Mercurial > trustbridge > nss-cmake-static
comparison nss/lib/freebl/sha_fast.c @ 0:1e5118fa0cb1
This is NSS with a Cmake Buildsyste
To compile a static NSS library for Windows we've used the
Chromium-NSS fork and added a Cmake buildsystem to compile
it statically for Windows. See README.chromium for chromium
changes and README.trustbridge for our modifications.
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Mon, 28 Jul 2014 10:47:06 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:1e5118fa0cb1 |
---|---|
1 /* This Source Code Form is subject to the terms of the Mozilla Public | |
2 * License, v. 2.0. If a copy of the MPL was not distributed with this | |
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | |
4 | |
5 #ifdef FREEBL_NO_DEPEND | |
6 #include "stubs.h" | |
7 #endif | |
8 | |
9 #include <memory.h> | |
10 #include "blapi.h" | |
11 #include "sha_fast.h" | |
12 #include "prerror.h" | |
13 | |
14 #ifdef TRACING_SSL | |
15 #include "ssl.h" | |
16 #include "ssltrace.h" | |
17 #endif | |
18 | |
19 static void shaCompress(volatile SHA_HW_t *X, const PRUint32 * datain); | |
20 | |
21 #define W u.w | |
22 #define B u.b | |
23 | |
24 | |
25 #define SHA_F1(X,Y,Z) ((((Y)^(Z))&(X))^(Z)) | |
26 #define SHA_F2(X,Y,Z) ((X)^(Y)^(Z)) | |
27 #define SHA_F3(X,Y,Z) (((X)&(Y))|((Z)&((X)|(Y)))) | |
28 #define SHA_F4(X,Y,Z) ((X)^(Y)^(Z)) | |
29 | |
30 #define SHA_MIX(n,a,b,c) XW(n) = SHA_ROTL(XW(a)^XW(b)^XW(c)^XW(n), 1) | |
31 | |
32 /* | |
33 * SHA: initialize context | |
34 */ | |
35 void | |
36 SHA1_Begin(SHA1Context *ctx) | |
37 { | |
38 ctx->size = 0; | |
39 /* | |
40 * Initialize H with constants from FIPS180-1. | |
41 */ | |
42 ctx->H[0] = 0x67452301L; | |
43 ctx->H[1] = 0xefcdab89L; | |
44 ctx->H[2] = 0x98badcfeL; | |
45 ctx->H[3] = 0x10325476L; | |
46 ctx->H[4] = 0xc3d2e1f0L; | |
47 } | |
48 | |
49 /* Explanation of H array and index values: | |
50 * The context's H array is actually the concatenation of two arrays | |
51 * defined by SHA1, the H array of state variables (5 elements), | |
52 * and the W array of intermediate values, of which there are 16 elements. | |
53 * The W array starts at H[5], that is W[0] is H[5]. | |
54 * Although these values are defined as 32-bit values, we use 64-bit | |
55 * variables to hold them because the AMD64 stores 64 bit values in | |
56 * memory MUCH faster than it stores any smaller values. | |
57 * | |
58 * Rather than passing the context structure to shaCompress, we pass | |
59 * this combined array of H and W values. We do not pass the address | |
60 * of the first element of this array, but rather pass the address of an | |
61 * element in the middle of the array, element X. Presently X[0] is H[11]. | |
62 * So we pass the address of H[11] as the address of array X to shaCompress. | |
63 * Then shaCompress accesses the members of the array using positive AND | |
64 * negative indexes. | |
65 * | |
66 * Pictorially: (each element is 8 bytes) | |
