) = pq -p-q +1 = n-s+1. so | |
364 * s=n-phi+1. | |
365 * Step 5b, Use n=pq and s=p+q to solve for p and q as follows: | |
366 * since q=s-p, then n=p*(s-p)= sp - p^2, rearranging p^2-s*p+n = 0. | |
367 * from the quadratic equation we have p=1/2*(s+sqrt(s*s-4*n)) and | |
368 * q=1/2*(s-sqrt(s*s-4*n)) if s*s-4*n is a perfect square, we are DONE. | |
369 * If it is not, continue in our look looking for another k. NOTE: the | |
370 * code actually distributes the 1/2 and results in the equations: | |
371 * sqrt = sqrt(s/2*s/2-n), p=s/2+sqrt, q=s/2-sqrt. The algebra saves us | |
372 * and extra divide by 2 and a multiply by 4. | |
373 * | |
374 * This will return p & q. q may be larger than p in the case that p was given | |
375 * and it was the smaller prime. | |
376 */ | |
377 static mp_err | |
378 rsa_get_primes_from_exponents(mp_int *e, mp_int *d, mp_int *p, mp_int *q, | |
379 mp_int *n, PRBool hasModulus, | |
380 unsigned int keySizeInBits) | |
381 { | |
382 mp_int kphi; /* k*phi */ | |
383 mp_int k; /* current guess at 'k' */ | |
384 mp_int phi; /* (p-1)(q-1) */ | |
385 mp_int s; /* p+q/2 (s/2 in the algebra) */ | |
386 mp_int r; /* remainder */ | |
387 mp_int tmp; /* p-1 if p is given, n+1 is modulus is given */ | |
388 mp_int sqrt; /* sqrt(s/2*s/2-n) */ | |
389 mp_err err = MP_OKAY; | |
390 unsigned int order_k; | |
391 | |
392 MP_DIGITS(&kphi) = 0; | |
393 MP_DIGITS(&phi) = 0; | |
394 MP_DIGITS(&s) = 0; | |
395 MP_DIGITS(&k) = 0; | |
396 MP_DIGITS(&r) = 0; | |
397 MP_DIGITS(&tmp) = 0; | |
398 MP_DIGITS(&sqrt) = 0; | |
399 CHECK_MPI_OK( mp_init(&kphi) ); | |
400 CHECK_MPI_OK( mp_init(&phi) ); | |
401 CHECK_MPI_OK( mp_init(&s) ); | |
402 CHECK_MPI_OK( mp_init(&k) ); | |
403 CHECK_MPI_OK( mp_init(&r) ); | |
404 CHECK_MPI_OK( mp_init(&tmp) ); | |
405 CHECK_MPI_OK( mp_init(&sqrt) ); | |
406 | |
407 /* our algorithm looks for a factor k whose maximum size is dependent | |
408 * on the size of our smallest exponent, which had better be the public | |
409 * exponent (if it's the private, the key is vulnerable to a brute force | |
410 * attack). | |
411 * | |
412 * since our factor search is linear, we need to limit the maximum | |
413 * size of the public key. this should not be a problem normally, since | |
414 * public keys are usually small. | |
415 * | |
416 * if we want to handle larger public key sizes, we should have | |
417 * a version which tries to 'completely' factor k*phi (where completely | |
418 * means 'factor into primes, or composites with which are products of | |
419 * large primes). Once we have all the factors, we can sort them out and | |
420 * try different combinations to form our phi. The risk is if (p-1)/2, | |
421 * (q-1)/2, and k are all large primes. In any case if the public key | |
422 * is small (order of 20 some bits), then a linear search for k is | |
423 * manageable. | |
424 */ | |
425 if (mpl_significant_bits(e) > 23) { | |
426 err=MP_RANGE; | |
427 goto cleanup; | |
428 } | |
429 | |
430 /* calculate k*phi = e*d - 1 */ | |
431 CHECK_MPI_OK( mp_mul(e, d, &kphi) ); | |
432 CHECK_MPI_OK( mp_sub_d(&kphi, 1, &kphi) ); | |
433 | |
434 | |
435 /* kphi is (e*d)-1, which is the same as k*(p-1)(q-1) | |
436 * d < (p-1)(q-1), therefor k must be less than e-1 | |
437 * We can narrow down k even more, though. Since p and q are odd and both | |
438 * have their high bit set, then we know that phi must be on order of | |
439 * keySizeBits. | |
440 */ | |
441 order_k = (unsigned)mpl_significant_bits(&kphi) - keySizeInBits; | |
442 | |
443 /* for (k=kinit; order(k) >= order_k; k--) { */ | |
444 /* k=kinit: k can't be bigger than kphi/2^(keySizeInBits -1) */ | |
445 CHECK_MPI_OK( mp_2expt(&k,keySizeInBits-1) ); | |
446 CHECK_MPI_OK( mp_div(&kphi, &k, &k, NULL)); | |
447 if (mp_cmp(&k,e) >= 0) { | |
448 /* also can't be bigger then e-1 */ | |
449 CHECK_MPI_OK( mp_sub_d(e, 1, &k) ); | |
450 } | |
451 | |
452 /* calculate our temp value */ | |
453 /* This saves recalculating this value when the k guess is wrong, which | |
454 * is reasonably frequent. */ | |
455 /* for the modulus case, tmp = n+1 (used to calculate p+q = tmp - phi) */ | |
456 /* for the prime case, tmp = p-1 (used to calculate q-1= phi/tmp) */ | |
457 if (hasModulus) { | |
458 CHECK_MPI_OK( mp_add_d(n, 1, &tmp) ); | |
459 } else { | |
460 CHECK_MPI_OK( mp_sub_d(p, 1, &tmp) ); | |
461 CHECK_MPI_OK(mp_div(&kphi,&tmp,&kphi,&r)); | |
462 if (mp_cmp_z(&r) != 0) { | |
463 /* p-1 doesn't divide kphi, some parameter wasn't correct */ | |
464 err=MP_RANGE; | |
465 goto cleanup; | |
466 } | |
467 mp_zero(q); | |
468 /* kphi is now k*(q-1) */ | |
469 } | |
470 | |
471 /* rest of the for loop */ | |
472 for (; (err == MP_OKAY) && (mpl_significant_bits(&k) >= order_k); | |
473 err = mp_sub_d(&k, 1, &k)) { | |
474 /* looking for k as a factor of kphi */ | |
475 CHECK_MPI_OK(mp_div(&kphi,&k,&phi,&r)); | |
476 if (mp_cmp_z(&r) != 0) { | |
477 /* not a factor, try the next one */ | |
478 continue; | |
479 } | |
480 /* we have a possible phi, see if it works */ | |
481 if (!hasModulus) { | |
482 if ((unsigned)mpl_significant_bits(&phi) != keySizeInBits/2) { | |
483 /* phi is not the right size */ | |
484 continue; | |
485 } | |
486 /* phi should be divisible by 2, since | |
487 * q is odd and phi=(q-1). */ | |
