diff nss/lib/freebl/alg2268.c @ 0:1e5118fa0cb1

This is NSS with a Cmake Buildsyste To compile a static NSS library for Windows we've used the Chromium-NSS fork and added a Cmake buildsystem to compile it statically for Windows. See README.chromium for chromium changes and README.trustbridge for our modifications.
author Andre Heinecke <andre.heinecke@intevation.de>
date Mon, 28 Jul 2014 10:47:06 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/nss/lib/freebl/alg2268.c	Mon Jul 28 10:47:06 2014 +0200
@@ -0,0 +1,485 @@
+/*
+ * alg2268.c - implementation of the algorithm in RFC 2268
+ *
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#ifdef FREEBL_NO_DEPEND
+#include "stubs.h"
+#endif
+
+#include "blapi.h"
+#include "secerr.h"
+#ifdef XP_UNIX_XXX
+#include <stddef.h>	/* for ptrdiff_t */
+#endif
+
+/*
+** RC2 symmetric block cypher
+*/
+
+typedef SECStatus (rc2Func)(RC2Context *cx, unsigned char *output,
+		           const unsigned char *input, unsigned int inputLen);
+
+/* forward declarations */
+static rc2Func rc2_EncryptECB;
+static rc2Func rc2_DecryptECB;
+static rc2Func rc2_EncryptCBC;
+static rc2Func rc2_DecryptCBC;
+
+typedef union {
+    PRUint32	l[2];
+    PRUint16	s[4];
+    PRUint8	b[8];
+} RC2Block;
+
+struct RC2ContextStr {
+    union {
+    	PRUint8  Kb[128];
+	PRUint16 Kw[64];
+    } u;
+    RC2Block     iv;
+    rc2Func      *enc;
+    rc2Func      *dec;
+};
+
+#define B u.Kb
+#define K u.Kw
+#define BYTESWAP(x) ((x) << 8 | (x) >> 8)
+#define SWAPK(i)  cx->K[i] = (tmpS = cx->K[i], BYTESWAP(tmpS))
+#define RC2_BLOCK_SIZE 8
+
+#define LOAD_HARD(R) \
+    R[0] = (PRUint16)input[1] << 8 | input[0]; \
+    R[1] = (PRUint16)input[3] << 8 | input[2]; \
+    R[2] = (PRUint16)input[5] << 8 | input[4]; \
+    R[3] = (PRUint16)input[7] << 8 | input[6];
+#define LOAD_EASY(R) \
+    R[0] = ((PRUint16 *)input)[0]; \
+    R[1] = ((PRUint16 *)input)[1]; \
+    R[2] = ((PRUint16 *)input)[2]; \
+    R[3] = ((PRUint16 *)input)[3];
+#define STORE_HARD(R) \
+    output[0] =  (PRUint8)(R[0]);   output[1] = (PRUint8)(R[0] >> 8); \
+    output[2] =  (PRUint8)(R[1]);   output[3] = (PRUint8)(R[1] >> 8); \
+    output[4] =  (PRUint8)(R[2]);   output[5] = (PRUint8)(R[2] >> 8); \
+    output[6] =  (PRUint8)(R[3]);   output[7] = (PRUint8)(R[3] >> 8);
+#define STORE_EASY(R) \
+    ((PRUint16 *)output)[0] =  R[0]; \
+    ((PRUint16 *)output)[1] =  R[1]; \
+    ((PRUint16 *)output)[2] =  R[2]; \
+    ((PRUint16 *)output)[3] =  R[3];   
+
+#if defined (NSS_X86_OR_X64)
+#define LOAD(R)  LOAD_EASY(R)
+#define STORE(R) STORE_EASY(R)
+#elif !defined(IS_LITTLE_ENDIAN)
+#define LOAD(R)  LOAD_HARD(R)
+#define STORE(R) STORE_HARD(R)
+#else
+#define LOAD(R) if ((ptrdiff_t)input & 1) { LOAD_HARD(R) } else { LOAD_EASY(R) }
+#define STORE(R) if ((ptrdiff_t)input & 1) { STORE_HARD(R) } else { STORE_EASY(R) }
+#endif
+
+static const PRUint8 S[256] = {
+0331,0170,0371,0304,0031,0335,0265,0355,0050,0351,0375,0171,0112,0240,0330,0235,
+0306,0176,0067,0203,0053,0166,0123,0216,0142,0114,0144,0210,0104,0213,0373,0242,