67 * H | H0 H1 H2 H3 H4 W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 Wa Wb Wc Wd We Wf | | |
68 * X |-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 | | |
69 * | |
70 * The byte offset from X[0] to any member of H and W is always | |
71 * representable in a signed 8-bit value, which will be encoded | |
72 * as a single byte offset in the X86-64 instruction set. | |
73 * If we didn't pass the address of H[11], and instead passed the | |
74 * address of H[0], the offsets to elements H[16] and above would be | |
75 * greater than 127, not representable in a signed 8-bit value, and the | |
76 * x86-64 instruction set would encode every such offset as a 32-bit | |
77 * signed number in each instruction that accessed element H[16] or | |
78 * higher. This results in much bigger and slower code. | |
79 */ | |
80 #if !defined(SHA_PUT_W_IN_STACK) | |
81 #define H2X 11 /* X[0] is H[11], and H[0] is X[-11] */ | |
82 #define W2X 6 /* X[0] is W[6], and W[0] is X[-6] */ | |
83 #else | |
84 #define H2X 0 | |
85 #endif | |
86 | |
87 /* | |
88 * SHA: Add data to context. | |
89 */ | |
90 void | |
91 SHA1_Update(SHA1Context *ctx, const unsigned char *dataIn, unsigned int len) | |
92 { | |
93 register unsigned int lenB; | |
94 register unsigned int togo; | |
95 | |
96 if (!len) | |
97 return; | |
98 | |
99 /* accumulate the byte count. */ | |
100 lenB = (unsigned int)(ctx->size) & 63U; | |
101 | |
102 ctx->size += len; | |
103 | |
104 /* | |
105 * Read the data into W and process blocks as they get full | |
106 */ | |
107 if (lenB > 0) { | |
108 togo = 64U - lenB; | |
109 if (len < togo) | |
110 togo = len; | |
111 memcpy(ctx->B + lenB, dataIn, togo); | |
112 len -= togo; | |
113 dataIn += togo; | |
114 lenB = (lenB + togo) & 63U; | |
115 if (!lenB) { | |
116 shaCompress(&ctx->H[H2X], ctx->W); | |
117 } | |
118 } | |
119 #if !defined(SHA_ALLOW_UNALIGNED_ACCESS) | |
120 if ((ptrdiff_t)dataIn % sizeof(PRUint32)) { | |
121 while (len >= 64U) { | |
122 memcpy(ctx->B, dataIn, 64); | |
123 len -= 64U; | |
124 shaCompress(&ctx->H[H2X], ctx->W); | |
125 dataIn += 64U; | |
126 } | |
127 } else | |
128 #endif | |
129 { | |
130 while (len >= 64U) { | |
131 len -= 64U; | |
132 shaCompress(&ctx->H[H2X], (PRUint32 *)dataIn); | |
133 dataIn += 64U; | |
134 } | |
135 } | |
136 if (len) { | |
137 memcpy(ctx->B, dataIn, len); | |
138 } | |
139 } | |
140 | |
141 | |
142 /* | |
143 * SHA: Generate hash value from context | |
144 */ | |
145 void | |
146 SHA1_End(SHA1Context *ctx, unsigned char *hashout, | |
147 unsigned int *pDigestLen, unsigned int maxDigestLen) | |
148 { | |
149 register PRUint64 size; | |
150 register PRUint32 lenB; | |
151 PRUint32 tmpbuf[5]; | |
152 | |
153 static const unsigned char bulk_pad[64] = { 0x80,0,0,0,0,0,0,0,0,0, | |
154 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, | |
155 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; | |
156 #define tmp lenB | |
157 | |
158 PORT_Assert (maxDigestLen >= SHA1_LENGTH); | |
159 | |
160 /* | |