488 if (mpp_divis_d(&phi,2) == MP_NO) { | |
489 /* phi is not divisible by 4 */ | |
490 continue; | |
491 } | |
492 /* we now have a candidate for the second prime */ | |
493 CHECK_MPI_OK(mp_add_d(&phi, 1, &tmp)); | |
494 | |
495 /* check to make sure it is prime */ | |
496 err = rsa_is_prime(&tmp); | |
497 if (err != MP_OKAY) { | |
498 if (err == MP_NO) { | |
499 /* No, then we still have the wrong phi */ | |
500 err = MP_OKAY; | |
501 continue; | |
502 } | |
503 goto cleanup; | |
504 } | |
505 /* | |
506 * It is possible that we have the wrong phi if | |
507 * k_guess*(q_guess-1) = k*(q-1) (k and q-1 have swapped factors). | |
508 * since our q_quess is prime, however. We have found a valid | |
509 * rsa key because: | |
510 * q is the correct order of magnitude. | |
511 * phi = (p-1)(q-1) where p and q are both primes. | |
512 * e*d mod phi = 1. | |
513 * There is no way to know from the info given if this is the | |
514 * original key. We never want to return the wrong key because if | |
515 * two moduli with the same factor is known, then euclid's gcd | |
516 * algorithm can be used to find that factor. Even though the | |
517 * caller didn't pass the original modulus, it doesn't mean the | |
518 * modulus wasn't known or isn't available somewhere. So to be safe | |
519 * if we can't be sure we have the right q, we don't return any. | |
520 * | |
521 * So to make sure we continue looking for other valid q's. If none | |
522 * are found, then we can safely return this one, otherwise we just | |
523 * fail */ | |
524 if (mp_cmp_z(q) != 0) { | |
525 /* this is the second valid q, don't return either, | |
526 * just fail */ | |
527 err = MP_RANGE; | |
528 break; | |
529 } | |
530 /* we only have one q so far, save it and if no others are found, | |
531 * it's safe to return it */ | |
532 CHECK_MPI_OK(mp_copy(&tmp, q)); | |
533 continue; | |
534 } | |
535 /* test our tentative phi */ | |
536 /* phi should be the correct order */ | |
537 if ((unsigned)mpl_significant_bits(&phi) != keySizeInBits) { | |
538 /* phi is not the right size */ | |
539 continue; | |
540 } | |
541 /* phi should be divisible by 4, since | |
542 * p and q are odd and phi=(p-1)(q-1). */ | |
543 if (mpp_divis_d(&phi,4) == MP_NO) { | |
544 /* phi is not divisible by 4 */ | |
545 continue; | |
546 } | |
547 /* n was given, calculate s/2=(p+q)/2 */ | |
548 CHECK_MPI_OK( mp_sub(&tmp, &phi, &s) ); | |
549 CHECK_MPI_OK( mp_div_2(&s, &s) ); | |
550 | |
551 /* calculate sqrt(s/2*s/2-n) */ | |
552 CHECK_MPI_OK(mp_sqr(&s,&sqrt)); | |
553 CHECK_MPI_OK(mp_sub(&sqrt,n,&r)); /* r as a tmp */ | |
554 CHECK_MPI_OK(mp_sqrt(&r,&sqrt)); | |
555 /* make sure it's a perfect square */ | |
556 /* r is our original value we took the square root of */ | |
557 /* q is the square of our tentative square root. They should be equal*/ | |
558 CHECK_MPI_OK(mp_sqr(&sqrt,q)); /* q as a tmp */ | |
559 if (mp_cmp(&r,q) != 0) { | |
560 /* sigh according to the doc, mp_sqrt could return sqrt-1 */ | |
561 CHECK_MPI_OK(mp_add_d(&sqrt,1,&sqrt)); | |
562 CHECK_MPI_OK(mp_sqr(&sqrt,q)); | |
563 if (mp_cmp(&r,q) != 0) { | |
564 /* s*s-n not a perfect square, this phi isn't valid, find * another.*/ | |
565 continue; | |
566 } | |
567 } | |
568 | |
569 /* NOTE: In this case we know we have the one and only answer. | |
570 * "Why?", you ask. Because: | |
571 * 1) n is a composite of two large primes (or it wasn't a | |
572 * valid RSA modulus). | |
573 * 2) If we know any number such that x^2-n is a perfect square | |
574 * and x is not (n+1)/2, then we can calculate 2 non-trivial | |
575 * factors of n. | |
576 * 3) Since we know that n has only 2 non-trivial prime factors, | |
577 * we know the two factors we have are the only possible factors. | |
578 */ | |
579 | |
580 /* Now we are home free to calculate p and q */ | |
581 /* p = s/2 + sqrt, q= s/2 - sqrt */ | |
582 CHECK_MPI_OK(mp_add(&s,&sqrt,p)); | |
583 CHECK_MPI_OK(mp_sub(&s,&sqrt,q)); | |
584 break; | |
585 } | |
586 if ((unsigned)mpl_significant_bits(&k) < order_k) { | |
587 if (hasModulus || (mp_cmp_z(q) == 0)) { | |
588 /* If we get here, something was wrong with the parameters we | |
589 * were given */ | |
590 err = MP_RANGE; | |
591 } | |
592 } | |
593 cleanup: | |
594 mp_clear(&kphi); | |
595 mp_clear(&phi); | |
596 mp_clear(&s); | |
597 mp_clear(&k); | |
598 mp_clear(&r); | |
599 mp_clear(&tmp); | |
600 mp_clear(&sqrt); | |
601 return err; | |
602 } | |
603 | |
604 /* | |
605 * take a private key with only a few elements and fill out the missing pieces. | |
606 * | |
607 * All the entries will be overwritten with data allocated out of the arena | |
608 * If no arena is supplied, one will be created. | |
609 * | |
610 * The following fields must be supplied in order for this function | |
611 * to succeed: | |
612 * one of either publicExponent or privateExponent | |
613 * two more of the following 5 parameters. | |
614 * modulus (n) | |
615 * prime1 (p) | |
616 * prime2 (q) | |
617 * publicExponent (e) | |
618 * privateExponent (d) | |
619 * | |
620 * NOTE: if only the publicExponent, privateExponent, and one prime is given, | |
621 * then there may be more than one RSA key that matches that combination. | |
622 * | |
623 * All parameters will be replaced in the key structure with new parameters | |
