diff nspr/pr/src/misc/prdtoa.c @ 0:1e5118fa0cb1

This is NSS with a Cmake Buildsyste To compile a static NSS library for Windows we've used the Chromium-NSS fork and added a Cmake buildsystem to compile it statically for Windows. See README.chromium for chromium changes and README.trustbridge for our modifications.
author Andre Heinecke <andre.heinecke@intevation.de>
date Mon, 28 Jul 2014 10:47:06 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/nspr/pr/src/misc/prdtoa.c	Mon Jul 28 10:47:06 2014 +0200
@@ -0,0 +1,3522 @@
+/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+/*
+ * This file is based on the third-party code dtoa.c.  We minimize our
+ * modifications to third-party code to make it easy to merge new versions.
+ * The author of dtoa.c was not willing to add the parentheses suggested by
+ * GCC, so we suppress these warnings.
+ */
+#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 2)
+#pragma GCC diagnostic ignored "-Wparentheses"
+#endif
+
+#include "primpl.h"
+#include "prbit.h"
+
+#define MULTIPLE_THREADS
+#define ACQUIRE_DTOA_LOCK(n)	PR_Lock(dtoa_lock[n])
+#define FREE_DTOA_LOCK(n)	PR_Unlock(dtoa_lock[n])
+
+static PRLock *dtoa_lock[2];
+
+void _PR_InitDtoa(void)
+{
+    dtoa_lock[0] = PR_NewLock();
+    dtoa_lock[1] = PR_NewLock();
+}
+
+void _PR_CleanupDtoa(void)
+{
+    PR_DestroyLock(dtoa_lock[0]);
+    dtoa_lock[0] = NULL;
+    PR_DestroyLock(dtoa_lock[1]);
+    dtoa_lock[1] = NULL;
+
+    /* FIXME: deal with freelist and p5s. */
+}
+
+#if !defined(__ARM_EABI__) \
+    && (defined(__arm) || defined(__arm__) || defined(__arm26__) \
+    || defined(__arm32__))
+#define IEEE_ARM
+#elif defined(IS_LITTLE_ENDIAN)
+#define IEEE_8087
+#else
+#define IEEE_MC68k
+#endif
+
+#define Long PRInt32
+#define ULong PRUint32
+#define NO_LONG_LONG
+
+#define No_Hex_NaN
+
+/****************************************************************
+ *
+ * The author of this software is David M. Gay.
+ *
+ * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose without fee is hereby granted, provided that this entire notice
+ * is included in all copies of any software which is or includes a copy
+ * or modification of this software and in all copies of the supporting
+ * documentation for such software.
+ *
+ * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
+ * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
+ * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
+ * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
+ *
+ ***************************************************************/
+
+/* Please send bug reports to David M. Gay (dmg at acm dot org,
+ * with " at " changed at "@" and " dot " changed to ".").	*/
+
+/* On a machine with IEEE extended-precision registers, it is
+ * necessary to specify double-precision (53-bit) rounding precision
+ * before invoking strtod or dtoa.  If the machine uses (the equivalent
+ * of) Intel 80x87 arithmetic, the call
+ *	_control87(PC_53, MCW_PC);
+ * does this with many compilers.  Whether this or another call is
+ * appropriate depends on the compiler; for this to work, it may be
+ * necessary to #include "float.h" or another system-dependent header
+ * file.
+ */
+
+/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
+ *
+ * This strtod returns a nearest machine number to the input decimal
+ * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
+ * broken by the IEEE round-even rule.  Otherwise ties are broken by
+ * biased rounding (add half and chop).
+ *
+ * Inspired loosely by William D. Clinger's paper "How to Read Floating
+ * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
+ *
+ * Modifications:
+ *
+ *	1. We only require IEEE, IBM, or VAX double-precision
+ *		arithmetic (not IEEE double-extended).
+ *	2. We get by with floating-point arithmetic in a case that
+ *		Clinger missed -- when we're computing d * 10^n
+ *		for a small integer d and the integer n is not too
+ *		much larger than 22 (the maximum integer k for which
+ *		we can represent 10^k exactly), we may be able to
+ *		compute (d*10^k) * 10^(e-k) with just one roundoff.
+ *	3. Rather than a bit-at-a-time adjustment of the binary
+ *		result in the hard case, we use floating-point
+ *		arithmetic to determine the adjustment to within
+ *		one bit; only in really hard cases do we need to
+ *		compute a second residual.
+ *	4. Because of 3., we don't need a large table of powers of 10
+ *		for ten-to-e (just some small tables, e.g. of 10^k
+ *		for 0 <= k <= 22).
+ */
+
+/*
+ * #define IEEE_8087 for IEEE-arithmetic machines where the least
+ *	significant byte has the lowest address.
+ * #define IEEE_MC68k for IEEE-arithmetic machines where the most
+ *	significant byte has the lowest address.
+ * #define IEEE_ARM for IEEE-arithmetic machines where the two words
+ *	in a double are stored in big endian order but the two shorts
+ *	in a word are still stored in little endian order.
+ * #define Long int on machines with 32-bit ints and 64-bit longs.
+ * #define IBM for IBM mainframe-style floating-point arithmetic.
+ * #define VAX for VAX-style floating-point arithmetic (D_floating).
+ * #define No_leftright to omit left-right logic in fast floating-point
+ *	computation of dtoa.
+ * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
+ *	and strtod and dtoa should round accordingly.
+ * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
+ *	and Honor_FLT_ROUNDS is not #defined.
+ * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
+ *	that use extended-precision instructions to compute rounded
+ *	products and quotients) with IBM.
+ * #define ROUND_BIASED for IEEE-format with biased rounding.
+ * #define Inaccurate_Divide for IEEE-format with correctly rounded
+ *	products but inaccurate quotients, e.g., for Intel i860.
+ * #define NO_LONG_LONG on machines that do not have a "long long"
+ *	integer type (of >= 64 bits).  On such machines, you can
+ *	#define Just_16 to store 16 bits per 32-bit Long when doing
+ *	high-precision integer arithmetic.  Whether this speeds things
+ *	up or slows things down depends on the machine and the number
+ *	being converted.  If long long is available and the name is
+ *	something other than "long long", #define Llong to be the name,
+ *	and if "unsigned Llong" does not work as an unsigned version of
+ *	Llong, #define #ULLong to be the corresponding unsigned type.
+ * #define KR_headers for old-style C function headers.
+ * #define Bad_float_h if your system lacks a float.h or if it does not
+ *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
+ *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
+ * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
+ *	if memory is available and otherwise does something you deem
+ *	appropriate.  If MALLOC is undefined, malloc will be invoked
+ *	directly -- and assumed always to succeed.  Similarly, if you
+ *	want something other than the system's free() to be called to
+ *	recycle memory acquired from MALLOC, #define FREE to be the
+ *	name of the alternate routine.  (FREE or free is only called in
+ *	pathological cases, e.g., in a dtoa call after a dtoa return in
+ *	mode 3 with thousands of digits requested.)
+ * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
+ *	memory allocations from a private pool of memory when possible.
+ *	When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
+ *	unless #defined to be a different length.  This default length
+ *	suffices to get rid of MALLOC calls except for unusual cases,
+ *	such as decimal-to-binary conversion of a very long string of
+ *	digits.  The longest string dtoa can return is about 751 bytes
+ *	long.  For conversions by strtod of strings of 800 digits and
+ *	all dtoa conversions in single-threaded executions with 8-byte
+ *	pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
+ *	pointers, PRIVATE_MEM >= 7112 appears adequate.
+ * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
+ *	Infinity and NaN (case insensitively).  On some systems (e.g.,
+ *	some HP systems), it may be necessary to #define NAN_WORD0
+ *	appropriately -- to the most significant word of a quiet NaN.
+ *	(On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
+ *	When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
+ *	strtod also accepts (case insensitively) strings of the form
+ *	NaN(x), where x is a string of hexadecimal digits and spaces;
+ *	if there is only one string of hexadecimal digits, it is taken
+ *	for the 52 fraction bits of the resulting NaN; if there are two
+ *	or more strings of hex digits, the first is for the high 20 bits,
+ *	the second and subsequent for the low 32 bits, with intervening
+ *	white space ignored; but if this results in none of the 52
+ *	fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
+ *	and NAN_WORD1 are used instead.
+ * #define MULTIPLE_THREADS if the system offers preemptively scheduled
+ *	multiple threads.  In this case, you must provide (or suitably
+ *	#define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
+ *	by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
+ *	in pow5mult, ensures lazy evaluation of only one copy of high
+ *	powers of 5; omitting this lock would introduce a small
+ *	probability of wasting memory, but would otherwise be harmless.)
+ *	You must also invoke freedtoa(s) to free the value s returned by
+ *	dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
+ * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
+ *	avoids underflows on inputs whose result does not underflow.
+ *	If you #define NO_IEEE_Scale on a machine that uses IEEE-format
+ *	floating-point numbers and flushes underflows to zero rather
+ *	than implementing gradual underflow, then you must also #define
+ *	Sudden_Underflow.
+ * #define USE_LOCALE to use the current locale's decimal_point value.
+ * #define SET_INEXACT if IEEE arithmetic is being used and extra
+ *	computation should be done to set the inexact flag when the
+ *	result is inexact and avoid setting inexact when the result
+ *	is exact.  In this case, dtoa.c must be compiled in
+ *	an environment, perhaps provided by #include "dtoa.c" in a
+ *	suitable wrapper, that defines two functions,
+ *		int get_inexact(void);
+ *		void clear_inexact(void);
+ *	such that get_inexact() returns a nonzero value if the
+ *	inexact bit is already set, and clear_inexact() sets the
+ *	inexact bit to 0.  When SET_INEXACT is #defined, strtod
+ *	also does extra computations to set the underflow and overflow
+ *	flags when appropriate (i.e., when the result is tiny and
+ *	inexact or when it is a numeric value rounded to +-infinity).
+ * #define NO_ERRNO if strtod should not assign errno = ERANGE when
+ *	the result overflows to +-Infinity or underflows to 0.
+ */
+
+#ifndef Long
+#define Long long
+#endif
+#ifndef ULong
+typedef unsigned Long ULong;
+#endif
+
+#ifdef DEBUG
+#include "stdio.h"
+#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
+#endif
+
+#include "stdlib.h"
+#include "string.h"
+
+#ifdef USE_LOCALE
+#include "locale.h"
+#endif
+
+#ifdef MALLOC
+#ifdef KR_headers
+extern char *MALLOC();
+#else
+extern void *MALLOC(size_t);
+#endif
+#else
+#define MALLOC malloc
+#endif
+
+#ifndef Omit_Private_Memory
+#ifndef PRIVATE_MEM
+#define PRIVATE_MEM 2304
+#endif
+#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
+static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
+#endif
+
+#undef IEEE_Arith
+#undef Avoid_Underflow
+#ifdef IEEE_MC68k
+#define IEEE_Arith
+#endif
+#ifdef IEEE_8087
+#define IEEE_Arith
+#endif
+#ifdef IEEE_ARM
+#define IEEE_Arith
+#endif
+
+#include "errno.h"
+
+#ifdef Bad_float_h
+
+#ifdef IEEE_Arith
+#define DBL_DIG 15
+#define DBL_MAX_10_EXP 308
+#define DBL_MAX_EXP 1024
+#define FLT_RADIX 2
+#endif /*IEEE_Arith*/
+
+#ifdef IBM
+#define DBL_DIG 16
+#define DBL_MAX_10_EXP 75
+#define DBL_MAX_EXP 63
+#define FLT_RADIX 16
+#define DBL_MAX 7.2370055773322621e+75
+#endif
+
+#ifdef VAX
+#define DBL_DIG 16
+#define DBL_MAX_10_EXP 38
+#define DBL_MAX_EXP 127
+#define FLT_RADIX 2
+#define DBL_MAX 1.7014118346046923e+38
+#endif
+
+#ifndef LONG_MAX
+#define LONG_MAX 2147483647
+#endif
+
+#else /* ifndef Bad_float_h */
+#include "float.h"
+/*
+ * MacOS 10.2 defines the macro FLT_ROUNDS to an internal function
+ * which does not exist on 10.1.  We can safely #define it to 1 here
+ * to allow 10.2 builds to run on 10.1, since we can't use fesetround()
+ * (which does not exist on 10.1 either).
+ */
+#if defined(XP_MACOSX) && (!defined(MAC_OS_X_VERSION_10_2) || \
+    MAC_OS_X_VERSION_MIN_REQUIRED < MAC_OS_X_VERSION_10_2)
+#undef FLT_ROUNDS
+#define FLT_ROUNDS 1
+#endif /* DT < 10.2 */
+#endif /* Bad_float_h */
+
+#ifndef __MATH_H__
+#include "math.h"
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#ifndef CONST
+#ifdef KR_headers
+#define CONST /* blank */
+#else
+#define CONST const
+#endif
+#endif
+
+#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(IEEE_ARM) + defined(VAX) + defined(IBM) != 1
+Exactly one of IEEE_8087, IEEE_MC68k, IEEE_ARM, VAX, or IBM should be defined.