161 * Pad with a binary 1 (e.g. 0x80), then zeroes, then length in bits | |
162 */ | |
163 size = ctx->size; | |
164 | |
165 lenB = (PRUint32)size & 63; | |
166 SHA1_Update(ctx, bulk_pad, (((55+64) - lenB) & 63) + 1); | |
167 PORT_Assert(((PRUint32)ctx->size & 63) == 56); | |
168 /* Convert size from bytes to bits. */ | |
169 size <<= 3; | |
170 ctx->W[14] = SHA_HTONL((PRUint32)(size >> 32)); | |
171 ctx->W[15] = SHA_HTONL((PRUint32)size); | |
172 shaCompress(&ctx->H[H2X], ctx->W); | |
173 | |
174 /* | |
175 * Output hash | |
176 */ | |
177 SHA_STORE_RESULT; | |
178 if (pDigestLen) { | |
179 *pDigestLen = SHA1_LENGTH; | |
180 } | |
181 #undef tmp | |
182 } | |
183 | |
184 void | |
185 SHA1_EndRaw(SHA1Context *ctx, unsigned char *hashout, | |
186 unsigned int *pDigestLen, unsigned int maxDigestLen) | |
187 { | |
188 #if defined(SHA_NEED_TMP_VARIABLE) | |
189 register PRUint32 tmp; | |
190 #endif | |
191 PRUint32 tmpbuf[5]; | |
192 PORT_Assert (maxDigestLen >= SHA1_LENGTH); | |
193 | |
194 SHA_STORE_RESULT; | |
195 if (pDigestLen) | |
196 *pDigestLen = SHA1_LENGTH; | |
197 } | |
198 | |
199 #undef B | |
200 /* | |
201 * SHA: Compression function, unrolled. | |
202 * | |
203 * Some operations in shaCompress are done as 5 groups of 16 operations. | |
204 * Others are done as 4 groups of 20 operations. | |
205 * The code below shows that structure. | |
206 * | |
207 * The functions that compute the new values of the 5 state variables | |
208 * A-E are done in 4 groups of 20 operations (or you may also think | |
209 * of them as being done in 16 groups of 5 operations). They are | |
210 * done by the SHA_RNDx macros below, in the right column. | |
211 * | |
212 * The functions that set the 16 values of the W array are done in | |
213 * 5 groups of 16 operations. The first group is done by the | |
214 * LOAD macros below, the latter 4 groups are done by SHA_MIX below, | |
215 * in the left column. | |
216 * | |
217 * gcc's optimizer observes that each member of the W array is assigned | |
218 * a value 5 times in this code. It reduces the number of store | |
219 * operations done to the W array in the context (that is, in the X array) | |
220 * by creating a W array on the stack, and storing the W values there for | |
221 * the first 4 groups of operations on W, and storing the values in the | |
222 * context's W array only in the fifth group. This is undesirable. | |
223 * It is MUCH bigger code than simply using the context's W array, because | |
224 * all the offsets to the W array in the stack are 32-bit signed offsets, | |
225 * and it is no faster than storing the values in the context's W array. | |
226 * | |
227 * The original code for sha_fast.c prevented this creation of a separate | |
228 * W array in the stack by creating a W array of 80 members, each of | |
229 * whose elements is assigned only once. It also separated the computations | |
230 * of the W array values and the computations of the values for the 5 | |