624 * Allocated out of the arena. There is no attempt to free the old structures. | |
625 * Prime1 will always be greater than prime2 (even if the caller supplies the | |
626 * smaller prime as prime1 or the larger prime as prime2). The parameters are | |
627 * not overwritten on failure. | |
628 * | |
629 * How it works: | |
630 * We can generate all the parameters from: | |
631 * one of the exponents, plus the two primes. (rsa_build_key_from_primes) * | |
632 * If we are given one of the exponents and both primes, we are done. | |
633 * If we are given one of the exponents, the modulus and one prime, we | |
634 * caclulate the second prime by dividing the modulus by the given | |
635 * prime, giving us and exponent and 2 primes. | |
636 * If we are given 2 exponents and either the modulus or one of the primes | |
637 * we calculate k*phi = d*e-1, where k is an integer less than d which | |
638 * divides d*e-1. We find factor k so we can isolate phi. | |
639 * phi = (p-1)(q-1) | |
640 * If one of the primes are given, we can use phi to find the other prime | |
641 * as follows: q = (phi/(p-1)) + 1. We now have 2 primes and an | |
642 * exponent. (NOTE: if more then one prime meets this condition, the | |
643 * operation will fail. See comments elsewhere in this file about this). | |
644 * If the modulus is given, then we can calculate the sum of the primes | |
645 * as follows: s := (p+q), phi = (p-1)(q-1) = pq -p - q +1, pq = n -> | |
646 * phi = n - s + 1, s = n - phi +1. Now that we have s = p+q and n=pq, | |
647 * we can solve our 2 equations and 2 unknowns as follows: q=s-p -> | |
648 * n=p*(s-p)= sp -p^2 -> p^2-sp+n = 0. Using the quadratic to solve for | |
649 * p, p=1/2*(s+ sqrt(s*s-4*n)) [q=1/2*(s-sqrt(s*s-4*n)]. We again have | |
650 * 2 primes and an exponent. | |
651 * | |
652 */ | |
653 SECStatus | |
654 RSA_PopulatePrivateKey(RSAPrivateKey *key) | |
655 { | |
656 PLArenaPool *arena = NULL; | |
657 PRBool needPublicExponent = PR_TRUE; | |
658 PRBool needPrivateExponent = PR_TRUE; | |
659 PRBool hasModulus = PR_FALSE; | |
660 unsigned int keySizeInBits = 0; | |
661 int prime_count = 0; | |
662 /* standard RSA nominclature */ | |
663 mp_int p, q, e, d, n; | |
664 /* remainder */ | |
665 mp_int r; | |
666 mp_err err = 0; | |
667 SECStatus rv = SECFailure; | |
668 | |
669 MP_DIGITS(&p) = 0; | |
670 MP_DIGITS(&q) = 0; | |
671 MP_DIGITS(&e) = 0; | |
672 MP_DIGITS(&d) = 0; | |
673 MP_DIGITS(&n) = 0; | |
674 MP_DIGITS(&r) = 0; | |
675 CHECK_MPI_OK( mp_init(&p) ); | |
676 CHECK_MPI_OK( mp_init(&q) ); | |
677 CHECK_MPI_OK( mp_init(&e) ); | |
678 CHECK_MPI_OK( mp_init(&d) ); | |
679 CHECK_MPI_OK( mp_init(&n) ); | |
680 CHECK_MPI_OK( mp_init(&r) ); | |
681 | |
682 /* if the key didn't already have an arena, create one. */ | |
683 if (key->arena == NULL) { | |
684 arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); | |
685 if (!arena) { | |
686 goto cleanup; | |
687 } | |
688 key->arena = arena; | |
689 } | |
690 | |
691 /* load up the known exponents */ | |
692 if (key->publicExponent.data) { | |
693 SECITEM_TO_MPINT(key->publicExponent, &e); | |
694 needPublicExponent = PR_FALSE; | |
695 } | |
696 if (key->privateExponent.data) { | |
697 SECITEM_TO_MPINT(key->privateExponent, &d); | |
698 needPrivateExponent = PR_FALSE; | |
699 } | |
700 if (needPrivateExponent && needPublicExponent) { | |
701 /* Not enough information, we need at least one exponent */ | |
702 err = MP_BADARG; | |
703 goto cleanup; | |
704 } | |
705 | |
706 /* load up the known primes. If only one prime is given, it will be | |
707 * assigned 'p'. Once we have both primes, well make sure p is the larger. | |
708 * The value prime_count tells us howe many we have acquired. | |
709 */ | |
710 if (key->prime1.data) { | |
711 int primeLen = key->prime1.len; | |
712 if (key->prime1.data[0] == 0) { | |
713 primeLen--; | |
714 } | |
715 keySizeInBits = primeLen * 2 * PR_BITS_PER_BYTE; | |
716 SECITEM_TO_MPINT(key->prime1, &p); | |
717 prime_count++; | |
718 } | |
719 if (key->prime2.data) { | |
720 int primeLen = key->prime2.len; | |
721 if (key->prime2.data[0] == 0) { | |
722 primeLen--; | |
723 } | |
724 keySizeInBits = primeLen * 2 * PR_BITS_PER_BYTE; | |
725 SECITEM_TO_MPINT(key->prime2, prime_count ? &q : &p); | |
726 prime_count++; | |
727 } | |
728 /* load up the modulus */ | |
729 if (key->modulus.data) { | |
730 int modLen = key->modulus.len; | |
731 if (key->modulus.data[0] == 0) { | |
732 modLen--; | |
733 } | |
734 keySizeInBits = modLen * PR_BITS_PER_BYTE; | |
735 SECITEM_TO_MPINT(key->modulus, &n); | |
736 hasModulus = PR_TRUE; | |
737 } | |
738 /* if we have the modulus and one prime, calculate the second. */ | |
739 if ((prime_count == 1) && (hasModulus)) { | |
740 mp_div(&n,&p,&q,&r); | |
741 if (mp_cmp_z(&r) != 0) { | |
742 /* p is not a factor or n, fail */ | |
743 err = MP_BADARG; | |
744 goto cleanup; | |
745 } | |
746 prime_count++; | |
747 } | |
748 | |
749 /* If we didn't have enough primes try to calculate the primes from | |
750 * the exponents */ | |
751 if (prime_count < 2) { | |
752 /* if we don't have at least 2 primes at this point, then we need both | |
753 * exponents and one prime or a modulus*/ | |
754 if (!needPublicExponent && !needPrivateExponent && | |
755 ((prime_count > 0) || hasModulus)) { | |