+#endif
+
+typedef union { double d; ULong L[2]; } U;
+
+#define dval(x) (x).d
+#ifdef IEEE_8087
+#define word0(x) (x).L[1]
+#define word1(x) (x).L[0]
+#else
+#define word0(x) (x).L[0]
+#define word1(x) (x).L[1]
+#endif
+
+/* The following definition of Storeinc is appropriate for MIPS processors.
+ * An alternative that might be better on some machines is
+ * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
+ */
+#if defined(IEEE_8087) + defined(IEEE_ARM) + defined(VAX)
+#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
+((unsigned short *)a)[0] = (unsigned short)c, a++)
+#else
+#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
+((unsigned short *)a)[1] = (unsigned short)c, a++)
+#endif
+
+/* #define P DBL_MANT_DIG */
+/* Ten_pmax = floor(P*log(2)/log(5)) */
+/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
+/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
+/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
+
+#ifdef IEEE_Arith
+#define Exp_shift  20
+#define Exp_shift1 20
+#define Exp_msk1    0x100000
+#define Exp_msk11   0x100000
+#define Exp_mask  0x7ff00000
+#define P 53
+#define Bias 1023
+#define Emin (-1022)
+#define Exp_1  0x3ff00000
+#define Exp_11 0x3ff00000
+#define Ebits 11
+#define Frac_mask  0xfffff
+#define Frac_mask1 0xfffff
+#define Ten_pmax 22
+#define Bletch 0x10
+#define Bndry_mask  0xfffff
+#define Bndry_mask1 0xfffff
+#define LSB 1
+#define Sign_bit 0x80000000
+#define Log2P 1
+#define Tiny0 0
+#define Tiny1 1
+#define Quick_max 14
+#define Int_max 14
+#ifndef NO_IEEE_Scale
+#define Avoid_Underflow
+#ifdef Flush_Denorm	/* debugging option */
+#undef Sudden_Underflow
+#endif
+#endif
+
+#ifndef Flt_Rounds
+#ifdef FLT_ROUNDS
+#define Flt_Rounds FLT_ROUNDS
+#else
+#define Flt_Rounds 1
+#endif
+#endif /*Flt_Rounds*/
+
+#ifdef Honor_FLT_ROUNDS
+#define Rounding rounding
+#undef Check_FLT_ROUNDS
+#define Check_FLT_ROUNDS
+#else
+#define Rounding Flt_Rounds
+#endif
+
+#else /* ifndef IEEE_Arith */
+#undef Check_FLT_ROUNDS
+#undef Honor_FLT_ROUNDS
+#undef SET_INEXACT
+#undef  Sudden_Underflow
+#define Sudden_Underflow
+#ifdef IBM
+#undef Flt_Rounds
+#define Flt_Rounds 0
+#define Exp_shift  24
+#define Exp_shift1 24
+#define Exp_msk1   0x1000000
+#define Exp_msk11  0x1000000
+#define Exp_mask  0x7f000000
+#define P 14
+#define Bias 65
+#define Exp_1  0x41000000
+#define Exp_11 0x41000000
+#define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
+#define Frac_mask  0xffffff
+#define Frac_mask1 0xffffff
+#define Bletch 4
+#define Ten_pmax 22
+#define Bndry_mask  0xefffff
+#define Bndry_mask1 0xffffff
+#define LSB 1
+#define Sign_bit 0x80000000
+#define Log2P 4
+#define Tiny0 0x100000
+#define Tiny1 0
+#define Quick_max 14
+#define Int_max 15
+#else /* VAX */
+#undef Flt_Rounds
+#define Flt_Rounds 1
+#define Exp_shift  23
+#define Exp_shift1 7
+#define Exp_msk1    0x80
+#define Exp_msk11   0x800000
+#define Exp_mask  0x7f80
+#define P 56
+#define Bias 129
+#define Exp_1  0x40800000
+#define Exp_11 0x4080
+#define Ebits 8
+#define Frac_mask  0x7fffff
+#define Frac_mask1 0xffff007f
+#define Ten_pmax 24
+#define Bletch 2
+#define Bndry_mask  0xffff007f
+#define Bndry_mask1 0xffff007f
+#define LSB 0x10000
+#define Sign_bit 0x8000
+#define Log2P 1
+#define Tiny0 0x80
+#define Tiny1 0
+#define Quick_max 15
+#define Int_max 15
+#endif /* IBM, VAX */
+#endif /* IEEE_Arith */
+
+#ifndef IEEE_Arith
+#define ROUND_BIASED
+#endif
+
+#ifdef RND_PRODQUOT
+#define rounded_product(a,b) a = rnd_prod(a, b)
+#define rounded_quotient(a,b) a = rnd_quot(a, b)
+#ifdef KR_headers
+extern double rnd_prod(), rnd_quot();
+#else
+extern double rnd_prod(double, double), rnd_quot(double, double);
+#endif
+#else
+#define rounded_product(a,b) a *= b
+#define rounded_quotient(a,b) a /= b
+#endif
+
+#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
+#define Big1 0xffffffff
+
+#ifndef Pack_32
+#define Pack_32
+#endif
+
+#ifdef KR_headers
+#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff)
+#else
+#define FFFFFFFF 0xffffffffUL
+#endif
+
+#ifdef NO_LONG_LONG
+#undef ULLong
+#ifdef Just_16
+#undef Pack_32
+/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
+ * This makes some inner loops simpler and sometimes saves work
+ * during multiplications, but it often seems to make things slightly
+ * slower.  Hence the default is now to store 32 bits per Long.
+ */
+#endif
+#else	/* long long available */
+#ifndef Llong
+#define Llong long long
+#endif
+#ifndef ULLong
+#define ULLong unsigned Llong
+#endif
+#endif /* NO_LONG_LONG */
+
+#ifndef MULTIPLE_THREADS
+#define ACQUIRE_DTOA_LOCK(n)	/*nothing*/
+#define FREE_DTOA_LOCK(n)	/*nothing*/
+#endif
+
+#define Kmax 7
+
+ struct
+Bigint {
+	struct Bigint *next;
+	int k, maxwds, sign, wds;
+	ULong x[1];
+	};
+
+ typedef struct Bigint Bigint;
+
+ static Bigint *freelist[Kmax+1];
+
+ static Bigint *
+Balloc
+#ifdef KR_headers
+	(k) int k;
+#else
+	(int k)
+#endif
+{
+	int x;
+	Bigint *rv;
+#ifndef Omit_Private_Memory
+	unsigned int len;
+#endif
+
+	ACQUIRE_DTOA_LOCK(0);
+	/* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */
+	/* but this case seems very unlikely. */
+	if (k <= Kmax && (rv = freelist[k]))
+		freelist[k] = rv->next;
+	else {
+		x = 1 << k;
+#ifdef Omit_Private_Memory
+		rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
+#else
+		len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
+			/sizeof(double);
+		if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
+			rv = (Bigint*)pmem_next;
+			pmem_next += len;
+			}
+		else
+			rv = (Bigint*)MALLOC(len*sizeof(double));
+#endif
+		rv->k = k;
+		rv->maxwds = x;
+		}
+	FREE_DTOA_LOCK(0);
+	rv->sign = rv->wds = 0;
+	return rv;
+	}
+
+ static void
+Bfree
+#ifdef KR_headers
+	(v) Bigint *v;
+#else
+	(Bigint *v)
+#endif
+{
+	if (v) {
+		if (v->k > Kmax)
+#ifdef FREE
+			FREE((void*)v);
+#else
+			free((void*)v);
+#endif
+		else {
+			ACQUIRE_DTOA_LOCK(0);
+			v->next = freelist[v->k];
+			freelist[v->k] = v;
+			FREE_DTOA_LOCK(0);
+			}
+		}
+	}
+
+#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
+y->wds*sizeof(Long) + 2*sizeof(int))
+
+ static Bigint *
+multadd
+#ifdef KR_headers
+	(b, m, a) Bigint *b; int m, a;
+#else
+	(Bigint *b, int m, int a)	/* multiply by m and add a */
+#endif
+{
+	int i, wds;
+#ifdef ULLong
+	ULong *x;
+	ULLong carry, y;
+#else
+	ULong carry, *x, y;
+#ifdef Pack_32
+	ULong xi, z;
+#endif
+#endif
+	Bigint *b1;
+
+	wds = b->wds;
+	x = b->x;
+	i = 0;
+	carry = a;
+	do {
+#ifdef ULLong
+		y = *x * (ULLong)m + carry;
+		carry = y >> 32;
+		*x++ = y & FFFFFFFF;
+#else
+#ifdef Pack_32
+		xi = *x;
+		y = (xi & 0xffff) * m + carry;
+		z = (xi >> 16) * m + (y >> 16);
+		carry = z >> 16;
+		*x++ = (z << 16) + (y & 0xffff);
+#else
+		y = *x * m + carry;
+		carry = y >> 16;
+		*x++ = y & 0xffff;
+#endif
+#endif
+		}
+		while(++i < wds);
+	if (carry) {
+		if (wds >= b->maxwds) {
+			b1 = Balloc(b->k+1);
+			Bcopy(b1, b);
+			Bfree(b);
+			b = b1;
+			}
+		b->x[wds++] = carry;
+		b->wds = wds;
+		}
+	return b;
+	}
+
+ static Bigint *
+s2b
+#ifdef KR_headers
+	(s, nd0, nd, y9) CONST char *s; int nd0, nd; ULong y9;
+#else
+	(CONST char *s, int nd0, int nd, ULong y9)
+#endif
+{
+	Bigint *b;
+	int i, k;
+	Long x, y;
+
+	x = (nd + 8) / 9;
+	for(k = 0, y = 1; x > y; y <<= 1, k++) ;
+#ifdef Pack_32
+	b = Balloc(k);
+	b->x[0] = y9;
+	b->wds = 1;
+#else
+	b = Balloc(k+1);
+	b->x[0] = y9 & 0xffff;
+	b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
+#endif
+
+	i = 9;
+	if (9 < nd0) {
+		s += 9;
+		do b = multadd(b, 10, *s++ - '0');
+			while(++i < nd0);
+		s++;
+		}
+	else
+		s += 10;
+	for(; i < nd; i++)
+		b = multadd(b, 10, *s++ - '0');
+	return b;
+	}
+
+ static int
+hi0bits
+#ifdef KR_headers
+	(x) register ULong x;
+#else
+	(register ULong x)
+#endif
+{
+#ifdef PR_HAVE_BUILTIN_BITSCAN32
+	return( (!x) ? 32 : pr_bitscan_clz32(x) );
+#else
+	register int k = 0;
+
+	if (!(x & 0xffff0000)) {
+		k = 16;
+		x <<= 16;
+		}
+	if (!(x & 0xff000000)) {
+		k += 8;
+		x <<= 8;
+		}
+	if (!(x & 0xf0000000)) {
+		k += 4;
+		x <<= 4;
+		}
+	if (!(x & 0xc0000000)) {
+		k += 2;
+		x <<= 2;
+		}
+	if (!(x & 0x80000000)) {
+		k++;
+		if (!(x & 0x40000000))
+			return 32;
+		}
+	return k;
+#endif /* PR_HAVE_BUILTIN_BITSCAN32 */
+	}
+
+ static int
+lo0bits
+#ifdef KR_headers
+	(y) ULong *y;
+#else
+	(ULong *y)
+#endif
+{
+#ifdef PR_HAVE_BUILTIN_BITSCAN32
+	int k;
+	ULong x = *y;
+
+	if (x>1)
+		*y = ( x >> (k = pr_bitscan_ctz32(x)) );
+	else
+		k = ((x ^ 1) << 5);
+#else
+	register int k;
+	register ULong x = *y;
+
+	if (x & 7) {
+		if (x & 1)
+			return 0;
+		if (x & 2) {
+			*y = x >> 1;
+			return 1;
+			}
+		*y = x >> 2;
+		return 2;
+		}
+	k = 0;
+	if (!(x & 0xffff)) {
+		k = 16;
+		x >>= 16;
+		}
+	if (!(x & 0xff)) {
+		k += 8;
+		x >>= 8;
+		}
+	if (!(x & 0xf)) {
+		k += 4;
+		x >>= 4;
+		}
+	if (!(x & 0x3)) {
+		k += 2;
+		x >>= 2;
+		}
+	if (!(x & 1)) {
+		k++;
+		x >>= 1;
+		if (!x)
+			return 32;
+		}
+	*y = x;
+#endif /* PR_HAVE_BUILTIN_BITSCAN32 */