231 * state variables into two separate passes, W's, then A-E's so that the | |
232 * second pass could be done all in registers (except for accessing the W | |
233 * array) on machines with fewer registers. The method is suboptimal | |
234 * for machines with enough registers to do it all in one pass, and it | |
235 * necessitates using many instructions with 32-bit offsets. | |
236 * | |
237 * This code eliminates the separate W array on the stack by a completely | |
238 * different means: by declaring the X array volatile. This prevents | |
239 * the optimizer from trying to reduce the use of the X array by the | |
240 * creation of a MORE expensive W array on the stack. The result is | |
241 * that all instructions use signed 8-bit offsets and not 32-bit offsets. | |
242 * | |
243 * The combination of this code and the -O3 optimizer flag on GCC 3.4.3 | |
244 * results in code that is 3 times faster than the previous NSS sha_fast | |
245 * code on AMD64. | |
246 */ | |
247 static void | |
248 shaCompress(volatile SHA_HW_t *X, const PRUint32 *inbuf) | |
249 { | |
250 register SHA_HW_t A, B, C, D, E; | |
251 | |
252 #if defined(SHA_NEED_TMP_VARIABLE) | |
253 register PRUint32 tmp; | |
254 #endif | |
255 | |
256 #if !defined(SHA_PUT_W_IN_STACK) | |
257 #define XH(n) X[n-H2X] | |
258 #define XW(n) X[n-W2X] | |
259 #else | |
260 SHA_HW_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7, | |
261 w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15; | |
262 #define XW(n) w_ ## n | |
263 #define XH(n) X[n] | |
264 #endif | |
265 | |
266 #define K0 0x5a827999L | |
267 #define K1 0x6ed9eba1L | |
268 #define K2 0x8f1bbcdcL | |
269 #define K3 0xca62c1d6L | |
270 | |
271 #define SHA_RND1(a,b,c,d,e,n) \ | |
272 a = SHA_ROTL(b,5)+SHA_F1(c,d,e)+a+XW(n)+K0; c=SHA_ROTL(c,30) | |
273 #define SHA_RND2(a,b,c,d,e,n) \ | |
274 a = SHA_ROTL(b,5)+SHA_F2(c,d,e)+a+XW(n)+K1; c=SHA_ROTL(c,30) | |
275 #define SHA_RND3(a,b,c,d,e,n) \ | |
276 a = SHA_ROTL(b,5)+SHA_F3(c,d,e)+a+XW(n)+K2; c=SHA_ROTL(c,30) | |
277 #define SHA_RND4(a,b,c,d,e,n) \ | |
278 a = SHA_ROTL(b,5)+SHA_F4(c,d,e)+a+XW(n)+K3; c=SHA_ROTL(c,30) | |
279 | |
280 #define LOAD(n) XW(n) = SHA_HTONL(inbuf[n]) | |
281 | |
282 A = XH(0); | |
283 B = XH(1); | |
284 C = XH(2); | |
285 D = XH(3); | |
286 E = XH(4); | |
287 | |
288 LOAD(0); SHA_RND1(E,A,B,C,D, 0); | |
289 LOAD(1); SHA_RND1(D,E,A,B,C, 1); | |
290 LOAD(2); SHA_RND1(C,D,E,A,B, 2); | |
291 LOAD(3); SHA_RND1(B,C,D,E,A, 3); | |
292 LOAD(4); SHA_RND1(A,B,C,D,E, 4); | |
293 LOAD(5); SHA_RND1(E,A,B,C,D, 5); | |
294 LOAD(6); SHA_RND1(D,E,A,B,C, 6); | |
295 LOAD(7); SHA_RND1(C,D,E,A,B, 7); | |
296 LOAD(8); SHA_RND1(B,C,D,E,A, 8); | |
297 LOAD(9); SHA_RND1(A,B,C,D,E, 9); | |
298 LOAD(10); SHA_RND1(E,A,B,C,D,10); | |
299 LOAD(11); SHA_RND1(D,E,A,B,C,11); | |
300 LOAD(12); SHA_RND1(C,D,E,A,B,12); | |
301 LOAD(13); SHA_RND1(B,C,D,E,A,13); | |
302 LOAD(14); SHA_RND1(A,B,C,D,E,14); | |
303 LOAD(15); SHA_RND1(E,A,B,C,D,15); | |
304 | |