+0027,0232,0131,0365,0207,0263,0117,0023,0141,0105,0155,0215,0011,0201,0175,0062,
+0275,0217,0100,0353,0206,0267,0173,0013,0360,0225,0041,0042,0134,0153,0116,0202,
+0124,0326,0145,0223,0316,0140,0262,0034,0163,0126,0300,0024,0247,0214,0361,0334,
+0022,0165,0312,0037,0073,0276,0344,0321,0102,0075,0324,0060,0243,0074,0266,0046,
+0157,0277,0016,0332,0106,0151,0007,0127,0047,0362,0035,0233,0274,0224,0103,0003,
+0370,0021,0307,0366,0220,0357,0076,0347,0006,0303,0325,0057,0310,0146,0036,0327,
+0010,0350,0352,0336,0200,0122,0356,0367,0204,0252,0162,0254,0065,0115,0152,0052,
+0226,0032,0322,0161,0132,0025,0111,0164,0113,0237,0320,0136,0004,0030,0244,0354,
+0302,0340,0101,0156,0017,0121,0313,0314,0044,0221,0257,0120,0241,0364,0160,0071,
+0231,0174,0072,0205,0043,0270,0264,0172,0374,0002,0066,0133,0045,0125,0227,0061,
+0055,0135,0372,0230,0343,0212,0222,0256,0005,0337,0051,0020,0147,0154,0272,0311,
+0323,0000,0346,0317,0341,0236,0250,0054,0143,0026,0001,0077,0130,0342,0211,0251,
+0015,0070,0064,0033,0253,0063,0377,0260,0273,0110,0014,0137,0271,0261,0315,0056,
+0305,0363,0333,0107,0345,0245,0234,0167,0012,0246,0040,0150,0376,0177,0301,0255
+};
+
+RC2Context * RC2_AllocateContext(void)
+{
+    return PORT_ZNew(RC2Context);
+}
+SECStatus   
+RC2_InitContext(RC2Context *cx, const unsigned char *key, unsigned int len,
+	        const unsigned char *input, int mode, unsigned int efLen8, 
+		unsigned int unused)
+{
+    PRUint8    *L,*L2;
+    int         i;
+#if !defined(IS_LITTLE_ENDIAN)
+    PRUint16    tmpS;
+#endif
+    PRUint8     tmpB;
+
+    if (!key || !cx || !len || len > (sizeof cx->B) || 
+	efLen8 > (sizeof cx->B)) {
+	PORT_SetError(SEC_ERROR_INVALID_ARGS);
+    	return SECFailure;
+    }
+    if (mode == NSS_RC2) {
+    	/* groovy */
+    } else if (mode == NSS_RC2_CBC) {
+    	if (!input) {
+	    PORT_SetError(SEC_ERROR_INVALID_ARGS);
+	    return SECFailure;
+	}
+    } else {
+	PORT_SetError(SEC_ERROR_INVALID_ARGS);
+	return SECFailure;
+    }
+
+    if (mode == NSS_RC2_CBC) {
+    	cx->enc = & rc2_EncryptCBC;
+	cx->dec = & rc2_DecryptCBC;
+	LOAD(cx->iv.s);
+    } else {
+    	cx->enc = & rc2_EncryptECB;
+	cx->dec = & rc2_DecryptECB;
+    }
+
+    /* Step 0. Copy key into table. */
+    memcpy(cx->B, key, len);
+
+    /* Step 1. Compute all values to the right of the key. */
+    L2 = cx->B;
+    L = L2 + len;
+    tmpB = L[-1];
+    for (i = (sizeof cx->B) - len; i > 0; --i) {
+	*L++ = tmpB = S[ (PRUint8)(tmpB + *L2++) ];
+    }
+
+    /* step 2. Adjust left most byte of effective key. */
+    i = (sizeof cx->B) - efLen8;
+    L = cx->B + i;
+    *L = tmpB = S[*L];				/* mask is always 0xff */
+
+    /* step 3. Recompute all values to the left of effective key. */
+    L2 = --L + efLen8;
+    while(L >= cx->B) {
+	*L-- = tmpB = S[ tmpB ^ *L2-- ];
+    }
+
+#if !defined(IS_LITTLE_ENDIAN)
+    for (i = 63; i >= 0; --i) {
+        SWAPK(i);		/* candidate for unrolling */
+    }
+#endif
+    return SECSuccess;
+}
+
+/*
+** Create a new RC2 context suitable for RC2 encryption/decryption.