+	return k;
+	}
+
+ static Bigint *
+i2b
+#ifdef KR_headers
+	(i) int i;
+#else
+	(int i)
+#endif
+{
+	Bigint *b;
+
+	b = Balloc(1);
+	b->x[0] = i;
+	b->wds = 1;
+	return b;
+	}
+
+ static Bigint *
+mult
+#ifdef KR_headers
+	(a, b) Bigint *a, *b;
+#else
+	(Bigint *a, Bigint *b)
+#endif
+{
+	Bigint *c;
+	int k, wa, wb, wc;
+	ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
+	ULong y;
+#ifdef ULLong
+	ULLong carry, z;
+#else
+	ULong carry, z;
+#ifdef Pack_32
+	ULong z2;
+#endif
+#endif
+
+	if (a->wds < b->wds) {
+		c = a;
+		a = b;
+		b = c;
+		}
+	k = a->k;
+	wa = a->wds;
+	wb = b->wds;
+	wc = wa + wb;
+	if (wc > a->maxwds)
+		k++;
+	c = Balloc(k);
+	for(x = c->x, xa = x + wc; x < xa; x++)
+		*x = 0;
+	xa = a->x;
+	xae = xa + wa;
+	xb = b->x;
+	xbe = xb + wb;
+	xc0 = c->x;
+#ifdef ULLong
+	for(; xb < xbe; xc0++) {
+		if (y = *xb++) {
+			x = xa;
+			xc = xc0;
+			carry = 0;
+			do {
+				z = *x++ * (ULLong)y + *xc + carry;
+				carry = z >> 32;
+				*xc++ = z & FFFFFFFF;
+				}
+				while(x < xae);
+			*xc = carry;
+			}
+		}
+#else
+#ifdef Pack_32
+	for(; xb < xbe; xb++, xc0++) {
+		if (y = *xb & 0xffff) {
+			x = xa;
+			xc = xc0;
+			carry = 0;
+			do {
+				z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
+				carry = z >> 16;
+				z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
+				carry = z2 >> 16;
+				Storeinc(xc, z2, z);
+				}
+				while(x < xae);
+			*xc = carry;
+			}
+		if (y = *xb >> 16) {
+			x = xa;
+			xc = xc0;
+			carry = 0;
+			z2 = *xc;
+			do {
+				z = (*x & 0xffff) * y + (*xc >> 16) + carry;
+				carry = z >> 16;
+				Storeinc(xc, z, z2);
+				z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
+				carry = z2 >> 16;
+				}
+				while(x < xae);
+			*xc = z2;
+			}
+		}
+#else
+	for(; xb < xbe; xc0++) {
+		if (y = *xb++) {
+			x = xa;
+			xc = xc0;
+			carry = 0;
+			do {
+				z = *x++ * y + *xc + carry;
+				carry = z >> 16;
+				*xc++ = z & 0xffff;
+				}
+				while(x < xae);
+			*xc = carry;
+			}
+		}
+#endif
+#endif
+	for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
+	c->wds = wc;
+	return c;
+	}
+
+ static Bigint *p5s;
+
+ static Bigint *
+pow5mult
+#ifdef KR_headers
+	(b, k) Bigint *b; int k;
+#else
+	(Bigint *b, int k)
+#endif
+{
+	Bigint *b1, *p5, *p51;
+	int i;
+	static int p05[3] = { 5, 25, 125 };
+
+	if (i = k & 3)
+		b = multadd(b, p05[i-1], 0);
+
+	if (!(k >>= 2))
+		return b;
+	if (!(p5 = p5s)) {
+		/* first time */
+#ifdef MULTIPLE_THREADS
+		ACQUIRE_DTOA_LOCK(1);
+		if (!(p5 = p5s)) {
+			p5 = p5s = i2b(625);
+			p5->next = 0;
+			}
+		FREE_DTOA_LOCK(1);
+#else
+		p5 = p5s = i2b(625);
+		p5->next = 0;
+#endif
+		}
+	for(;;) {
+		if (k & 1) {
+			b1 = mult(b, p5);
+			Bfree(b);
+			b = b1;
+			}
+		if (!(k >>= 1))
+			break;
+		if (!(p51 = p5->next)) {
+#ifdef MULTIPLE_THREADS
+			ACQUIRE_DTOA_LOCK(1);
+			if (!(p51 = p5->next)) {
+				p51 = p5->next = mult(p5,p5);
+				p51->next = 0;
+				}
+			FREE_DTOA_LOCK(1);
+#else
+			p51 = p5->next = mult(p5,p5);
+			p51->next = 0;
+#endif
+			}
+		p5 = p51;
+		}
+	return b;
+	}
+
+ static Bigint *
+lshift
+#ifdef KR_headers
+	(b, k) Bigint *b; int k;
+#else
+	(Bigint *b, int k)
+#endif
+{
+	int i, k1, n, n1;
+	Bigint *b1;
+	ULong *x, *x1, *xe, z;
+
+#ifdef Pack_32
+	n = k >> 5;
+#else
+	n = k >> 4;
+#endif
+	k1 = b->k;
+	n1 = n + b->wds + 1;
+	for(i = b->maxwds; n1 > i; i <<= 1)
+		k1++;
+	b1 = Balloc(k1);
+	x1 = b1->x;
+	for(i = 0; i < n; i++)
+		*x1++ = 0;
+	x = b->x;
+	xe = x + b->wds;
+#ifdef Pack_32
+	if (k &= 0x1f) {
+		k1 = 32 - k;
+		z = 0;
+		do {
+			*x1++ = *x << k | z;
+			z = *x++ >> k1;
+			}
+			while(x < xe);
+		if (*x1 = z)
+			++n1;
+		}
+#else
+	if (k &= 0xf) {
+		k1 = 16 - k;
+		z = 0;
+		do {
+			*x1++ = *x << k  & 0xffff | z;
+			z = *x++ >> k1;
+			}
+			while(x < xe);
+		if (*x1 = z)
+			++n1;
+		}
+#endif
+	else do
+		*x1++ = *x++;
+		while(x < xe);
+	b1->wds = n1 - 1;
+	Bfree(b);
+	return b1;
+	}
+
+ static int
+cmp
+#ifdef KR_headers
+	(a, b) Bigint *a, *b;
+#else
+	(Bigint *a, Bigint *b)
+#endif
+{
+	ULong *xa, *xa0, *xb, *xb0;
+	int i, j;
+
+	i = a->wds;
+	j = b->wds;
+#ifdef DEBUG
+	if (i > 1 && !a->x[i-1])
+		Bug("cmp called with a->x[a->wds-1] == 0");
+	if (j > 1 && !b->x[j-1])
+		Bug("cmp called with b->x[b->wds-1] == 0");
+#endif
+	if (i -= j)
+		return i;
+	xa0 = a->x;
+	xa = xa0 + j;
+	xb0 = b->x;
+	xb = xb0 + j;
+	for(;;) {
+		if (*--xa != *--xb)
+			return *xa < *xb ? -1 : 1;
+		if (xa <= xa0)
+			break;
+		}
+	return 0;
+	}
+
+ static Bigint *
+diff
+#ifdef KR_headers
+	(a, b) Bigint *a, *b;
+#else
+	(Bigint *a, Bigint *b)
+#endif
+{
+	Bigint *c;
+	int i, wa, wb;
+	ULong *xa, *xae, *xb, *xbe, *xc;
+#ifdef ULLong
+	ULLong borrow, y;
+#else
+	ULong borrow, y;
+#ifdef Pack_32
+	ULong z;
+#endif
+#endif
+
+	i = cmp(a,b);
+	if (!i) {
+		c = Balloc(0);
+		c->wds = 1;
+		c->x[0] = 0;
+		return c;
+		}
+	if (i < 0) {
+		c = a;
+		a = b;
+		b = c;
+		i = 1;
+		}
+	else
+		i = 0;
+	c = Balloc(a->k);
+	c->sign = i;
+	wa = a->wds;
+	xa = a->x;
+	xae = xa + wa;
+	wb = b->wds;
+	xb = b->x;
+	xbe = xb + wb;
+	xc = c->x;
+	borrow = 0;
+#ifdef ULLong
+	do {
+		y = (ULLong)*xa++ - *xb++ - borrow;
+		borrow = y >> 32 & (ULong)1;
+		*xc++ = y & FFFFFFFF;
+		}
+		while(xb < xbe);
+	while(xa < xae) {
+		y = *xa++ - borrow;
+		borrow = y >> 32 & (ULong)1;
+		*xc++ = y & FFFFFFFF;
+		}
+#else
+#ifdef Pack_32
+	do {
+		y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
+		borrow = (y & 0x10000) >> 16;
+		z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
+		borrow = (z & 0x10000) >> 16;
+		Storeinc(xc, z, y);
+		}
+		while(xb < xbe);
+	while(xa < xae) {
+		y = (*xa & 0xffff) - borrow;
+		borrow = (y & 0x10000) >> 16;
+		z = (*xa++ >> 16) - borrow;
+		borrow = (z & 0x10000) >> 16;
+		Storeinc(xc, z, y);
+		}
+#else
+	do {
+		y = *xa++ - *xb++ - borrow;
+		borrow = (y & 0x10000) >> 16;
+		*xc++ = y & 0xffff;
+		}
+		while(xb < xbe);
+	while(xa < xae) {
+		y = *xa++ - borrow;
+		borrow = (y & 0x10000) >> 16;
+		*xc++ = y & 0xffff;
+		}
+#endif
+#endif
+	while(!*--xc)
+		wa--;
+	c->wds = wa;
+	return c;
+	}
+
+ static double
+ulp
+#ifdef KR_headers
+	(dx) double dx;
+#else
+	(double dx)
+#endif
+{
+	register Long L;
+	U x, a;
+
+	dval(x) = dx;
+	L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
+#ifndef Avoid_Underflow
+#ifndef Sudden_Underflow
+	if (L > 0) {
+#endif
+#endif
+#ifdef IBM
+		L |= Exp_msk1 >> 4;
+#endif
+		word0(a) = L;
+		word1(a) = 0;
+#ifndef Avoid_Underflow
+#ifndef Sudden_Underflow
+		}
+	else {
+		L = -L >> Exp_shift;
+		if (L < Exp_shift) {
+			word0(a) = 0x80000 >> L;
+			word1(a) = 0;
+			}
+		else {
+			word0(a) = 0;
+			L -= Exp_shift;
+			word1(a) = L >= 31 ? 1 : 1 << 31 - L;
+			}
+		}
+#endif
+#endif
+	return dval(a);
+	}
+
+ static double
+b2d
+#ifdef KR_headers
+	(a, e) Bigint *a; int *e;
+#else
+	(Bigint *a, int *e)
+#endif
+{
+	ULong *xa, *xa0, w, y, z;
+	int k;
+	U d;
+#ifdef VAX
+	ULong d0, d1;
+#else
+#define d0 word0(d)
+#define d1 word1(d)
+#endif
+
+	xa0 = a->x;
+	xa = xa0 + a->wds;
+	y = *--xa;
+#ifdef DEBUG
+	if (!y) Bug("zero y in b2d");
+#endif
+	k = hi0bits(y);
+	*e = 32 - k;
+#ifdef Pack_32
+	if (k < Ebits) {
+		d0 = Exp_1 | y >> Ebits - k;
+		w = xa > xa0 ? *--xa : 0;
+		d1 = y << (32-Ebits) + k | w >> Ebits - k;
+		goto ret_d;
+		}
+	z = xa > xa0 ? *--xa : 0;
+	if (k -= Ebits) {
+		d0 = Exp_1 | y << k | z >> 32 - k;
+		y = xa > xa0 ? *--xa : 0;
+		d1 = z << k | y >> 32 - k;
+		}
+	else {
+		d0 = Exp_1 | y;
+		d1 = z;
+		}
+#else
+	if (k < Ebits + 16) {
+		z = xa > xa0 ? *--xa : 0;
+		d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
+		w = xa > xa0 ? *--xa : 0;
+		y = xa > xa0 ? *--xa : 0;
+		d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
+		goto ret_d;
+		}
+	z = xa > xa0 ? *--xa : 0;
+	w = xa > xa0 ? *--xa : 0;
+	k -= Ebits + 16;
+	d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
+	y = xa > xa0 ? *--xa : 0;
+	d1 = w << k + 16 | y << k;
+#endif
+ ret_d:
+#ifdef VAX
+	word0(d) = d0 >> 16 | d0 << 16;
+	word1(d) = d1 >> 16 | d1 << 16;
+#else
+#undef d0
+#undef d1
+#endif
+	return dval(d);
+	}
+
+ static Bigint *
+d2b
+#ifdef KR_headers
+	(dd, e, bits) double dd; int *e, *bits;
+#else
+	(double dd, int *e, int *bits)
+#endif
+{
+	U d;
+	Bigint *b;
+	int de, k;
+	ULong *x, y, z;
+#ifndef Sudden_Underflow
+	int i;
+#endif
+#ifdef VAX
+	ULong d0, d1;
+#endif
+
+	dval(d) = dd;
+#ifdef VAX
+	d0 = word0(d) >> 16 | word0(d) << 16;
+	d1 = word1(d) >> 16 | word1(d) << 16;
+#else
+#define d0 word0(d)
+#define d1 word1(d)
+#endif
+
+#ifdef Pack_32
+	b = Balloc(1);
+#else
+	b = Balloc(2);
+#endif
+	x = b->x;
+
+	z = d0 & Frac_mask;
+	d0 &= 0x7fffffff;	/* clear sign bit, which we ignore */
+#ifdef Sudden_Underflow
+	de = (int)(d0 >> Exp_shift);
+#ifndef IBM
+	z |= Exp_msk11;
+#endif
+#else
+	if (de = (int)(d0 >> Exp_shift))
+		z |= Exp_msk1;
+#endif
+#ifdef Pack_32
+	if (y = d1) {
+		if (k = lo0bits(&y)) {
+			x[0] = y | z << 32 - k;
+			z >>= k;
+			}
+		else
+			x[0] = y;