756 CHECK_MPI_OK(rsa_get_primes_from_exponents(&e,&d,&p,&q, | |
757 &n,hasModulus,keySizeInBits)); | |
758 } else { | |
759 /* not enough given parameters to get both primes */ | |
760 err = MP_BADARG; | |
761 goto cleanup; | |
762 } | |
763 } | |
764 | |
765 /* force p to the the larger prime */ | |
766 if (mp_cmp(&p, &q) < 0) | |
767 mp_exch(&p, &q); | |
768 | |
769 /* we now have our 2 primes and at least one exponent, we can fill | |
770 * in the key */ | |
771 rv = rsa_build_from_primes(&p, &q, | |
772 &e, needPublicExponent, | |
773 &d, needPrivateExponent, | |
774 key, keySizeInBits); | |
775 cleanup: | |
776 mp_clear(&p); | |
777 mp_clear(&q); | |
778 mp_clear(&e); | |
779 mp_clear(&d); | |
780 mp_clear(&n); | |
781 mp_clear(&r); | |
782 if (err) { | |
783 MP_TO_SEC_ERROR(err); | |
784 rv = SECFailure; | |
785 } | |
786 if (rv && arena) { | |
787 PORT_FreeArena(arena, PR_TRUE); | |
788 key->arena = NULL; | |
789 } | |
790 return rv; | |
791 } | |
792 | |
793 static unsigned int | |
794 rsa_modulusLen(SECItem *modulus) | |
795 { | |
796 unsigned char byteZero = modulus->data[0]; | |
797 unsigned int modLen = modulus->len - !byteZero; | |
798 return modLen; | |
799 } | |
800 | |
801 /* | |
802 ** Perform a raw public-key operation | |
803 ** Length of input and output buffers are equal to key's modulus len. | |
804 */ | |
805 SECStatus | |
806 RSA_PublicKeyOp(RSAPublicKey *key, | |
807 unsigned char *output, | |
808 const unsigned char *input) | |
809 { | |
810 unsigned int modLen, expLen, offset; | |
811 mp_int n, e, m, c; | |
812 mp_err err = MP_OKAY; | |
813 SECStatus rv = SECSuccess; | |
814 if (!key || !output || !input) { | |
815 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
816 return SECFailure; | |
817 } | |
818 MP_DIGITS(&n) = 0; | |
819 MP_DIGITS(&e) = 0; | |
820 MP_DIGITS(&m) = 0; | |
821 MP_DIGITS(&c) = 0; | |
822 CHECK_MPI_OK( mp_init(&n) ); | |
823 CHECK_MPI_OK( mp_init(&e) ); | |
824 CHECK_MPI_OK( mp_init(&m) ); | |
825 CHECK_MPI_OK( mp_init(&c) ); | |
826 modLen = rsa_modulusLen(&key->modulus); | |
827 expLen = rsa_modulusLen(&key->publicExponent); | |
828 /* 1. Obtain public key (n, e) */ | |
829 if (BAD_RSA_KEY_SIZE(modLen, expLen)) { | |
830 PORT_SetError(SEC_ERROR_INVALID_KEY); | |
831 rv = SECFailure; | |
832 goto cleanup; | |
833 } | |
834 SECITEM_TO_MPINT(key->modulus, &n); | |
835 SECITEM_TO_MPINT(key->publicExponent, &e); | |
836 if (e.used > n.used) { | |
837 /* exponent should not be greater than modulus */ | |
838 PORT_SetError(SEC_ERROR_INVALID_KEY); | |
839 rv = SECFailure; | |
840 goto cleanup; | |
841 } | |
842 /* 2. check input out of range (needs to be in range [0..n-1]) */ | |
843 offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */ | |
844 if (memcmp(input, key->modulus.data + offset, modLen) >= 0) { | |
845 PORT_SetError(SEC_ERROR_INPUT_LEN); | |
846 rv = SECFailure; | |
847 goto cleanup; | |
848 } | |
849 /* 2 bis. Represent message as integer in range [0..n-1] */ | |
850 CHECK_MPI_OK( mp_read_unsigned_octets(&m, input, modLen) ); | |
851 /* 3. Compute c = m**e mod n */ | |
852 #ifdef USE_MPI_EXPT_D | |
853 /* XXX see which is faster */ | |
854 if (MP_USED(&e) == 1) { | |
855 CHECK_MPI_OK( mp_exptmod_d(&m, MP_DIGIT(&e, 0), &n, &c) ); | |
856 } else | |
857 #endif | |
858 CHECK_MPI_OK( mp_exptmod(&m, &e, &n, &c) ); | |
859 /* 4. result c is ciphertext */ | |
860 err = mp_to_fixlen_octets(&c, output, modLen); | |
861 if (err >= 0) err = MP_OKAY; | |
862 cleanup: | |
863 mp_clear(&n); | |
864 mp_clear(&e); | |
865 mp_clear(&m); | |
866 mp_clear(&c); | |
867 if (err) { | |
868 MP_TO_SEC_ERROR(err); | |
869 rv = SECFailure; | |
870 } | |
871 return rv; | |
872 } | |
873 | |
874 /* | |
875 ** RSA Private key operation (no CRT). | |
876 */ | |
877 static SECStatus | |
878 rsa_PrivateKeyOpNoCRT(RSAPrivateKey *key, mp_int *m, mp_int *c, mp_int *n, | |
879 unsigned int modLen) | |
880 { | |
881 mp_int d; | |
882 mp_err err = MP_OKAY; | |
883 SECStatus rv = SECSuccess; | |
884 MP_DIGITS(&d) = 0; | |
885 CHECK_MPI_OK( mp_init(&d) ); | |
886 SECITEM_TO_MPINT(key->privateExponent, &d); | |
887 /* 1. m = c**d mod n */ | |
888 CHECK_MPI_OK( mp_exptmod(c, &d, n, m) ); | |
889 cleanup: | |
890 mp_clear(&d); | |
891 if (err) { | |
892 MP_TO_SEC_ERROR(err); | |
893 rv = SECFailure; | |
894 } | |
895 return rv; | |
896 } | |
897 | |
898 /* | |
899 ** RSA Private key operation using CRT. | |
900 */ | |
901 static SECStatus | |
902 rsa_PrivateKeyOpCRTNoCheck(RSAPrivateKey *key, mp_int *m, mp_int *c) | |
903 { | |
904 mp_int p, q, d_p, d_q, qInv; | |
905 mp_int m1, m2, h, ctmp; | |
906 mp_err err = MP_OKAY; | |
907 SECStatus rv = SECSuccess; | |
908 MP_DIGITS(&p) = 0; | |
909 MP_DIGITS(&q) = 0; | |
910 MP_DIGITS(&d_p) = 0; | |
911 MP_DIGITS(&d_q) = 0; | |
912 MP_DIGITS(&qInv) = 0; | |
913 MP_DIGITS(&m1) = 0; | |
914 MP_DIGITS(&m2) = 0; | |
915 MP_DIGITS(&h) = 0; | |
916 MP_DIGITS(&ctmp) = 0; | |
917 CHECK_MPI_OK( mp_init(&p) ); | |
918 CHECK_MPI_OK( mp_init(&q) ); | |
919 CHECK_MPI_OK( mp_init(&d_p) ); | |
920 CHECK_MPI_OK( mp_init(&d_q) ); | |
921 CHECK_MPI_OK( mp_init(&qInv) ); | |
922 CHECK_MPI_OK( mp_init(&m1) ); | |
923 CHECK_MPI_OK( mp_init(&m2) ); | |
924 CHECK_MPI_OK( mp_init(&h) ); | |
925 CHECK_MPI_OK( mp_init(&ctmp) ); | |
926 /* copy private key parameters into mp integers */ | |