305 SHA_MIX( 0, 13, 8, 2); SHA_RND1(D,E,A,B,C, 0); | |
306 SHA_MIX( 1, 14, 9, 3); SHA_RND1(C,D,E,A,B, 1); | |
307 SHA_MIX( 2, 15, 10, 4); SHA_RND1(B,C,D,E,A, 2); | |
308 SHA_MIX( 3, 0, 11, 5); SHA_RND1(A,B,C,D,E, 3); | |
309 | |
310 SHA_MIX( 4, 1, 12, 6); SHA_RND2(E,A,B,C,D, 4); | |
311 SHA_MIX( 5, 2, 13, 7); SHA_RND2(D,E,A,B,C, 5); | |
312 SHA_MIX( 6, 3, 14, 8); SHA_RND2(C,D,E,A,B, 6); | |
313 SHA_MIX( 7, 4, 15, 9); SHA_RND2(B,C,D,E,A, 7); | |
314 SHA_MIX( 8, 5, 0, 10); SHA_RND2(A,B,C,D,E, 8); | |
315 SHA_MIX( 9, 6, 1, 11); SHA_RND2(E,A,B,C,D, 9); | |
316 SHA_MIX(10, 7, 2, 12); SHA_RND2(D,E,A,B,C,10); | |
317 SHA_MIX(11, 8, 3, 13); SHA_RND2(C,D,E,A,B,11); | |
318 SHA_MIX(12, 9, 4, 14); SHA_RND2(B,C,D,E,A,12); | |
319 SHA_MIX(13, 10, 5, 15); SHA_RND2(A,B,C,D,E,13); | |
320 SHA_MIX(14, 11, 6, 0); SHA_RND2(E,A,B,C,D,14); | |
321 SHA_MIX(15, 12, 7, 1); SHA_RND2(D,E,A,B,C,15); | |
322 | |
323 SHA_MIX( 0, 13, 8, 2); SHA_RND2(C,D,E,A,B, 0); | |
324 SHA_MIX( 1, 14, 9, 3); SHA_RND2(B,C,D,E,A, 1); | |
325 SHA_MIX( 2, 15, 10, 4); SHA_RND2(A,B,C,D,E, 2); | |
326 SHA_MIX( 3, 0, 11, 5); SHA_RND2(E,A,B,C,D, 3); | |
327 SHA_MIX( 4, 1, 12, 6); SHA_RND2(D,E,A,B,C, 4); | |
328 SHA_MIX( 5, 2, 13, 7); SHA_RND2(C,D,E,A,B, 5); | |
329 SHA_MIX( 6, 3, 14, 8); SHA_RND2(B,C,D,E,A, 6); | |
330 SHA_MIX( 7, 4, 15, 9); SHA_RND2(A,B,C,D,E, 7); | |
331 | |
332 SHA_MIX( 8, 5, 0, 10); SHA_RND3(E,A,B,C,D, 8); | |
333 SHA_MIX( 9, 6, 1, 11); SHA_RND3(D,E,A,B,C, 9); | |
334 SHA_MIX(10, 7, 2, 12); SHA_RND3(C,D,E,A,B,10); | |
335 SHA_MIX(11, 8, 3, 13); SHA_RND3(B,C,D,E,A,11); | |
336 SHA_MIX(12, 9, 4, 14); SHA_RND3(A,B,C,D,E,12); | |
337 SHA_MIX(13, 10, 5, 15); SHA_RND3(E,A,B,C,D,13); | |
338 SHA_MIX(14, 11, 6, 0); SHA_RND3(D,E,A,B,C,14); | |
339 SHA_MIX(15, 12, 7, 1); SHA_RND3(C,D,E,A,B,15); | |
340 | |
341 SHA_MIX( 0, 13, 8, 2); SHA_RND3(B,C,D,E,A, 0); | |
342 SHA_MIX( 1, 14, 9, 3); SHA_RND3(A,B,C,D,E, 1); | |
343 SHA_MIX( 2, 15, 10, 4); SHA_RND3(E,A,B,C,D, 2); | |
344 SHA_MIX( 3, 0, 11, 5); SHA_RND3(D,E,A,B,C, 3); | |
345 SHA_MIX( 4, 1, 12, 6); SHA_RND3(C,D,E,A,B, 4); | |
346 SHA_MIX( 5, 2, 13, 7); SHA_RND3(B,C,D,E,A, 5); | |
347 SHA_MIX( 6, 3, 14, 8); SHA_RND3(A,B,C,D,E, 6); | |
348 SHA_MIX( 7, 4, 15, 9); SHA_RND3(E,A,B,C,D, 7); | |
349 SHA_MIX( 8, 5, 0, 10); SHA_RND3(D,E,A,B,C, 8); | |
350 SHA_MIX( 9, 6, 1, 11); SHA_RND3(C,D,E,A,B, 9); | |
351 SHA_MIX(10, 7, 2, 12); SHA_RND3(B,C,D,E,A,10); | |
352 SHA_MIX(11, 8, 3, 13); SHA_RND3(A,B,C,D,E,11); | |
353 | |
354 SHA_MIX(12, 9, 4, 14); SHA_RND4(E,A,B,C,D,12); | |
355 SHA_MIX(13, 10, 5, 15); SHA_RND4(D,E,A,B,C,13); | |
356 SHA_MIX(14, 11, 6, 0); SHA_RND4(C,D,E,A,B,14); | |
357 SHA_MIX(15, 12, 7, 1); SHA_RND4(B,C,D,E,A,15); | |
358 | |
359 SHA_MIX( 0, 13, 8, 2); SHA_RND4(A,B,C,D,E, 0); | |
360 SHA_MIX( 1, 14, 9, 3); SHA_RND4(E,A,B,C,D, 1); | |
361 SHA_MIX( 2, 15, 10, 4); SHA_RND4(D,E,A,B,C, 2); | |
362 SHA_MIX( 3, 0, 11, 5); SHA_RND4(C,D,E,A,B, 3); | |
363 SHA_MIX( 4, 1, 12, 6); SHA_RND4(B,C,D,E,A, 4); | |