+#ifndef Sudden_Underflow
+		i =
+#endif
+		    b->wds = (x[1] = z) ? 2 : 1;
+		}
+	else {
+		k = lo0bits(&z);
+		x[0] = z;
+#ifndef Sudden_Underflow
+		i =
+#endif
+		    b->wds = 1;
+		k += 32;
+		}
+#else
+	if (y = d1) {
+		if (k = lo0bits(&y))
+			if (k >= 16) {
+				x[0] = y | z << 32 - k & 0xffff;
+				x[1] = z >> k - 16 & 0xffff;
+				x[2] = z >> k;
+				i = 2;
+				}
+			else {
+				x[0] = y & 0xffff;
+				x[1] = y >> 16 | z << 16 - k & 0xffff;
+				x[2] = z >> k & 0xffff;
+				x[3] = z >> k+16;
+				i = 3;
+				}
+		else {
+			x[0] = y & 0xffff;
+			x[1] = y >> 16;
+			x[2] = z & 0xffff;
+			x[3] = z >> 16;
+			i = 3;
+			}
+		}
+	else {
+#ifdef DEBUG
+		if (!z)
+			Bug("Zero passed to d2b");
+#endif
+		k = lo0bits(&z);
+		if (k >= 16) {
+			x[0] = z;
+			i = 0;
+			}
+		else {
+			x[0] = z & 0xffff;
+			x[1] = z >> 16;
+			i = 1;
+			}
+		k += 32;
+		}
+	while(!x[i])
+		--i;
+	b->wds = i + 1;
+#endif
+#ifndef Sudden_Underflow
+	if (de) {
+#endif
+#ifdef IBM
+		*e = (de - Bias - (P-1) << 2) + k;
+		*bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
+#else
+		*e = de - Bias - (P-1) + k;
+		*bits = P - k;
+#endif
+#ifndef Sudden_Underflow
+		}
+	else {
+		*e = de - Bias - (P-1) + 1 + k;
+#ifdef Pack_32
+		*bits = 32*i - hi0bits(x[i-1]);
+#else
+		*bits = (i+2)*16 - hi0bits(x[i]);
+#endif
+		}
+#endif
+	return b;
+	}
+#undef d0
+#undef d1
+
+ static double
+ratio
+#ifdef KR_headers
+	(a, b) Bigint *a, *b;
+#else
+	(Bigint *a, Bigint *b)
+#endif
+{
+	U da, db;
+	int k, ka, kb;
+
+	dval(da) = b2d(a, &ka);
+	dval(db) = b2d(b, &kb);
+#ifdef Pack_32
+	k = ka - kb + 32*(a->wds - b->wds);
+#else
+	k = ka - kb + 16*(a->wds - b->wds);
+#endif
+#ifdef IBM
+	if (k > 0) {
+		word0(da) += (k >> 2)*Exp_msk1;
+		if (k &= 3)
+			dval(da) *= 1 << k;
+		}
+	else {
+		k = -k;
+		word0(db) += (k >> 2)*Exp_msk1;
+		if (k &= 3)
+			dval(db) *= 1 << k;
+		}
+#else
+	if (k > 0)
+		word0(da) += k*Exp_msk1;
+	else {
+		k = -k;
+		word0(db) += k*Exp_msk1;
+		}
+#endif
+	return dval(da) / dval(db);
+	}
+
+ static CONST double
+tens[] = {
+		1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
+		1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
+		1e20, 1e21, 1e22
+#ifdef VAX
+		, 1e23, 1e24
+#endif
+		};
+
+ static CONST double
+#ifdef IEEE_Arith
+bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
+static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
+#ifdef Avoid_Underflow
+		9007199254740992.*9007199254740992.e-256
+		/* = 2^106 * 1e-53 */
+#else
+		1e-256
+#endif
+		};
+/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
+/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
+#define Scale_Bit 0x10
+#define n_bigtens 5
+#else
+#ifdef IBM
+bigtens[] = { 1e16, 1e32, 1e64 };
+static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
+#define n_bigtens 3
+#else
+bigtens[] = { 1e16, 1e32 };
+static CONST double tinytens[] = { 1e-16, 1e-32 };
+#define n_bigtens 2
+#endif
+#endif
+
+#ifndef IEEE_Arith
+#undef INFNAN_CHECK
+#endif
+
+#ifdef INFNAN_CHECK
+
+#ifndef NAN_WORD0
+#define NAN_WORD0 0x7ff80000
+#endif
+
+#ifndef NAN_WORD1
+#define NAN_WORD1 0
+#endif
+
+ static int
+match
+#ifdef KR_headers
+	(sp, t) char **sp, *t;
+#else
+	(CONST char **sp, char *t)
+#endif
+{
+	int c, d;
+	CONST char *s = *sp;
+
+	while(d = *t++) {
+		if ((c = *++s) >= 'A' && c <= 'Z')
+			c += 'a' - 'A';
+		if (c != d)
+			return 0;
+		}
+	*sp = s + 1;
+	return 1;
+	}
+
+#ifndef No_Hex_NaN
+ static void
+hexnan
+#ifdef KR_headers
+	(rvp, sp) double *rvp; CONST char **sp;
+#else
+	(double *rvp, CONST char **sp)
+#endif
+{
+	ULong c, x[2];
+	CONST char *s;
+	int havedig, udx0, xshift;
+
+	x[0] = x[1] = 0;
+	havedig = xshift = 0;
+	udx0 = 1;
+	s = *sp;
+	while(c = *(CONST unsigned char*)++s) {
+		if (c >= '0' && c <= '9')
+			c -= '0';
+		else if (c >= 'a' && c <= 'f')
+			c += 10 - 'a';
+		else if (c >= 'A' && c <= 'F')
+			c += 10 - 'A';
+		else if (c <= ' ') {
+			if (udx0 && havedig) {
+				udx0 = 0;
+				xshift = 1;
+				}
+			continue;
+			}
+		else if (/*(*/ c == ')' && havedig) {
+			*sp = s + 1;
+			break;
+			}
+		else
+			return;	/* invalid form: don't change *sp */
+		havedig = 1;
+		if (xshift) {
+			xshift = 0;
+			x[0] = x[1];
+			x[1] = 0;
+			}
+		if (udx0)
+			x[0] = (x[0] << 4) | (x[1] >> 28);
+		x[1] = (x[1] << 4) | c;
+		}
+	if ((x[0] &= 0xfffff) || x[1]) {
+		word0(*rvp) = Exp_mask | x[0];
+		word1(*rvp) = x[1];
+		}
+	}
+#endif /*No_Hex_NaN*/
+#endif /* INFNAN_CHECK */
+
+ PR_IMPLEMENT(double)
+PR_strtod
+#ifdef KR_headers
+	(s00, se) CONST char *s00; char **se;
+#else
+	(CONST char *s00, char **se)
+#endif
+{
+#ifdef Avoid_Underflow
+	int scale;
+#endif
+	int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
+		 e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
+	CONST char *s, *s0, *s1;
+	double aadj, aadj1, adj;
+	U aadj2, rv, rv0;
+	Long L;
+	ULong y, z;
+	Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
+#ifdef SET_INEXACT
+	int inexact, oldinexact;
+#endif
+#ifdef Honor_FLT_ROUNDS
+	int rounding;
+#endif
+#ifdef USE_LOCALE
+	CONST char *s2;
+#endif
+
+	if (!_pr_initialized) _PR_ImplicitInitialization();
+
+	sign = nz0 = nz = 0;
+	dval(rv) = 0.;
+	for(s = s00;;s++) switch(*s) {
+		case '-':
+			sign = 1;
+			/* no break */
+		case '+':
+			if (*++s)
+				goto break2;
+			/* no break */
+		case 0:
+			goto ret0;
+		case '\t':
+		case '\n':
+		case '\v':
+		case '\f':
+		case '\r':
+		case ' ':
+			continue;
+		default:
+			goto break2;
+		}
+ break2:
+	if (*s == '0') {
+		nz0 = 1;
+		while(*++s == '0') ;
+		if (!*s)
+			goto ret;
+		}
+	s0 = s;
+	y = z = 0;
+	for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
+		if (nd < 9)
+			y = 10*y + c - '0';
+		else if (nd < 16)
+			z = 10*z + c - '0';
+	nd0 = nd;
+#ifdef USE_LOCALE
+	s1 = localeconv()->decimal_point;
+	if (c == *s1) {
+		c = '.';
+		if (*++s1) {
+			s2 = s;
+			for(;;) {
+				if (*++s2 != *s1) {
+					c = 0;
+					break;
+					}
+				if (!*++s1) {
+					s = s2;
+					break;
+					}
+				}
+			}
+		}
+#endif
+	if (c == '.') {
+		c = *++s;
+		if (!nd) {
+			for(; c == '0'; c = *++s)
+				nz++;
+			if (c > '0' && c <= '9') {
+				s0 = s;
+				nf += nz;
+				nz = 0;
+				goto have_dig;
+				}
+			goto dig_done;
+			}
+		for(; c >= '0' && c <= '9'; c = *++s) {
+ have_dig:
+			nz++;
+			if (c -= '0') {
+				nf += nz;
+				for(i = 1; i < nz; i++)
+					if (nd++ < 9)
+						y *= 10;
+					else if (nd <= DBL_DIG + 1)
+						z *= 10;
+				if (nd++ < 9)
+					y = 10*y + c;
+				else if (nd <= DBL_DIG + 1)
+					z = 10*z + c;
+				nz = 0;
+				}
+			}
+		}
+ dig_done:
+	if (nd > 64 * 1024)
+		goto ret0;
+	e = 0;
+	if (c == 'e' || c == 'E') {
+		if (!nd && !nz && !nz0) {
+			goto ret0;
+			}
+		s00 = s;
+		esign = 0;
+		switch(c = *++s) {
+			case '-':
+				esign = 1;
+			case '+':
+				c = *++s;
+			}
+		if (c >= '0' && c <= '9') {
+			while(c == '0')
+				c = *++s;
+			if (c > '0' && c <= '9') {
+				L = c - '0';
+				s1 = s;
+				while((c = *++s) >= '0' && c <= '9')
+					L = 10*L + c - '0';
+				if (s - s1 > 8 || L > 19999)
+					/* Avoid confusion from exponents
+					 * so large that e might overflow.
+					 */
+					e = 19999; /* safe for 16 bit ints */
+				else
+					e = (int)L;
+				if (esign)
+					e = -e;
+				}
+			else
+				e = 0;
+			}
+		else
+			s = s00;
+		}
+	if (!nd) {
+		if (!nz && !nz0) {
+#ifdef INFNAN_CHECK
+			/* Check for Nan and Infinity */
+			switch(c) {
+			  case 'i':
+			  case 'I':
+				if (match(&s,"nf")) {
+					--s;
+					if (!match(&s,"inity"))
+						++s;
+					word0(rv) = 0x7ff00000;
+					word1(rv) = 0;
+					goto ret;
+					}
+				break;
+			  case 'n':
+			  case 'N':
+				if (match(&s, "an")) {
+					word0(rv) = NAN_WORD0;
+					word1(rv) = NAN_WORD1;
+#ifndef No_Hex_NaN
+					if (*s == '(') /*)*/
+						hexnan(&rv, &s);
+#endif
+					goto ret;
+					}
+			  }
+#endif /* INFNAN_CHECK */
+ ret0:
+			s = s00;
+			sign = 0;
+			}
+		goto ret;
+		}
+	e1 = e -= nf;
+
+	/* Now we have nd0 digits, starting at s0, followed by a
+	 * decimal point, followed by nd-nd0 digits.  The number we're
+	 * after is the integer represented by those digits times
+	 * 10**e */
+
+	if (!nd0)
+		nd0 = nd;
+	k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
+	dval(rv) = y;
+	if (k > 9) {
+#ifdef SET_INEXACT
+		if (k > DBL_DIG)
+			oldinexact = get_inexact();
+#endif
+		dval(rv) = tens[k - 9] * dval(rv) + z;
+		}
+	bd0 = 0;
+	if (nd <= DBL_DIG
+#ifndef RND_PRODQUOT
+#ifndef Honor_FLT_ROUNDS
+		&& Flt_Rounds == 1
+#endif
+#endif
+			) {
+		if (!e)
+			goto ret;
+		if (e > 0) {
+			if (e <= Ten_pmax) {
+#ifdef VAX
+				goto vax_ovfl_check;
+#else
+#ifdef Honor_FLT_ROUNDS
+				/* round correctly FLT_ROUNDS = 2 or 3 */
+				if (sign) {
+					rv = -rv;
+					sign = 0;
+					}
+#endif
+				/* rv = */ rounded_product(dval(rv), tens[e]);
+				goto ret;
+#endif
+				}
+			i = DBL_DIG - nd;
+			if (e <= Ten_pmax + i) {
+				/* A fancier test would sometimes let us do
+				 * this for larger i values.