927 SECITEM_TO_MPINT(key->prime1, &p); /* p */ | |
928 SECITEM_TO_MPINT(key->prime2, &q); /* q */ | |
929 SECITEM_TO_MPINT(key->exponent1, &d_p); /* d_p = d mod (p-1) */ | |
930 SECITEM_TO_MPINT(key->exponent2, &d_q); /* d_q = d mod (q-1) */ | |
931 SECITEM_TO_MPINT(key->coefficient, &qInv); /* qInv = q**-1 mod p */ | |
932 /* 1. m1 = c**d_p mod p */ | |
933 CHECK_MPI_OK( mp_mod(c, &p, &ctmp) ); | |
934 CHECK_MPI_OK( mp_exptmod(&ctmp, &d_p, &p, &m1) ); | |
935 /* 2. m2 = c**d_q mod q */ | |
936 CHECK_MPI_OK( mp_mod(c, &q, &ctmp) ); | |
937 CHECK_MPI_OK( mp_exptmod(&ctmp, &d_q, &q, &m2) ); | |
938 /* 3. h = (m1 - m2) * qInv mod p */ | |
939 CHECK_MPI_OK( mp_submod(&m1, &m2, &p, &h) ); | |
940 CHECK_MPI_OK( mp_mulmod(&h, &qInv, &p, &h) ); | |
941 /* 4. m = m2 + h * q */ | |
942 CHECK_MPI_OK( mp_mul(&h, &q, m) ); | |
943 CHECK_MPI_OK( mp_add(m, &m2, m) ); | |
944 cleanup: | |
945 mp_clear(&p); | |
946 mp_clear(&q); | |
947 mp_clear(&d_p); | |
948 mp_clear(&d_q); | |
949 mp_clear(&qInv); | |
950 mp_clear(&m1); | |
951 mp_clear(&m2); | |
952 mp_clear(&h); | |
953 mp_clear(&ctmp); | |
954 if (err) { | |
955 MP_TO_SEC_ERROR(err); | |
956 rv = SECFailure; | |
957 } | |
958 return rv; | |
959 } | |
960 | |
961 /* | |
962 ** An attack against RSA CRT was described by Boneh, DeMillo, and Lipton in: | |
963 ** "On the Importance of Eliminating Errors in Cryptographic Computations", | |
964 ** http://theory.stanford.edu/~dabo/papers/faults.ps.gz | |
965 ** | |
966 ** As a defense against the attack, carry out the private key operation, | |
967 ** followed up with a public key operation to invert the result. | |
968 ** Verify that result against the input. | |
969 */ | |
970 static SECStatus | |
971 rsa_PrivateKeyOpCRTCheckedPubKey(RSAPrivateKey *key, mp_int *m, mp_int *c) | |
972 { | |
973 mp_int n, e, v; | |
974 mp_err err = MP_OKAY; | |
975 SECStatus rv = SECSuccess; | |
976 MP_DIGITS(&n) = 0; | |
977 MP_DIGITS(&e) = 0; | |
978 MP_DIGITS(&v) = 0; | |
979 CHECK_MPI_OK( mp_init(&n) ); | |
980 CHECK_MPI_OK( mp_init(&e) ); | |
981 CHECK_MPI_OK( mp_init(&v) ); | |
982 CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, m, c) ); | |
983 SECITEM_TO_MPINT(key->modulus, &n); | |
984 SECITEM_TO_MPINT(key->publicExponent, &e); | |
985 /* Perform a public key operation v = m ** e mod n */ | |
986 CHECK_MPI_OK( mp_exptmod(m, &e, &n, &v) ); | |
987 if (mp_cmp(&v, c) != 0) { | |
988 rv = SECFailure; | |
989 } | |
990 cleanup: | |
991 mp_clear(&n); | |
992 mp_clear(&e); | |
993 mp_clear(&v); | |
994 if (err) { | |
995 MP_TO_SEC_ERROR(err); | |
996 rv = SECFailure; | |
997 } | |
998 return rv; | |
999 } | |
1000 | |
1001 static PRCallOnceType coBPInit = { 0, 0, 0 }; | |
1002 static PRStatus | |
1003 init_blinding_params_list(void) | |
1004 { | |
1005 blindingParamsList.lock = PZ_NewLock(nssILockOther); | |
1006 if (!blindingParamsList.lock) { | |
1007 PORT_SetError(SEC_ERROR_NO_MEMORY); | |
1008 return PR_FAILURE; | |
1009 } | |
1010 blindingParamsList.cVar = PR_NewCondVar( blindingParamsList.lock ); | |
1011 if (!blindingParamsList.cVar) { | |
1012 PORT_SetError(SEC_ERROR_NO_MEMORY); | |
1013 return PR_FAILURE; | |
1014 } | |
1015 blindingParamsList.waitCount = 0; | |
1016 PR_INIT_CLIST(&blindingParamsList.head); | |
1017 return PR_SUCCESS; | |
1018 } | |
1019 | |
1020 static SECStatus | |
1021 generate_blinding_params(RSAPrivateKey *key, mp_int* f, mp_int* g, mp_int *n, | |
1022 unsigned int modLen) | |
1023 { | |
1024 SECStatus rv = SECSuccess; | |
1025 mp_int e, k; | |
1026 mp_err err = MP_OKAY; | |
1027 unsigned char *kb = NULL; | |
1028 | |
1029 MP_DIGITS(&e) = 0; | |
1030 MP_DIGITS(&k) = 0; | |
1031 CHECK_MPI_OK( mp_init(&e) ); | |
1032 CHECK_MPI_OK( mp_init(&k) ); | |
1033 SECITEM_TO_MPINT(key->publicExponent, &e); | |
1034 /* generate random k < n */ | |
1035 kb = PORT_Alloc(modLen); | |
1036 if (!kb) { | |
1037 PORT_SetError(SEC_ERROR_NO_MEMORY); | |
1038 goto cleanup; | |
1039 } | |
1040 CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(kb, modLen) ); | |
1041 CHECK_MPI_OK( mp_read_unsigned_octets(&k, kb, modLen) ); | |
1042 /* k < n */ | |
1043 CHECK_MPI_OK( mp_mod(&k, n, &k) ); | |
1044 /* f = k**e mod n */ | |
1045 CHECK_MPI_OK( mp_exptmod(&k, &e, n, f) ); | |
1046 /* g = k**-1 mod n */ | |
1047 CHECK_MPI_OK( mp_invmod(&k, n, g) ); | |
1048 cleanup: | |
1049 if (kb) | |
1050 PORT_ZFree(kb, modLen); | |
1051 mp_clear(&k); | |
1052 mp_clear(&e); | |
1053 if (err) { | |
1054 MP_TO_SEC_ERROR(err); | |
1055 rv = SECFailure; | |
1056 } | |
1057 return rv; | |
1058 } | |
1059 | |
1060 static SECStatus | |
1061 init_blinding_params(RSABlindingParams *rsabp, RSAPrivateKey *key, | |
1062 mp_int *n, unsigned int modLen) | |
1063 { | |
1064 blindingParams * bp = rsabp->array; | |
1065 int i = 0; | |
1066 | |
1067 /* Initialize the list pointer for the element */ | |
1068 PR_INIT_CLIST(&rsabp->link); | |
1069 for (i = 0; i < RSA_BLINDING_PARAMS_MAX_CACHE_SIZE; ++i, ++bp) { | |
1070 bp->next = bp + 1; | |
1071 MP_DIGITS(&bp->f) = 0; | |
1072 MP_DIGITS(&bp->g) = 0; | |
1073 bp->counter = 0; | |
1074 } | |
1075 /* The last bp->next value was initialized with out | |
1076 * of rsabp->array pointer and must be set to NULL | |
1077 */ | |
1078 rsabp->array[RSA_BLINDING_PARAMS_MAX_CACHE_SIZE - 1].next = NULL; | |