364 SHA_MIX( 5, 2, 13, 7); SHA_RND4(A,B,C,D,E, 5); | |
365 SHA_MIX( 6, 3, 14, 8); SHA_RND4(E,A,B,C,D, 6); | |
366 SHA_MIX( 7, 4, 15, 9); SHA_RND4(D,E,A,B,C, 7); | |
367 SHA_MIX( 8, 5, 0, 10); SHA_RND4(C,D,E,A,B, 8); | |
368 SHA_MIX( 9, 6, 1, 11); SHA_RND4(B,C,D,E,A, 9); | |
369 SHA_MIX(10, 7, 2, 12); SHA_RND4(A,B,C,D,E,10); | |
370 SHA_MIX(11, 8, 3, 13); SHA_RND4(E,A,B,C,D,11); | |
371 SHA_MIX(12, 9, 4, 14); SHA_RND4(D,E,A,B,C,12); | |
372 SHA_MIX(13, 10, 5, 15); SHA_RND4(C,D,E,A,B,13); | |
373 SHA_MIX(14, 11, 6, 0); SHA_RND4(B,C,D,E,A,14); | |
374 SHA_MIX(15, 12, 7, 1); SHA_RND4(A,B,C,D,E,15); | |
375 | |
376 XH(0) += A; | |
377 XH(1) += B; | |
378 XH(2) += C; | |
379 XH(3) += D; | |
380 XH(4) += E; | |
381 } | |
382 | |
383 /************************************************************************* | |
384 ** Code below this line added to make SHA code support BLAPI interface | |
385 */ | |
386 | |
387 SHA1Context * | |
388 SHA1_NewContext(void) | |
389 { | |
390 SHA1Context *cx; | |
391 | |
392 /* no need to ZNew, SHA1_Begin will init the context */ | |
393 cx = PORT_New(SHA1Context); | |
394 return cx; | |
395 } | |
396 | |
397 /* Zero and free the context */ | |
398 void | |
399 SHA1_DestroyContext(SHA1Context *cx, PRBool freeit) | |
400 { | |
401 memset(cx, 0, sizeof *cx); | |
402 if (freeit) { | |
403 PORT_Free(cx); | |
404 } | |
405 } | |
406 | |
407 SECStatus | |
408 SHA1_HashBuf(unsigned char *dest, const unsigned char *src, PRUint32 src_length) | |
409 { | |
410 SHA1Context ctx; | |
411 unsigned int outLen; | |
412 | |
413 SHA1_Begin(&ctx); | |
414 SHA1_Update(&ctx, src, src_length); | |
415 SHA1_End(&ctx, dest, &outLen, SHA1_LENGTH); | |
416 memset(&ctx, 0, sizeof ctx); | |
417 return SECSuccess; | |
418 } | |
419 | |
420 /* Hash a null-terminated character string. */ | |
421 SECStatus | |
422 SHA1_Hash(unsigned char *dest, const char *src) | |
423 { | |
424 return SHA1_HashBuf(dest, (const unsigned char *)src, PORT_Strlen (src)); | |
425 } | |
426 | |
427 /* | |
428 * need to support save/restore state in pkcs11. Stores all the info necessary | |
429 * for a structure into just a stream of bytes. | |
430 */ | |
431 unsigned int | |
432 SHA1_FlattenSize(SHA1Context *cx) | |
433 { | |
434 return sizeof(SHA1Context); | |
435 } | |
436 | |
437 SECStatus | |
438 SHA1_Flatten(SHA1Context *cx,unsigned char *space) | |
439 { | |
440 PORT_Memcpy(space,cx, sizeof(SHA1Context)); | |
441 return SECSuccess; | |
442 } | |
443 | |
444 SHA1Context * | |
445 SHA1_Resurrect(unsigned char *space,void *arg) | |
446 { | |
447 SHA1Context *cx = SHA1_NewContext(); | |
448 if (cx == NULL) return NULL; | |
449 | |
450 PORT_Memcpy(cx,space, sizeof(SHA1Context)); | |
451 return cx; | |
452 } | |
453 | |
454 void SHA1_Clone(SHA1Context *dest, SHA1Context *src) | |
455 { | |
456 memcpy(dest, src, sizeof *dest); | |
457 } | |
458 | |
459 void | |
460 SHA1_TraceState(SHA1Context *ctx) | |
461 { | |
462 PORT_SetError(PR_NOT_IMPLEMENTED_ERROR); | |
463 } |