+				 */
+#ifdef Honor_FLT_ROUNDS
+				/* round correctly FLT_ROUNDS = 2 or 3 */
+				if (sign) {
+					rv = -rv;
+					sign = 0;
+					}
+#endif
+				e -= i;
+				dval(rv) *= tens[i];
+#ifdef VAX
+				/* VAX exponent range is so narrow we must
+				 * worry about overflow here...
+				 */
+ vax_ovfl_check:
+				word0(rv) -= P*Exp_msk1;
+				/* rv = */ rounded_product(dval(rv), tens[e]);
+				if ((word0(rv) & Exp_mask)
+				 > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
+					goto ovfl;
+				word0(rv) += P*Exp_msk1;
+#else
+				/* rv = */ rounded_product(dval(rv), tens[e]);
+#endif
+				goto ret;
+				}
+			}
+#ifndef Inaccurate_Divide
+		else if (e >= -Ten_pmax) {
+#ifdef Honor_FLT_ROUNDS
+			/* round correctly FLT_ROUNDS = 2 or 3 */
+			if (sign) {
+				rv = -rv;
+				sign = 0;
+				}
+#endif
+			/* rv = */ rounded_quotient(dval(rv), tens[-e]);
+			goto ret;
+			}
+#endif
+		}
+	e1 += nd - k;
+
+#ifdef IEEE_Arith
+#ifdef SET_INEXACT
+	inexact = 1;
+	if (k <= DBL_DIG)
+		oldinexact = get_inexact();
+#endif
+#ifdef Avoid_Underflow
+	scale = 0;
+#endif
+#ifdef Honor_FLT_ROUNDS
+	if ((rounding = Flt_Rounds) >= 2) {
+		if (sign)
+			rounding = rounding == 2 ? 0 : 2;
+		else
+			if (rounding != 2)
+				rounding = 0;
+		}
+#endif
+#endif /*IEEE_Arith*/
+
+	/* Get starting approximation = rv * 10**e1 */
+
+	if (e1 > 0) {
+		if (i = e1 & 15)
+			dval(rv) *= tens[i];
+		if (e1 &= ~15) {
+			if (e1 > DBL_MAX_10_EXP) {
+ ovfl:
+#ifndef NO_ERRNO
+				PR_SetError(PR_RANGE_ERROR, 0);
+#endif
+				/* Can't trust HUGE_VAL */
+#ifdef IEEE_Arith
+#ifdef Honor_FLT_ROUNDS
+				switch(rounding) {
+				  case 0: /* toward 0 */
+				  case 3: /* toward -infinity */
+					word0(rv) = Big0;
+					word1(rv) = Big1;
+					break;
+				  default:
+					word0(rv) = Exp_mask;
+					word1(rv) = 0;
+				  }
+#else /*Honor_FLT_ROUNDS*/
+				word0(rv) = Exp_mask;
+				word1(rv) = 0;
+#endif /*Honor_FLT_ROUNDS*/
+#ifdef SET_INEXACT
+				/* set overflow bit */
+				dval(rv0) = 1e300;
+				dval(rv0) *= dval(rv0);
+#endif
+#else /*IEEE_Arith*/
+				word0(rv) = Big0;
+				word1(rv) = Big1;
+#endif /*IEEE_Arith*/
+				if (bd0)
+					goto retfree;
+				goto ret;
+				}
+			e1 >>= 4;
+			for(j = 0; e1 > 1; j++, e1 >>= 1)
+				if (e1 & 1)
+					dval(rv) *= bigtens[j];
+		/* The last multiplication could overflow. */
+			word0(rv) -= P*Exp_msk1;
+			dval(rv) *= bigtens[j];
+			if ((z = word0(rv) & Exp_mask)
+			 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
+				goto ovfl;
+			if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
+				/* set to largest number */
+				/* (Can't trust DBL_MAX) */
+				word0(rv) = Big0;
+				word1(rv) = Big1;
+				}
+			else
+				word0(rv) += P*Exp_msk1;
+			}
+		}
+	else if (e1 < 0) {
+		e1 = -e1;
+		if (i = e1 & 15)
+			dval(rv) /= tens[i];
+		if (e1 >>= 4) {
+			if (e1 >= 1 << n_bigtens)
+				goto undfl;
+#ifdef Avoid_Underflow
+			if (e1 & Scale_Bit)
+				scale = 2*P;
+			for(j = 0; e1 > 0; j++, e1 >>= 1)
+				if (e1 & 1)
+					dval(rv) *= tinytens[j];
+			if (scale && (j = 2*P + 1 - ((word0(rv) & Exp_mask)
+						>> Exp_shift)) > 0) {
+				/* scaled rv is denormal; zap j low bits */
+				if (j >= 32) {
+					word1(rv) = 0;
+					if (j >= 53)
+					 word0(rv) = (P+2)*Exp_msk1;
+					else
+					 word0(rv) &= 0xffffffff << j-32;
+					}
+				else
+					word1(rv) &= 0xffffffff << j;
+				}
+#else
+			for(j = 0; e1 > 1; j++, e1 >>= 1)
+				if (e1 & 1)
+					dval(rv) *= tinytens[j];
+			/* The last multiplication could underflow. */
+			dval(rv0) = dval(rv);
+			dval(rv) *= tinytens[j];
+			if (!dval(rv)) {
+				dval(rv) = 2.*dval(rv0);
+				dval(rv) *= tinytens[j];
+#endif
+				if (!dval(rv)) {
+ undfl:
+					dval(rv) = 0.;
+#ifndef NO_ERRNO
+					PR_SetError(PR_RANGE_ERROR, 0);
+#endif
+					if (bd0)
+						goto retfree;
+					goto ret;
+					}
+#ifndef Avoid_Underflow
+				word0(rv) = Tiny0;
+				word1(rv) = Tiny1;
+				/* The refinement below will clean
+				 * this approximation up.
+				 */
+				}
+#endif
+			}
+		}
+
+	/* Now the hard part -- adjusting rv to the correct value.*/
+
+	/* Put digits into bd: true value = bd * 10^e */
+
+	bd0 = s2b(s0, nd0, nd, y);
+
+	for(;;) {
+		bd = Balloc(bd0->k);
+		Bcopy(bd, bd0);
+		bb = d2b(dval(rv), &bbe, &bbbits);	/* rv = bb * 2^bbe */
+		bs = i2b(1);
+
+		if (e >= 0) {
+			bb2 = bb5 = 0;
+			bd2 = bd5 = e;
+			}
+		else {
+			bb2 = bb5 = -e;
+			bd2 = bd5 = 0;
+			}
+		if (bbe >= 0)
+			bb2 += bbe;
+		else
+			bd2 -= bbe;
+		bs2 = bb2;
+#ifdef Honor_FLT_ROUNDS
+		if (rounding != 1)
+			bs2++;
+#endif
+#ifdef Avoid_Underflow
+		j = bbe - scale;
+		i = j + bbbits - 1;	/* logb(rv) */
+		if (i < Emin)	/* denormal */
+			j += P - Emin;
+		else
+			j = P + 1 - bbbits;
+#else /*Avoid_Underflow*/
+#ifdef Sudden_Underflow
+#ifdef IBM
+		j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
+#else
+		j = P + 1 - bbbits;
+#endif
+#else /*Sudden_Underflow*/
+		j = bbe;
+		i = j + bbbits - 1;	/* logb(rv) */
+		if (i < Emin)	/* denormal */
+			j += P - Emin;
+		else
+			j = P + 1 - bbbits;
+#endif /*Sudden_Underflow*/
+#endif /*Avoid_Underflow*/
+		bb2 += j;
+		bd2 += j;
+#ifdef Avoid_Underflow
+		bd2 += scale;
+#endif
+		i = bb2 < bd2 ? bb2 : bd2;
+		if (i > bs2)
+			i = bs2;
+		if (i > 0) {
+			bb2 -= i;
+			bd2 -= i;
+			bs2 -= i;
+			}
+		if (bb5 > 0) {
+			bs = pow5mult(bs, bb5);
+			bb1 = mult(bs, bb);
+			Bfree(bb);
+			bb = bb1;
+			}
+		if (bb2 > 0)
+			bb = lshift(bb, bb2);
+		if (bd5 > 0)
+			bd = pow5mult(bd, bd5);
+		if (bd2 > 0)
+			bd = lshift(bd, bd2);
+		if (bs2 > 0)
+			bs = lshift(bs, bs2);
+		delta = diff(bb, bd);
+		dsign = delta->sign;
+		delta->sign = 0;
+		i = cmp(delta, bs);
+#ifdef Honor_FLT_ROUNDS
+		if (rounding != 1) {
+			if (i < 0) {
+				/* Error is less than an ulp */
+				if (!delta->x[0] && delta->wds <= 1) {
+					/* exact */
+#ifdef SET_INEXACT
+					inexact = 0;
+#endif
+					break;
+					}
+				if (rounding) {
+					if (dsign) {
+						adj = 1.;
+						goto apply_adj;
+						}
+					}
+				else if (!dsign) {
+					adj = -1.;
+					if (!word1(rv)
+					 && !(word0(rv) & Frac_mask)) {
+						y = word0(rv) & Exp_mask;
+#ifdef Avoid_Underflow
+						if (!scale || y > 2*P*Exp_msk1)
+#else
+						if (y)
+#endif
+						  {
+						  delta = lshift(delta,Log2P);
+						  if (cmp(delta, bs) <= 0)
+							adj = -0.5;
+						  }
+						}
+ apply_adj:
+#ifdef Avoid_Underflow
+					if (scale && (y = word0(rv) & Exp_mask)
+						<= 2*P*Exp_msk1)
+					  word0(adj) += (2*P+1)*Exp_msk1 - y;
+#else
+#ifdef Sudden_Underflow
+					if ((word0(rv) & Exp_mask) <=
+							P*Exp_msk1) {
+						word0(rv) += P*Exp_msk1;
+						dval(rv) += adj*ulp(dval(rv));
+						word0(rv) -= P*Exp_msk1;
+						}
+					else
+#endif /*Sudden_Underflow*/
+#endif /*Avoid_Underflow*/
+					dval(rv) += adj*ulp(dval(rv));
+					}
+				break;
+				}
+			adj = ratio(delta, bs);
+			if (adj < 1.)
+				adj = 1.;
+			if (adj <= 0x7ffffffe) {
+				/* adj = rounding ? ceil(adj) : floor(adj); */
+				y = adj;
+				if (y != adj) {
+					if (!((rounding>>1) ^ dsign))
+						y++;
+					adj = y;
+					}
+				}
+#ifdef Avoid_Underflow
+			if (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1)
+				word0(adj) += (2*P+1)*Exp_msk1 - y;
+#else
+#ifdef Sudden_Underflow
+			if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
+				word0(rv) += P*Exp_msk1;
+				adj *= ulp(dval(rv));
+				if (dsign)
+					dval(rv) += adj;
+				else
+					dval(rv) -= adj;
+				word0(rv) -= P*Exp_msk1;
+				goto cont;
+				}
+#endif /*Sudden_Underflow*/
+#endif /*Avoid_Underflow*/
+			adj *= ulp(dval(rv));
+			if (dsign)
+				dval(rv) += adj;
+			else
+				dval(rv) -= adj;
+			goto cont;
+			}
+#endif /*Honor_FLT_ROUNDS*/
+
+		if (i < 0) {
+			/* Error is less than half an ulp -- check for
+			 * special case of mantissa a power of two.