1079 | |
1080 bp = rsabp->array; | |
1081 rsabp->bp = NULL; | |
1082 rsabp->free = bp; | |
1083 | |
1084 /* List elements are keyed using the modulus */ | |
1085 SECITEM_CopyItem(NULL, &rsabp->modulus, &key->modulus); | |
1086 | |
1087 return SECSuccess; | |
1088 } | |
1089 | |
1090 static SECStatus | |
1091 get_blinding_params(RSAPrivateKey *key, mp_int *n, unsigned int modLen, | |
1092 mp_int *f, mp_int *g) | |
1093 { | |
1094 RSABlindingParams *rsabp = NULL; | |
1095 blindingParams *bpUnlinked = NULL; | |
1096 blindingParams *bp, *prevbp = NULL; | |
1097 PRCList *el; | |
1098 SECStatus rv = SECSuccess; | |
1099 mp_err err = MP_OKAY; | |
1100 int cmp = -1; | |
1101 PRBool holdingLock = PR_FALSE; | |
1102 | |
1103 do { | |
1104 if (blindingParamsList.lock == NULL) { | |
1105 PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); | |
1106 return SECFailure; | |
1107 } | |
1108 /* Acquire the list lock */ | |
1109 PZ_Lock(blindingParamsList.lock); | |
1110 holdingLock = PR_TRUE; | |
1111 | |
1112 /* Walk the list looking for the private key */ | |
1113 for (el = PR_NEXT_LINK(&blindingParamsList.head); | |
1114 el != &blindingParamsList.head; | |
1115 el = PR_NEXT_LINK(el)) { | |
1116 rsabp = (RSABlindingParams *)el; | |
1117 cmp = SECITEM_CompareItem(&rsabp->modulus, &key->modulus); | |
1118 if (cmp >= 0) { | |
1119 /* The key is found or not in the list. */ | |
1120 break; | |
1121 } | |
1122 } | |
1123 | |
1124 if (cmp) { | |
1125 /* At this point, the key is not in the list. el should point to | |
1126 ** the list element before which this key should be inserted. | |
1127 */ | |
1128 rsabp = PORT_ZNew(RSABlindingParams); | |
1129 if (!rsabp) { | |
1130 PORT_SetError(SEC_ERROR_NO_MEMORY); | |
1131 goto cleanup; | |
1132 } | |
1133 | |
1134 rv = init_blinding_params(rsabp, key, n, modLen); | |
1135 if (rv != SECSuccess) { | |
1136 PORT_ZFree(rsabp, sizeof(RSABlindingParams)); | |
1137 goto cleanup; | |
1138 } | |
1139 | |
1140 /* Insert the new element into the list | |
1141 ** If inserting in the middle of the list, el points to the link | |
1142 ** to insert before. Otherwise, the link needs to be appended to | |
1143 ** the end of the list, which is the same as inserting before the | |
1144 ** head (since el would have looped back to the head). | |
1145 */ | |
1146 PR_INSERT_BEFORE(&rsabp->link, el); | |
1147 } | |
1148 | |
1149 /* We've found (or created) the RSAblindingParams struct for this key. | |
1150 * Now, search its list of ready blinding params for a usable one. | |
1151 */ | |
1152 while (0 != (bp = rsabp->bp)) { | |
1153 if (--(bp->counter) > 0) { | |
1154 /* Found a match and there are still remaining uses left */ | |
1155 /* Return the parameters */ | |
1156 CHECK_MPI_OK( mp_copy(&bp->f, f) ); | |
1157 CHECK_MPI_OK( mp_copy(&bp->g, g) ); | |
1158 | |
1159 PZ_Unlock(blindingParamsList.lock); | |
1160 return SECSuccess; | |
1161 } | |
1162 /* exhausted this one, give its values to caller, and | |
1163 * then retire it. | |
1164 */ | |
1165 mp_exch(&bp->f, f); | |
1166 mp_exch(&bp->g, g); | |
1167 mp_clear( &bp->f ); | |
1168 mp_clear( &bp->g ); | |
1169 bp->counter = 0; | |
1170 /* Move to free list */ | |
1171 rsabp->bp = bp->next; | |
1172 bp->next = rsabp->free; | |
1173 rsabp->free = bp; | |
1174 /* In case there're threads waiting for new blinding | |
1175 * value - notify 1 thread the value is ready | |
1176 */ | |
1177 if (blindingParamsList.waitCount > 0) { | |
1178 PR_NotifyCondVar( blindingParamsList.cVar ); | |
1179 blindingParamsList.waitCount--; | |
1180 } | |
1181 PZ_Unlock(blindingParamsList.lock); | |
1182 return SECSuccess; | |
1183 } | |
1184 /* We did not find a usable set of blinding params. Can we make one? */ | |
1185 /* Find a free bp struct. */ | |
1186 prevbp = NULL; | |
1187 if ((bp = rsabp->free) != NULL) { | |
1188 /* unlink this bp */ | |
1189 rsabp->free = bp->next; | |
1190 bp->next = NULL; | |
1191 bpUnlinked = bp; /* In case we fail */ | |
1192 | |
1193 PZ_Unlock(blindingParamsList.lock); | |
1194 holdingLock = PR_FALSE; | |
1195 /* generate blinding parameter values for the current thread */ | |
1196 CHECK_SEC_OK( generate_blinding_params(key, f, g, n, modLen ) ); | |
1197 | |
1198 /* put the blinding parameter values into cache */ | |
1199 CHECK_MPI_OK( mp_init( &bp->f) ); | |
1200 CHECK_MPI_OK( mp_init( &bp->g) ); | |
1201 CHECK_MPI_OK( mp_copy( f, &bp->f) ); | |
1202 CHECK_MPI_OK( mp_copy( g, &bp->g) ); | |
1203 | |
1204 /* Put this at head of queue of usable params. */ | |
1205 PZ_Lock(blindingParamsList.lock); | |
1206 holdingLock = PR_TRUE; | |
1207 /* initialize RSABlindingParamsStr */ | |
1208 bp->counter = RSA_BLINDING_PARAMS_MAX_REUSE; | |
1209 bp->next = rsabp->bp; | |
1210 rsabp->bp = bp; | |
1211 bpUnlinked = NULL; | |
1212 /* In case there're threads waiting for new blinding value | |
1213 * just notify them the value is ready | |
1214 */ | |
1215 if (blindingParamsList.waitCount > 0) { | |
1216 PR_NotifyAllCondVar( blindingParamsList.cVar ); | |
1217 blindingParamsList.waitCount = 0; | |
1218 } | |
1219 PZ_Unlock(blindingParamsList.lock); | |
1220 return SECSuccess; | |
1221 } | |
1222 /* Here, there are no usable blinding parameters available, | |
1223 * and no free bp blocks, presumably because they're all | |