+			 */
+			if (dsign || word1(rv) || word0(rv) & Bndry_mask
+#ifdef IEEE_Arith
+#ifdef Avoid_Underflow
+			 || (word0(rv) & Exp_mask) <= (2*P+1)*Exp_msk1
+#else
+			 || (word0(rv) & Exp_mask) <= Exp_msk1
+#endif
+#endif
+				) {
+#ifdef SET_INEXACT
+				if (!delta->x[0] && delta->wds <= 1)
+					inexact = 0;
+#endif
+				break;
+				}
+			if (!delta->x[0] && delta->wds <= 1) {
+				/* exact result */
+#ifdef SET_INEXACT
+				inexact = 0;
+#endif
+				break;
+				}
+			delta = lshift(delta,Log2P);
+			if (cmp(delta, bs) > 0)
+				goto drop_down;
+			break;
+			}
+		if (i == 0) {
+			/* exactly half-way between */
+			if (dsign) {
+				if ((word0(rv) & Bndry_mask1) == Bndry_mask1
+				 &&  word1(rv) == (
+#ifdef Avoid_Underflow
+			(scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1)
+		? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
+#endif
+						   0xffffffff)) {
+					/*boundary case -- increment exponent*/
+					word0(rv) = (word0(rv) & Exp_mask)
+						+ Exp_msk1
+#ifdef IBM
+						| Exp_msk1 >> 4
+#endif
+						;
+					word1(rv) = 0;
+#ifdef Avoid_Underflow
+					dsign = 0;
+#endif
+					break;
+					}
+				}
+			else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
+ drop_down:
+				/* boundary case -- decrement exponent */
+#ifdef Sudden_Underflow /*{{*/
+				L = word0(rv) & Exp_mask;
+#ifdef IBM
+				if (L <  Exp_msk1)
+#else
+#ifdef Avoid_Underflow
+				if (L <= (scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
+#else
+				if (L <= Exp_msk1)
+#endif /*Avoid_Underflow*/
+#endif /*IBM*/
+					goto undfl;
+				L -= Exp_msk1;
+#else /*Sudden_Underflow}{*/
+#ifdef Avoid_Underflow
+				if (scale) {
+					L = word0(rv) & Exp_mask;
+					if (L <= (2*P+1)*Exp_msk1) {
+						if (L > (P+2)*Exp_msk1)
+							/* round even ==> */
+							/* accept rv */
+							break;
+						/* rv = smallest denormal */
+						goto undfl;
+						}
+					}
+#endif /*Avoid_Underflow*/
+				L = (word0(rv) & Exp_mask) - Exp_msk1;
+#endif /*Sudden_Underflow}}*/
+				word0(rv) = L | Bndry_mask1;
+				word1(rv) = 0xffffffff;
+#ifdef IBM
+				goto cont;
+#else
+				break;
+#endif
+				}
+#ifndef ROUND_BIASED
+			if (!(word1(rv) & LSB))
+				break;
+#endif
+			if (dsign)
+				dval(rv) += ulp(dval(rv));
+#ifndef ROUND_BIASED
+			else {
+				dval(rv) -= ulp(dval(rv));
+#ifndef Sudden_Underflow
+				if (!dval(rv))
+					goto undfl;
+#endif
+				}
+#ifdef Avoid_Underflow
+			dsign = 1 - dsign;
+#endif
+#endif
+			break;
+			}
+		if ((aadj = ratio(delta, bs)) <= 2.) {
+			if (dsign)
+				aadj = aadj1 = 1.;
+			else if (word1(rv) || word0(rv) & Bndry_mask) {
+#ifndef Sudden_Underflow
+				if (word1(rv) == Tiny1 && !word0(rv))
+					goto undfl;
+#endif
+				aadj = 1.;
+				aadj1 = -1.;
+				}
+			else {
+				/* special case -- power of FLT_RADIX to be */
+				/* rounded down... */
+
+				if (aadj < 2./FLT_RADIX)
+					aadj = 1./FLT_RADIX;
+				else
+					aadj *= 0.5;
+				aadj1 = -aadj;
+				}
+			}
+		else {
+			aadj *= 0.5;
+			aadj1 = dsign ? aadj : -aadj;
+#ifdef Check_FLT_ROUNDS
+			switch(Rounding) {
+				case 2: /* towards +infinity */
+					aadj1 -= 0.5;
+					break;
+				case 0: /* towards 0 */
+				case 3: /* towards -infinity */
+					aadj1 += 0.5;
+				}
+#else
+			if (Flt_Rounds == 0)
+				aadj1 += 0.5;
+#endif /*Check_FLT_ROUNDS*/
+			}
+		y = word0(rv) & Exp_mask;
+
+		/* Check for overflow */
+
+		if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
+			dval(rv0) = dval(rv);
+			word0(rv) -= P*Exp_msk1;
+			adj = aadj1 * ulp(dval(rv));
+			dval(rv) += adj;
+			if ((word0(rv) & Exp_mask) >=
+					Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
+				if (word0(rv0) == Big0 && word1(rv0) == Big1)
+					goto ovfl;
+				word0(rv) = Big0;
+				word1(rv) = Big1;
+				goto cont;
+				}
+			else
+				word0(rv) += P*Exp_msk1;
+			}
+		else {
+#ifdef Avoid_Underflow
+			if (scale && y <= 2*P*Exp_msk1) {
+				if (aadj <= 0x7fffffff) {
+					if ((z = aadj) <= 0)
+						z = 1;
+					aadj = z;
+					aadj1 = dsign ? aadj : -aadj;
+					}
+				dval(aadj2) = aadj1;
+				word0(aadj2) += (2*P+1)*Exp_msk1 - y;
+				aadj1 = dval(aadj2);
+				}
+			adj = aadj1 * ulp(dval(rv));
+			dval(rv) += adj;
+#else
+#ifdef Sudden_Underflow
+			if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
+				dval(rv0) = dval(rv);
+				word0(rv) += P*Exp_msk1;
+				adj = aadj1 * ulp(dval(rv));
+				dval(rv) += adj;
+#ifdef IBM
+				if ((word0(rv) & Exp_mask) <  P*Exp_msk1)
+#else
+				if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
+#endif
+					{
+					if (word0(rv0) == Tiny0
+					 && word1(rv0) == Tiny1)
+						goto undfl;
+					word0(rv) = Tiny0;
+					word1(rv) = Tiny1;
+					goto cont;
+					}
+				else
+					word0(rv) -= P*Exp_msk1;
+				}
+			else {
+				adj = aadj1 * ulp(dval(rv));
+				dval(rv) += adj;
+				}
+#else /*Sudden_Underflow*/
+			/* Compute adj so that the IEEE rounding rules will
+			 * correctly round rv + adj in some half-way cases.
+			 * If rv * ulp(rv) is denormalized (i.e.,
+			 * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
+			 * trouble from bits lost to denormalization;
+			 * example: 1.2e-307 .
+			 */
+			if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
+				aadj1 = (double)(int)(aadj + 0.5);
+				if (!dsign)
+					aadj1 = -aadj1;
+				}
+			adj = aadj1 * ulp(dval(rv));
+			dval(rv) += adj;
+#endif /*Sudden_Underflow*/
+#endif /*Avoid_Underflow*/
+			}
+		z = word0(rv) & Exp_mask;
+#ifndef SET_INEXACT
+#ifdef Avoid_Underflow
+		if (!scale)
+#endif
+		if (y == z) {
+			/* Can we stop now? */
+			L = (Long)aadj;
+			aadj -= L;
+			/* The tolerances below are conservative. */
+			if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
+				if (aadj < .4999999 || aadj > .5000001)
+					break;
+				}
+			else if (aadj < .4999999/FLT_RADIX)
+				break;
+			}
+#endif
+ cont:
+		Bfree(bb);
+		Bfree(bd);
+		Bfree(bs);
+		Bfree(delta);
+		}
+#ifdef SET_INEXACT
+	if (inexact) {
+		if (!oldinexact) {
+			word0(rv0) = Exp_1 + (70 << Exp_shift);
+			word1(rv0) = 0;
+			dval(rv0) += 1.;
+			}
+		}
+	else if (!oldinexact)
+		clear_inexact();
+#endif
+#ifdef Avoid_Underflow
+	if (scale) {
+		word0(rv0) = Exp_1 - 2*P*Exp_msk1;
+		word1(rv0) = 0;
+		dval(rv) *= dval(rv0);
+#ifndef NO_ERRNO
+		/* try to avoid the bug of testing an 8087 register value */
+		if (word0(rv) == 0 && word1(rv) == 0)
+			PR_SetError(PR_RANGE_ERROR, 0);
+#endif
+		}
+#endif /* Avoid_Underflow */
+#ifdef SET_INEXACT
+	if (inexact && !(word0(rv) & Exp_mask)) {
+		/* set underflow bit */
+		dval(rv0) = 1e-300;
+		dval(rv0) *= dval(rv0);
+		}
+#endif
+ retfree:
+	Bfree(bb);
+	Bfree(bd);
+	Bfree(bs);
+	Bfree(bd0);
+	Bfree(delta);
+ ret:
+	if (se)
+		*se = (char *)s;
+	return sign ? -dval(rv) : dval(rv);
+	}
+
+ static int
+quorem
+#ifdef KR_headers
+	(b, S) Bigint *b, *S;
+#else
+	(Bigint *b, Bigint *S)
+#endif
+{
+	int n;
+	ULong *bx, *bxe, q, *sx, *sxe;
+#ifdef ULLong
+	ULLong borrow, carry, y, ys;
+#else
+	ULong borrow, carry, y, ys;
+#ifdef Pack_32
+	ULong si, z, zs;
+#endif
+#endif
+
+	n = S->wds;
+#ifdef DEBUG
+	/*debug*/ if (b->wds > n)
+	/*debug*/	Bug("oversize b in quorem");
+#endif
+	if (b->wds < n)
+		return 0;
+	sx = S->x;
+	sxe = sx + --n;
+	bx = b->x;
+	bxe = bx + n;
+	q = *bxe / (*sxe + 1);	/* ensure q <= true quotient */
+#ifdef DEBUG
+	/*debug*/ if (q > 9)
+	/*debug*/	Bug("oversized quotient in quorem");
+#endif
+	if (q) {
+		borrow = 0;
+		carry = 0;
+		do {
+#ifdef ULLong
+			ys = *sx++ * (ULLong)q + carry;
+			carry = ys >> 32;
+			y = *bx - (ys & FFFFFFFF) - borrow;
+			borrow = y >> 32 & (ULong)1;
+			*bx++ = y & FFFFFFFF;
+#else
+#ifdef Pack_32
+			si = *sx++;
+			ys = (si & 0xffff) * q + carry;
+			zs = (si >> 16) * q + (ys >> 16);
+			carry = zs >> 16;
+			y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
+			borrow = (y & 0x10000) >> 16;
+			z = (*bx >> 16) - (zs & 0xffff) - borrow;
+			borrow = (z & 0x10000) >> 16;
+			Storeinc(bx, z, y);
+#else
+			ys = *sx++ * q + carry;
+			carry = ys >> 16;
+			y = *bx - (ys & 0xffff) - borrow;
+			borrow = (y & 0x10000) >> 16;
+			*bx++ = y & 0xffff;
+#endif
+#endif
+			}
+			while(sx <= sxe);
+		if (!*bxe) {
+			bx = b->x;
+			while(--bxe > bx && !*bxe)
+				--n;
+			b->wds = n;
+			}
+		}
+	if (cmp(b, S) >= 0) {
+		q++;
+		borrow = 0;
+		carry = 0;
+		bx = b->x;
+		sx = S->x;
+		do {
+#ifdef ULLong
+			ys = *sx++ + carry;
+			carry = ys >> 32;
+			y = *bx - (ys & FFFFFFFF) - borrow;
+			borrow = y >> 32 & (ULong)1;
+			*bx++ = y & FFFFFFFF;
+#else
+#ifdef Pack_32
+			si = *sx++;
+			ys = (si & 0xffff) + carry;
+			zs = (si >> 16) + (ys >> 16);
+			carry = zs >> 16;
+			y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
+			borrow = (y & 0x10000) >> 16;
+			z = (*bx >> 16) - (zs & 0xffff) - borrow;
+			borrow = (z & 0x10000) >> 16;
+			Storeinc(bx, z, y);
+#else
+			ys = *sx++ + carry;
+			carry = ys >> 16;
+			y = *bx - (ys & 0xffff) - borrow;
+			borrow = (y & 0x10000) >> 16;
+			*bx++ = y & 0xffff;
+#endif
+#endif
+			}
+			while(sx <= sxe);
+		bx = b->x;
+		bxe = bx + n;
+		if (!*bxe) {
+			while(--bxe > bx && !*bxe)
+				--n;
+			b->wds = n;
+			}
+		}
+	return q;
+	}
+
+#ifndef MULTIPLE_THREADS
+ static char *dtoa_result;
+#endif
+
+ static char *
+#ifdef KR_headers
+rv_alloc(i) int i;
+#else
+rv_alloc(int i)
+#endif
+{
+	int j, k, *r;
+
+	j = sizeof(ULong);
+	for(k = 0;
+		sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= i;
+		j <<= 1)
+			k++;
+	r = (int*)Balloc(k);
+	*r = k;
+	return
+#ifndef MULTIPLE_THREADS
+	dtoa_result =
+#endif
+		(char *)(r+1);
+	}
+
+ static char *
+#ifdef KR_headers
+nrv_alloc(s, rve, n) char *s, **rve; int n;
+#else
+nrv_alloc(char *s, char **rve, int n)
+#endif
+{
+	char *rv, *t;
+
+	t = rv = rv_alloc(n);
+	while(*t = *s++) t++;
+	if (rve)
+		*rve = t;
+	return rv;
+	}
+
+/* freedtoa(s) must be used to free values s returned by dtoa
+ * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
+ * but for consistency with earlier versions of dtoa, it is optional
+ * when MULTIPLE_THREADS is not defined.
+ */
+
+ static void
+#ifdef KR_headers
+freedtoa(s) char *s;
+#else
+freedtoa(char *s)
+#endif
+{
+	Bigint *b = (Bigint *)((int *)s - 1);
+	b->maxwds = 1 << (b->k = *(int*)b);
+	Bfree(b);
+#ifndef MULTIPLE_THREADS
+	if (s == dtoa_result)
+		dtoa_result = 0;
+#endif
+	}
+
+/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
+ *
+ * Inspired by "How to Print Floating-Point Numbers Accurately" by
+ * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
+ *
+ * Modifications:
+ *	1. Rather than iterating, we use a simple numeric overestimate
+ *	   to determine k = floor(log10(d)).  We scale relevant
+ *	   quantities using O(log2(k)) rather than O(k) multiplications.
+ *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
+ *	   try to generate digits strictly left to right.  Instead, we
+ *	   compute with fewer bits and propagate the carry if necessary
+ *	   when rounding the final digit up.  This is often faster.
+ *	3. Under the assumption that input will be rounded nearest,
+ *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
+ *	   That is, we allow equality in stopping tests when the
+ *	   round-nearest rule will give the same floating-point value
+ *	   as would satisfaction of the stopping test with strict
+ *	   inequality.
+ *	4. We remove common factors of powers of 2 from relevant
+ *	   quantities.
+ *	5. When converting floating-point integers less than 1e16,
+ *	   we use floating-point arithmetic rather than resorting
+ *	   to multiple-precision integers.
+ *	6. When asked to produce fewer than 15 digits, we first try
+ *	   to get by with floating-point arithmetic; we resort to
+ *	   multiple-precision integer arithmetic only if we cannot
+ *	   guarantee that the floating-point calculation has given
+ *	   the correctly rounded result.  For k requested digits and
+ *	   "uniformly" distributed input, the probability is
+ *	   something like 10^(k-15) that we must resort to the Long
+ *	   calculation.
+ */
+
+ static char *
+dtoa
+#ifdef KR_headers
+	(dd, mode, ndigits, decpt, sign, rve)
+	double dd; int mode, ndigits, *decpt, *sign; char **rve;
+#else
+	(double dd, int mode, int ndigits, int *decpt, int *sign, char **rve)
+#endif
+{
+ /*	Arguments ndigits, decpt, sign are similar to those
+	of ecvt and fcvt; trailing zeros are suppressed from
+	the returned string.  If not null, *rve is set to point
+	to the end of the return value.  If d is +-Infinity or NaN,
+	then *decpt is set to 9999.
+
+	mode:
+		0 ==> shortest string that yields d when read in
+			and rounded to nearest.
+		1 ==> like 0, but with Steele & White stopping rule;
+			e.g. with IEEE P754 arithmetic , mode 0 gives
+			1e23 whereas mode 1 gives 9.999999999999999e22.
+		2 ==> max(1,ndigits) significant digits.  This gives a
+			return value similar to that of ecvt, except
+			that trailing zeros are suppressed.
+		3 ==> through ndigits past the decimal point.  This
+			gives a return value similar to that from fcvt,
+			except that trailing zeros are suppressed, and
+			ndigits can be negative.
+		4,5 ==> similar to 2 and 3, respectively, but (in
+			round-nearest mode) with the tests of mode 0 to
+			possibly return a shorter string that rounds to d.
+			With IEEE arithmetic and compilation with
+			-DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
+			as modes 2 and 3 when FLT_ROUNDS != 1.
+		6-9 ==> Debugging modes similar to mode - 4:  don't try
+			fast floating-point estimate (if applicable).
+
+		Values of mode other than 0-9 are treated as mode 0.
+
+		Sufficient space is allocated to the return value
+		to hold the suppressed trailing zeros.
+	*/
+
+	int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
+		j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
+		spec_case, try_quick;
+	Long L;
+#ifndef Sudden_Underflow
+	int denorm;
+	ULong x;
+#endif
+	Bigint *b, *b1, *delta, *mlo, *mhi, *S;
+	U d, d2, eps;
+	double ds;
+	char *s, *s0;
+#ifdef Honor_FLT_ROUNDS
+	int rounding;
+#endif
+#ifdef SET_INEXACT
+	int inexact, oldinexact;
+#endif
+
+#ifndef MULTIPLE_THREADS
+	if (dtoa_result) {
+		freedtoa(dtoa_result);
+		dtoa_result = 0;
+		}
+#endif
+
+	dval(d) = dd;
+	if (word0(d) & Sign_bit) {
+		/* set sign for everything, including 0's and NaNs */
+		*sign = 1;
+		word0(d) &= ~Sign_bit;	/* clear sign bit */
+		}
+	else
+		*sign = 0;
+
+#if defined(IEEE_Arith) + defined(VAX)
+#ifdef IEEE_Arith
+	if ((word0(d) & Exp_mask) == Exp_mask)
+#else
+	if (word0(d)  == 0x8000)
+#endif
+		{
+		/* Infinity or NaN */
+		*decpt = 9999;
+#ifdef IEEE_Arith
+		if (!word1(d) && !(word0(d) & 0xfffff))
+			return nrv_alloc("Infinity", rve, 8);
+#endif
+		return nrv_alloc("NaN", rve, 3);
+		}
+#endif
+#ifdef IBM
+	dval(d) += 0; /* normalize */
+#endif
+	if (!dval(d)) {
+		*decpt = 1;
+		return nrv_alloc("0", rve, 1);
+		}
+
+#ifdef SET_INEXACT
+	try_quick = oldinexact = get_inexact();
+	inexact = 1;
+#endif
+#ifdef Honor_FLT_ROUNDS
+	if ((rounding = Flt_Rounds) >= 2) {
+		if (*sign)
+			rounding = rounding == 2 ? 0 : 2;
+		else
+			if (rounding != 2)
+				rounding = 0;
+		}
+#endif
+
+	b = d2b(dval(d), &be, &bbits);
+#ifdef Sudden_Underflow
+	i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
+#else
+	if (i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) {
+#endif
+		dval(d2) = dval(d);
+		word0(d2) &= Frac_mask1;
+		word0(d2) |= Exp_11;
+#ifdef IBM
+		if (j = 11 - hi0bits(word0(d2) & Frac_mask))
+			dval(d2) /= 1 << j;
+#endif
+
+		/* log(x)	~=~ log(1.5) + (x-1.5)/1.5
+		 * log10(x)	 =  log(x) / log(10)
+		 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
+		 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
+		 *
+		 * This suggests computing an approximation k to log10(d) by
+		 *
+		 * k = (i - Bias)*0.301029995663981
+		 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
+		 *
+		 * We want k to be too large rather than too small.
+		 * The error in the first-order Taylor series approximation
+		 * is in our favor, so we just round up the constant enough
+		 * to compensate for any error in the multiplication of
+		 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
+		 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
+		 * adding 1e-13 to the constant term more than suffices.
+		 * Hence we adjust the constant term to 0.1760912590558.
+		 * (We could get a more accurate k by invoking log10,
+		 *  but this is probably not worthwhile.)
+		 */
+
+		i -= Bias;
+#ifdef IBM
+		i <<= 2;
+		i += j;
+#endif
+#ifndef Sudden_Underflow
+		denorm = 0;
+		}
+	else {
+		/* d is denormalized */
+
+		i = bbits + be + (Bias + (P-1) - 1);
+		x = i > 32  ? word0(d) << 64 - i | word1(d) >> i - 32
+			    : word1(d) << 32 - i;
+		dval(d2) = x;
+		word0(d2) -= 31*Exp_msk1; /* adjust exponent */
+		i -= (Bias + (P-1) - 1) + 1;
+		denorm = 1;
+		}
+#endif
+	ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
+	k = (int)ds;
+	if (ds < 0. && ds != k)
+		k--;	/* want k = floor(ds) */
+	k_check = 1;
+	if (k >= 0 && k <= Ten_pmax) {
+		if (dval(d) < tens[k])
+			k--;
+		k_check = 0;
+		}
+	j = bbits - i - 1;
+	if (j >= 0) {
+		b2 = 0;
+		s2 = j;
+		}
+	else {
+		b2 = -j;
+		s2 = 0;
+		}
+	if (k >= 0) {
+		b5 = 0;
+		s5 = k;
+		s2 += k;
+		}
+	else {
+		b2 -= k;
+		b5 = -k;
+		s5 = 0;
+		}
+	if (mode < 0 || mode > 9)
+		mode = 0;
+
+#ifndef SET_INEXACT
+#ifdef Check_FLT_ROUNDS
+	try_quick = Rounding == 1;
+#else
+	try_quick = 1;
+#endif
+#endif /*SET_INEXACT*/
+
+	if (mode > 5) {
+		mode -= 4;
+		try_quick = 0;
+		}
+	leftright = 1;
+	switch(mode) {
+		case 0:
+		case 1:
+			ilim = ilim1 = -1;
+			i = 18;
+			ndigits = 0;
+			break;
+		case 2:
+			leftright = 0;
+			/* no break */
+		case 4:
+			if (ndigits <= 0)
+				ndigits = 1;
+			ilim = ilim1 = i = ndigits;
+			break;
+		case 3:
+			leftright = 0;
+			/* no break */
+		case 5:
+			i = ndigits + k + 1;
+			ilim = i;
+			ilim1 = i - 1;
+			if (i <= 0)
+				i = 1;
+		}
+	s = s0 = rv_alloc(i);
+
+#ifdef Honor_FLT_ROUNDS
+	if (mode > 1 && rounding != 1)
+		leftright = 0;
+#endif
+
+	if (ilim >= 0 && ilim <= Quick_max && try_quick) {
+
+		/* Try to get by with floating-point arithmetic. */
+
+		i = 0;
+		dval(d2) = dval(d);
+		k0 = k;
+		ilim0 = ilim;
+		ieps = 2; /* conservative */
+		if (k > 0) {
+			ds = tens[k&0xf];
+			j = k >> 4;
+			if (j & Bletch) {
+				/* prevent overflows */
+				j &= Bletch - 1;
+				dval(d) /= bigtens[n_bigtens-1];
+				ieps++;
+				}
+			for(; j; j >>= 1, i++)
+				if (j & 1) {
+					ieps++;
+					ds *= bigtens[i];
+					}
+			dval(d) /= ds;
+			}
+		else if (j1 = -k) {
+			dval(d) *= tens[j1 & 0xf];
+			for(j = j1 >> 4; j; j >>= 1, i++)
+				if (j & 1) {
+					ieps++;
+					dval(d) *= bigtens[i];
+					}
+			}
+		if (k_check && dval(d) < 1. && ilim > 0) {
+			if (ilim1 <= 0)
+				goto fast_failed;
+			ilim = ilim1;
+			k--;
+			dval(d) *= 10.;
+			ieps++;
+			}
+		dval(eps) = ieps*dval(d) + 7.;
+		word0(eps) -= (P-1)*Exp_msk1;
+		if (ilim == 0) {
+			S = mhi = 0;
+			dval(d) -= 5.;
+			if (dval(d) > dval(eps))
+				goto one_digit;
+			if (dval(d) < -dval(eps))
+				goto no_digits;
+			goto fast_failed;
+			}
+#ifndef No_leftright
+		if (leftright) {
+			/* Use Steele & White method of only
+			 * generating digits needed.