1224 * actively having parameters generated for them. | |
1225 * So, we need to wait here and not eat up CPU until some | |
1226 * change happens. | |
1227 */ | |
1228 blindingParamsList.waitCount++; | |
1229 PR_WaitCondVar( blindingParamsList.cVar, PR_INTERVAL_NO_TIMEOUT ); | |
1230 PZ_Unlock(blindingParamsList.lock); | |
1231 holdingLock = PR_FALSE; | |
1232 } while (1); | |
1233 | |
1234 cleanup: | |
1235 /* It is possible to reach this after the lock is already released. */ | |
1236 if (bpUnlinked) { | |
1237 if (!holdingLock) { | |
1238 PZ_Lock(blindingParamsList.lock); | |
1239 holdingLock = PR_TRUE; | |
1240 } | |
1241 bp = bpUnlinked; | |
1242 mp_clear( &bp->f ); | |
1243 mp_clear( &bp->g ); | |
1244 bp->counter = 0; | |
1245 /* Must put the unlinked bp back on the free list */ | |
1246 bp->next = rsabp->free; | |
1247 rsabp->free = bp; | |
1248 } | |
1249 if (holdingLock) { | |
1250 PZ_Unlock(blindingParamsList.lock); | |
1251 holdingLock = PR_FALSE; | |
1252 } | |
1253 if (err) { | |
1254 MP_TO_SEC_ERROR(err); | |
1255 } | |
1256 return SECFailure; | |
1257 } | |
1258 | |
1259 /* | |
1260 ** Perform a raw private-key operation | |
1261 ** Length of input and output buffers are equal to key's modulus len. | |
1262 */ | |
1263 static SECStatus | |
1264 rsa_PrivateKeyOp(RSAPrivateKey *key, | |
1265 unsigned char *output, | |
1266 const unsigned char *input, | |
1267 PRBool check) | |
1268 { | |
1269 unsigned int modLen; | |
1270 unsigned int offset; | |
1271 SECStatus rv = SECSuccess; | |
1272 mp_err err; | |
1273 mp_int n, c, m; | |
1274 mp_int f, g; | |
1275 if (!key || !output || !input) { | |
1276 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
1277 return SECFailure; | |
1278 } | |
1279 /* check input out of range (needs to be in range [0..n-1]) */ | |
1280 modLen = rsa_modulusLen(&key->modulus); | |
1281 offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */ | |
1282 if (memcmp(input, key->modulus.data + offset, modLen) >= 0) { | |
1283 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
1284 return SECFailure; | |
1285 } | |
1286 MP_DIGITS(&n) = 0; | |
1287 MP_DIGITS(&c) = 0; | |
1288 MP_DIGITS(&m) = 0; | |
1289 MP_DIGITS(&f) = 0; | |
1290 MP_DIGITS(&g) = 0; | |
1291 CHECK_MPI_OK( mp_init(&n) ); | |
1292 CHECK_MPI_OK( mp_init(&c) ); | |
1293 CHECK_MPI_OK( mp_init(&m) ); | |
1294 CHECK_MPI_OK( mp_init(&f) ); | |
1295 CHECK_MPI_OK( mp_init(&g) ); | |
1296 SECITEM_TO_MPINT(key->modulus, &n); | |
1297 OCTETS_TO_MPINT(input, &c, modLen); | |
1298 /* If blinding, compute pre-image of ciphertext by multiplying by | |
1299 ** blinding factor | |
1300 */ | |
1301 if (nssRSAUseBlinding) { | |
1302 CHECK_SEC_OK( get_blinding_params(key, &n, modLen, &f, &g) ); | |
1303 /* c' = c*f mod n */ | |
1304 CHECK_MPI_OK( mp_mulmod(&c, &f, &n, &c) ); | |
1305 } | |
1306 /* Do the private key operation m = c**d mod n */ | |
1307 if ( key->prime1.len == 0 || | |
1308 key->prime2.len == 0 || | |
1309 key->exponent1.len == 0 || | |
1310 key->exponent2.len == 0 || | |
1311 key->coefficient.len == 0) { | |
1312 CHECK_SEC_OK( rsa_PrivateKeyOpNoCRT(key, &m, &c, &n, modLen) ); | |
1313 } else if (check) { | |
1314 CHECK_SEC_OK( rsa_PrivateKeyOpCRTCheckedPubKey(key, &m, &c) ); | |
1315 } else { | |
1316 CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, &m, &c) ); | |
1317 } | |
1318 /* If blinding, compute post-image of plaintext by multiplying by | |
1319 ** blinding factor | |
1320 */ | |
1321 if (nssRSAUseBlinding) { | |
1322 /* m = m'*g mod n */ | |
1323 CHECK_MPI_OK( mp_mulmod(&m, &g, &n, &m) ); | |
1324 } | |
1325 err = mp_to_fixlen_octets(&m, output, modLen); | |
1326 if (err >= 0) err = MP_OKAY; | |
1327 cleanup: | |
1328 mp_clear(&n); | |
1329 mp_clear(&c); | |
1330 mp_clear(&m); | |
1331 mp_clear(&f); | |
1332 mp_clear(&g); | |
1333 if (err) { | |
1334 MP_TO_SEC_ERROR(err); | |
1335 rv = SECFailure; | |
1336 } | |
1337 return rv; | |
1338 } | |
1339 | |
1340 SECStatus | |
1341 RSA_PrivateKeyOp(RSAPrivateKey *key, | |
1342 unsigned char *output, | |
1343 const unsigned char *input) | |
1344 { | |
1345 return rsa_PrivateKeyOp(key, output, input, PR_FALSE); | |
1346 } | |
1347 | |
1348 SECStatus | |
1349 RSA_PrivateKeyOpDoubleChecked(RSAPrivateKey *key, | |
1350 unsigned char *output, | |
1351 const unsigned char *input) | |
1352 { | |
1353 return rsa_PrivateKeyOp(key, output, input, PR_TRUE); | |
1354 } | |
1355 | |
1356 SECStatus | |
1357 RSA_PrivateKeyCheck(const RSAPrivateKey *key) | |
1358 { | |
1359 mp_int p, q, n, psub1, qsub1, e, d, d_p, d_q, qInv, res; | |
1360 mp_err err = MP_OKAY; | |
1361 SECStatus rv = SECSuccess; | |
1362 MP_DIGITS(&p) = 0; | |
1363 MP_DIGITS(&q) = 0; | |
1364 MP_DIGITS(&n) = 0; | |
1365 MP_DIGITS(&psub1)= 0; | |
1366 MP_DIGITS(&qsub1)= 0; | |
1367 MP_DIGITS(&e) = 0; | |
1368 MP_DIGITS(&d) = 0; | |
1369 MP_DIGITS(&d_p) = 0; | |
1370 MP_DIGITS(&d_q) = 0; | |
1371 MP_DIGITS(&qInv) = 0; | |
1372 MP_DIGITS(&res) = 0; | |
1373 CHECK_MPI_OK( mp_init(&p) ); | |
1374 CHECK_MPI_OK( mp_init(&q) ); | |
1375 CHECK_MPI_OK( mp_init(&n) ); | |
1376 CHECK_MPI_OK( mp_init(&psub1)); | |
1377 CHECK_MPI_OK( mp_init(&qsub1)); | |
1378 CHECK_MPI_OK( mp_init(&e) ); | |
1379 CHECK_MPI_OK( mp_init(&d) ); | |
1380 CHECK_MPI_OK( mp_init(&d_p) ); | |
1381 CHECK_MPI_OK( mp_init(&d_q) ); | |