+			 */
+			dval(eps) = 0.5/tens[ilim-1] - dval(eps);
+			for(i = 0;;) {
+				L = dval(d);
+				dval(d) -= L;
+				*s++ = '0' + (int)L;
+				if (dval(d) < dval(eps))
+					goto ret1;
+				if (1. - dval(d) < dval(eps))
+					goto bump_up;
+				if (++i >= ilim)
+					break;
+				dval(eps) *= 10.;
+				dval(d) *= 10.;
+				}
+			}
+		else {
+#endif
+			/* Generate ilim digits, then fix them up. */
+			dval(eps) *= tens[ilim-1];
+			for(i = 1;; i++, dval(d) *= 10.) {
+				L = (Long)(dval(d));
+				if (!(dval(d) -= L))
+					ilim = i;
+				*s++ = '0' + (int)L;
+				if (i == ilim) {
+					if (dval(d) > 0.5 + dval(eps))
+						goto bump_up;
+					else if (dval(d) < 0.5 - dval(eps)) {
+						while(*--s == '0');
+						s++;
+						goto ret1;
+						}
+					break;
+					}
+				}
+#ifndef No_leftright
+			}
+#endif
+ fast_failed:
+		s = s0;
+		dval(d) = dval(d2);
+		k = k0;
+		ilim = ilim0;
+		}
+
+	/* Do we have a "small" integer? */
+
+	if (be >= 0 && k <= Int_max) {
+		/* Yes. */
+		ds = tens[k];
+		if (ndigits < 0 && ilim <= 0) {
+			S = mhi = 0;
+			if (ilim < 0 || dval(d) <= 5*ds)
+				goto no_digits;
+			goto one_digit;
+			}
+		for(i = 1; i <= k+1; i++, dval(d) *= 10.) {
+			L = (Long)(dval(d) / ds);
+			dval(d) -= L*ds;
+#ifdef Check_FLT_ROUNDS
+			/* If FLT_ROUNDS == 2, L will usually be high by 1 */
+			if (dval(d) < 0) {
+				L--;
+				dval(d) += ds;
+				}
+#endif
+			*s++ = '0' + (int)L;
+			if (!dval(d)) {
+#ifdef SET_INEXACT
+				inexact = 0;
+#endif
+				break;
+				}
+			if (i == ilim) {
+#ifdef Honor_FLT_ROUNDS
+				if (mode > 1)
+				switch(rounding) {
+				  case 0: goto ret1;
+				  case 2: goto bump_up;
+				  }
+#endif
+				dval(d) += dval(d);
+				if (dval(d) > ds || dval(d) == ds && L & 1) {
+ bump_up:
+					while(*--s == '9')
+						if (s == s0) {
+							k++;
+							*s = '0';
+							break;
+							}
+					++*s++;
+					}
+				break;
+				}
+			}
+		goto ret1;
+		}
+
+	m2 = b2;
+	m5 = b5;
+	mhi = mlo = 0;
+	if (leftright) {
+		i =
+#ifndef Sudden_Underflow
+			denorm ? be + (Bias + (P-1) - 1 + 1) :
+#endif
+#ifdef IBM
+			1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
+#else
+			1 + P - bbits;
+#endif
+		b2 += i;
+		s2 += i;
+		mhi = i2b(1);
+		}
+	if (m2 > 0 && s2 > 0) {
+		i = m2 < s2 ? m2 : s2;
+		b2 -= i;
+		m2 -= i;
+		s2 -= i;
+		}
+	if (b5 > 0) {
+		if (leftright) {
+			if (m5 > 0) {
+				mhi = pow5mult(mhi, m5);
+				b1 = mult(mhi, b);
+				Bfree(b);
+				b = b1;
+				}
+			if (j = b5 - m5)
+				b = pow5mult(b, j);
+			}
+		else
+			b = pow5mult(b, b5);
+		}
+	S = i2b(1);
+	if (s5 > 0)
+		S = pow5mult(S, s5);
+
+	/* Check for special case that d is a normalized power of 2. */
+
+	spec_case = 0;
+	if ((mode < 2 || leftright)
+#ifdef Honor_FLT_ROUNDS
+			&& rounding == 1
+#endif
+				) {
+		if (!word1(d) && !(word0(d) & Bndry_mask)
+#ifndef Sudden_Underflow
+		 && word0(d) & (Exp_mask & ~Exp_msk1)
+#endif
+				) {
+			/* The special case */
+			b2 += Log2P;
+			s2 += Log2P;
+			spec_case = 1;
+			}
+		}
+
+	/* Arrange for convenient computation of quotients:
+	 * shift left if necessary so divisor has 4 leading 0 bits.
+	 *
+	 * Perhaps we should just compute leading 28 bits of S once
+	 * and for all and pass them and a shift to quorem, so it
+	 * can do shifts and ors to compute the numerator for q.
+	 */
+#ifdef Pack_32
+	if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f)
+		i = 32 - i;
+#else
+	if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf)
+		i = 16 - i;
+#endif
+	if (i > 4) {
+		i -= 4;
+		b2 += i;
+		m2 += i;
+		s2 += i;
+		}
+	else if (i < 4) {
+		i += 28;
+		b2 += i;
+		m2 += i;
+		s2 += i;
+		}
+	if (b2 > 0)
+		b = lshift(b, b2);
+	if (s2 > 0)
+		S = lshift(S, s2);
+	if (k_check) {
+		if (cmp(b,S) < 0) {
+			k--;
+			b = multadd(b, 10, 0);	/* we botched the k estimate */
+			if (leftright)
+				mhi = multadd(mhi, 10, 0);
+			ilim = ilim1;
+			}
+		}
+	if (ilim <= 0 && (mode == 3 || mode == 5)) {
+		if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
+			/* no digits, fcvt style */
+ no_digits:
+			k = -1 - ndigits;
+			goto ret;
+			}
+ one_digit:
+		*s++ = '1';
+		k++;
+		goto ret;
+		}
+	if (leftright) {
+		if (m2 > 0)
+			mhi = lshift(mhi, m2);
+
+		/* Compute mlo -- check for special case
+		 * that d is a normalized power of 2.
+		 */
+
+		mlo = mhi;
+		if (spec_case) {
+			mhi = Balloc(mhi->k);
+			Bcopy(mhi, mlo);
+			mhi = lshift(mhi, Log2P);
+			}
+
+		for(i = 1;;i++) {
+			dig = quorem(b,S) + '0';
+			/* Do we yet have the shortest decimal string
+			 * that will round to d?
+			 */
+			j = cmp(b, mlo);
+			delta = diff(S, mhi);
+			j1 = delta->sign ? 1 : cmp(b, delta);
+			Bfree(delta);
+#ifndef ROUND_BIASED
+			if (j1 == 0 && mode != 1 && !(word1(d) & 1)
+#ifdef Honor_FLT_ROUNDS
+				&& rounding >= 1
+#endif
+								   ) {
+				if (dig == '9')
+					goto round_9_up;
+				if (j > 0)
+					dig++;
+#ifdef SET_INEXACT
+				else if (!b->x[0] && b->wds <= 1)
+					inexact = 0;
+#endif
+				*s++ = dig;
+				goto ret;
+				}
+#endif
+			if (j < 0 || j == 0 && mode != 1
+#ifndef ROUND_BIASED
+							&& !(word1(d) & 1)
+#endif
+					) {
+				if (!b->x[0] && b->wds <= 1) {
+#ifdef SET_INEXACT
+					inexact = 0;
+#endif
+					goto accept_dig;
+					}
+#ifdef Honor_FLT_ROUNDS
+				if (mode > 1)
+				 switch(rounding) {
+				  case 0: goto accept_dig;
+				  case 2: goto keep_dig;
+				  }
+#endif /*Honor_FLT_ROUNDS*/
+				if (j1 > 0) {
+					b = lshift(b, 1);
+					j1 = cmp(b, S);
+					if ((j1 > 0 || j1 == 0 && dig & 1)
+					&& dig++ == '9')
+						goto round_9_up;
+					}
+ accept_dig:
+				*s++ = dig;
+				goto ret;
+				}
+			if (j1 > 0) {
+#ifdef Honor_FLT_ROUNDS
+				if (!rounding)
+					goto accept_dig;
+#endif
+				if (dig == '9') { /* possible if i == 1 */
+ round_9_up:
+					*s++ = '9';
+					goto roundoff;
+					}
+				*s++ = dig + 1;
+				goto ret;
+				}
+#ifdef Honor_FLT_ROUNDS
+ keep_dig:
+#endif
+			*s++ = dig;
+			if (i == ilim)
+				break;
+			b = multadd(b, 10, 0);
+			if (mlo == mhi)
+				mlo = mhi = multadd(mhi, 10, 0);
+			else {
+				mlo = multadd(mlo, 10, 0);
+				mhi = multadd(mhi, 10, 0);
+				}
+			}
+		}
+	else
+		for(i = 1;; i++) {
+			*s++ = dig = quorem(b,S) + '0';
+			if (!b->x[0] && b->wds <= 1) {
+#ifdef SET_INEXACT
+				inexact = 0;
+#endif
+				goto ret;
+				}
+			if (i >= ilim)
+				break;
+			b = multadd(b, 10, 0);
+			}
+
+	/* Round off last digit */
+
+#ifdef Honor_FLT_ROUNDS
+	switch(rounding) {
+	  case 0: goto trimzeros;
+	  case 2: goto roundoff;
+	  }
+#endif
+	b = lshift(b, 1);
+	j = cmp(b, S);
+	if (j > 0 || j == 0 && dig & 1) {
+ roundoff:
+		while(*--s == '9')
+			if (s == s0) {
+				k++;
+				*s++ = '1';
+				goto ret;
+				}
+		++*s++;
+		}
+	else {
+#ifdef Honor_FLT_ROUNDS
+ trimzeros:
+#endif
+		while(*--s == '0');
+		s++;
+		}
+ ret:
+	Bfree(S);
+	if (mhi) {
+		if (mlo && mlo != mhi)
+			Bfree(mlo);
+		Bfree(mhi);
+		}
+ ret1:
+#ifdef SET_INEXACT
+	if (inexact) {
+		if (!oldinexact) {
+			word0(d) = Exp_1 + (70 << Exp_shift);
+			word1(d) = 0;
+			dval(d) += 1.;
+			}
+		}
+	else if (!oldinexact)
+		clear_inexact();
+#endif
+	Bfree(b);
+	*s = 0;
+	*decpt = k + 1;
+	if (rve)
+		*rve = s;
+	return s0;
+	}
+#ifdef __cplusplus
+}
+#endif
+
+PR_IMPLEMENT(PRStatus)
+PR_dtoa(PRFloat64 d, PRIntn mode, PRIntn ndigits,
+	PRIntn *decpt, PRIntn *sign, char **rve, char *buf, PRSize bufsize)
+{
+    char *result;
+    PRSize resultlen;
+    PRStatus rv = PR_FAILURE;
+
+    if (!_pr_initialized) _PR_ImplicitInitialization();
+
+    if (mode < 0 || mode > 3) {
+        PR_SetError(PR_INVALID_ARGUMENT_ERROR, 0);
+        return rv;
+    }
+    result = dtoa(d, mode, ndigits, decpt, sign, rve);
+    if (!result) {
+        PR_SetError(PR_OUT_OF_MEMORY_ERROR, 0);
+        return rv;
+    }
+    resultlen = strlen(result)+1;
+    if (bufsize < resultlen) {
+        PR_SetError(PR_BUFFER_OVERFLOW_ERROR, 0);
+    } else {
+        memcpy(buf, result, resultlen);
+        if (rve) {
+            *rve = buf + (*rve - result);
+        }
+        rv = PR_SUCCESS;
+    }
+    freedtoa(result);
+    return rv;  
+}
+
+/*
+** conversion routines for floating point
+** prcsn - number of digits of precision to generate floating
+** point value.
+** This should be reparameterized so that you can send in a
+**   prcn for the positive and negative ranges.  For now, 
+**   conform to the ECMA JavaScript spec which says numbers
+**   less than 1e-6 are in scientific notation.
+** Also, the ECMA spec says that there should always be a
+**   '+' or '-' after the 'e' in scientific notation
+*/
+PR_IMPLEMENT(void)
+PR_cnvtf(char *buf, int bufsz, int prcsn, double dfval)
+{
+    PRIntn decpt, sign, numdigits;
+    char *num, *nump;
+    char *bufp = buf;
+    char *endnum;
+    U fval;
+
+    dval(fval) = dfval;
+    /* If anything fails, we store an empty string in 'buf' */
+    num = (char*)PR_MALLOC(bufsz);
+    if (num == NULL) {
+        buf[0] = '\0';
+        return;
+    }
+    /* XXX Why use mode 1? */
+    if (PR_dtoa(dval(fval),1,prcsn,&decpt,&sign,&endnum,num,bufsz)
+            == PR_FAILURE) {
+        buf[0] = '\0';
+        goto done;
+    }
+    numdigits = endnum - num;
+    nump = num;
+
+    if (sign &&
+        !(word0(fval) == Sign_bit && word1(fval) == 0) &&
+        !((word0(fval) & Exp_mask) == Exp_mask &&
+          (word1(fval) || (word0(fval) & 0xfffff)))) {
+        *bufp++ = '-';
+    }
+
+    if (decpt == 9999) {
+        while ((*bufp++ = *nump++) != 0) {} /* nothing to execute */
+        goto done;
+    }
+
+    if (decpt > (prcsn+1) || decpt < -(prcsn-1) || decpt < -5) {
+        *bufp++ = *nump++;
+        if (numdigits != 1) {
+            *bufp++ = '.';
+        }
+
+        while (*nump != '\0') {
+            *bufp++ = *nump++;
+        }
+        *bufp++ = 'e';
+        PR_snprintf(bufp, bufsz - (bufp - buf), "%+d", decpt-1);
+    } else if (decpt >= 0) {
+        if (decpt == 0) {
+            *bufp++ = '0';
+        } else {
+            while (decpt--) {
+                if (*nump != '\0') {
+                    *bufp++ = *nump++;
+                } else {
+                    *bufp++ = '0';
+                }
+            }
+        }
+        if (*nump != '\0') {
+            *bufp++ = '.';
+            while (*nump != '\0') {
+                *bufp++ = *nump++;
+            }
+        }
+        *bufp++ = '\0';
+    } else if (decpt < 0) {
+        *bufp++ = '0';
+        *bufp++ = '.';
+        while (decpt++) {
+            *bufp++ = '0';
+        }
+
+        while (*nump != '\0') {
+            *bufp++ = *nump++;
+        }
+        *bufp++ = '\0';
+    }
+done:
+    PR_DELETE(num);
+}
This site is hosted by Intevation GmbH (Datenschutzerklärung und Impressum | Privacy Policy and Imprint)