1382 CHECK_MPI_OK( mp_init(&qInv) ); | |
1383 CHECK_MPI_OK( mp_init(&res) ); | |
1384 | |
1385 if (!key->modulus.data || !key->prime1.data || !key->prime2.data || | |
1386 !key->publicExponent.data || !key->privateExponent.data || | |
1387 !key->exponent1.data || !key->exponent2.data || | |
1388 !key->coefficient.data) { | |
1389 /*call RSA_PopulatePrivateKey first, if the application wishes to | |
1390 * recover these parameters */ | |
1391 err = MP_BADARG; | |
1392 goto cleanup; | |
1393 } | |
1394 | |
1395 SECITEM_TO_MPINT(key->modulus, &n); | |
1396 SECITEM_TO_MPINT(key->prime1, &p); | |
1397 SECITEM_TO_MPINT(key->prime2, &q); | |
1398 SECITEM_TO_MPINT(key->publicExponent, &e); | |
1399 SECITEM_TO_MPINT(key->privateExponent, &d); | |
1400 SECITEM_TO_MPINT(key->exponent1, &d_p); | |
1401 SECITEM_TO_MPINT(key->exponent2, &d_q); | |
1402 SECITEM_TO_MPINT(key->coefficient, &qInv); | |
1403 /* p > q */ | |
1404 if (mp_cmp(&p, &q) <= 0) { | |
1405 rv = SECFailure; | |
1406 goto cleanup; | |
1407 } | |
1408 #define VERIFY_MPI_EQUAL(m1, m2) \ | |
1409 if (mp_cmp(m1, m2) != 0) { \ | |
1410 rv = SECFailure; \ | |
1411 goto cleanup; \ | |
1412 } | |
1413 #define VERIFY_MPI_EQUAL_1(m) \ | |
1414 if (mp_cmp_d(m, 1) != 0) { \ | |
1415 rv = SECFailure; \ | |
1416 goto cleanup; \ | |
1417 } | |
1418 /* | |
1419 * The following errors cannot be recovered from. | |
1420 */ | |
1421 /* n == p * q */ | |
1422 CHECK_MPI_OK( mp_mul(&p, &q, &res) ); | |
1423 VERIFY_MPI_EQUAL(&res, &n); | |
1424 /* gcd(e, p-1) == 1 */ | |
1425 CHECK_MPI_OK( mp_sub_d(&p, 1, &psub1) ); | |
1426 CHECK_MPI_OK( mp_gcd(&e, &psub1, &res) ); | |
1427 VERIFY_MPI_EQUAL_1(&res); | |
1428 /* gcd(e, q-1) == 1 */ | |
1429 CHECK_MPI_OK( mp_sub_d(&q, 1, &qsub1) ); | |
1430 CHECK_MPI_OK( mp_gcd(&e, &qsub1, &res) ); | |
1431 VERIFY_MPI_EQUAL_1(&res); | |
1432 /* d*e == 1 mod p-1 */ | |
1433 CHECK_MPI_OK( mp_mulmod(&d, &e, &psub1, &res) ); | |
1434 VERIFY_MPI_EQUAL_1(&res); | |
1435 /* d*e == 1 mod q-1 */ | |
1436 CHECK_MPI_OK( mp_mulmod(&d, &e, &qsub1, &res) ); | |
1437 VERIFY_MPI_EQUAL_1(&res); | |
1438 /* | |
1439 * The following errors can be recovered from. However, the purpose of this | |
1440 * function is to check consistency, so they are not. | |
1441 */ | |
1442 /* d_p == d mod p-1 */ | |
1443 CHECK_MPI_OK( mp_mod(&d, &psub1, &res) ); | |
1444 VERIFY_MPI_EQUAL(&res, &d_p); | |
1445 /* d_q == d mod q-1 */ | |
1446 CHECK_MPI_OK( mp_mod(&d, &qsub1, &res) ); | |
1447 VERIFY_MPI_EQUAL(&res, &d_q); | |
1448 /* q * q**-1 == 1 mod p */ | |
1449 CHECK_MPI_OK( mp_mulmod(&q, &qInv, &p, &res) ); | |
1450 VERIFY_MPI_EQUAL_1(&res); | |
1451 | |
1452 cleanup: | |
1453 mp_clear(&n); | |
1454 mp_clear(&p); | |
1455 mp_clear(&q); | |
1456 mp_clear(&psub1); | |
1457 mp_clear(&qsub1); | |
1458 mp_clear(&e); | |
1459 mp_clear(&d); | |
1460 mp_clear(&d_p); | |
1461 mp_clear(&d_q); | |
1462 mp_clear(&qInv); | |
1463 mp_clear(&res); | |
1464 if (err) { | |
1465 MP_TO_SEC_ERROR(err); | |
1466 rv = SECFailure; | |
1467 } | |
1468 return rv; | |
1469 } | |
1470 | |
1471 static SECStatus RSA_Init(void) | |
1472 { | |
1473 if (PR_CallOnce(&coBPInit, init_blinding_params_list) != PR_SUCCESS) { | |
1474 PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); | |
1475 return SECFailure; | |
1476 } | |
1477 return SECSuccess; | |
1478 } | |
1479 | |
1480 SECStatus BL_Init(void) | |
1481 { | |
1482 return RSA_Init(); | |
1483 } | |
1484 | |
1485 /* cleanup at shutdown */ | |
1486 void RSA_Cleanup(void) | |
1487 { | |
1488 blindingParams * bp = NULL; | |
1489 if (!coBPInit.initialized) | |
1490 return; | |
1491 | |
1492 while (!PR_CLIST_IS_EMPTY(&blindingParamsList.head)) { | |
1493 RSABlindingParams *rsabp = | |
1494 (RSABlindingParams *)PR_LIST_HEAD(&blindingParamsList.head); | |
1495 PR_REMOVE_LINK(&rsabp->link); | |
1496 /* clear parameters cache */ | |
1497 while (rsabp->bp != NULL) { | |
1498 bp = rsabp->bp; | |
1499 rsabp->bp = rsabp->bp->next; | |
1500 mp_clear( &bp->f ); | |
1501 mp_clear( &bp->g ); | |
1502 } | |
1503 SECITEM_FreeItem(&rsabp->modulus,PR_FALSE); | |
1504 PORT_Free(rsabp); | |
1505 } | |
1506 | |
1507 if (blindingParamsList.cVar) { | |
1508 PR_DestroyCondVar(blindingParamsList.cVar); | |
1509 blindingParamsList.cVar = NULL; | |
1510 } | |
1511 | |
1512 if (blindingParamsList.lock) { | |
1513 SKIP_AFTER_FORK(PZ_DestroyLock(blindingParamsList.lock)); | |
1514 blindingParamsList.lock = NULL; | |
1515 } | |
1516 | |
1517 coBPInit.initialized = 0; | |
1518 coBPInit.inProgress = 0; | |
1519 coBPInit.status = 0; | |
1520 } | |
1521 | |
1522 /* | |
1523 * need a central place for this function to free up all the memory that | |
1524 * free_bl may have allocated along the way. Currently only RSA does this, | |
1525 * so I've put it here for now. | |
1526 */ | |
1527 void BL_Cleanup(void) | |
1528 { | |
1529 RSA_Cleanup(); | |
1530 } | |
1531 | |
1532 #ifdef NSS_STATIC | |
1533 void | |
1534 BL_Unload(void) | |
1535 { | |
1536 } | |
1537 #endif | |
1538 | |
1539 PRBool bl_parentForkedAfterC_Initialize; | |
1540 | |
1541 /* | |
1542 * Set fork flag so it can be tested in SKIP_AFTER_FORK on relevant platforms. | |
1543 */ | |
1544 void BL_SetForkState(PRBool forked) | |
1545 { | |
1546 bl_parentForkedAfterC_Initialize = forked; | |
1547 } | |
1548 |