+** 	"key" raw key data
+** 	"len" the number of bytes of key data
+** 	"iv" is the CBC initialization vector (if mode is NSS_RC2_CBC)
+** 	"mode" one of NSS_RC2 or NSS_RC2_CBC
+**	"effectiveKeyLen" in bytes, not bits.
+**
+** When mode is set to NSS_RC2_CBC the RC2 cipher is run in "cipher block
+** chaining" mode.
+*/
+RC2Context *
+RC2_CreateContext(const unsigned char *key, unsigned int len,
+		  const unsigned char *iv, int mode, unsigned efLen8)
+{
+    RC2Context *cx = PORT_ZNew(RC2Context);
+    if (cx) {
+	SECStatus rv = RC2_InitContext(cx, key, len, iv, mode, efLen8, 0);
+	if (rv != SECSuccess) {
+	    RC2_DestroyContext(cx, PR_TRUE);
+	    cx = NULL;
+	}
+    }
+    return cx;
+}
+
+/*
+** Destroy an RC2 encryption/decryption context.
+**	"cx" the context
+**	"freeit" if PR_TRUE then free the object as well as its sub-objects
+*/
+void 
+RC2_DestroyContext(RC2Context *cx, PRBool freeit)
+{
+    if (cx) {
+	memset(cx, 0, sizeof *cx);
+	if (freeit) {
+	    PORT_Free(cx);
+	}
+    }
+}
+
+#define ROL(x,k) (x << k | x >> (16-k))
+#define MIX(j) \
+    R0 = R0 + cx->K[ 4*j+0] + (R3 & R2) + (~R3 & R1);  R0 = ROL(R0,1);\
+    R1 = R1 + cx->K[ 4*j+1] + (R0 & R3) + (~R0 & R2);  R1 = ROL(R1,2);\
+    R2 = R2 + cx->K[ 4*j+2] + (R1 & R0) + (~R1 & R3);  R2 = ROL(R2,3);\
+    R3 = R3 + cx->K[ 4*j+3] + (R2 & R1) + (~R2 & R0);  R3 = ROL(R3,5)
+#define MASH \
+    R0 = R0 + cx->K[R3 & 63];\
+    R1 = R1 + cx->K[R0 & 63];\
+    R2 = R2 + cx->K[R1 & 63];\
+    R3 = R3 + cx->K[R2 & 63]
+
+/* Encrypt one block */
+static void 
+rc2_Encrypt1Block(RC2Context *cx, RC2Block *output, RC2Block *input)
+{
+    register PRUint16 R0, R1, R2, R3;
+
+    /* step 1. Initialize input. */
+    R0 = input->s[0];
+    R1 = input->s[1];
+    R2 = input->s[2];
+    R3 = input->s[3];
+
+    /* step 2.  Expand Key (already done, in context) */
+    /* step 3.  j = 0 */
+    /* step 4.  Perform 5 mixing rounds. */
+
+    MIX(0);
+    MIX(1);
+    MIX(2);
+    MIX(3);
+    MIX(4);
+
+    /* step 5. Perform 1 mashing round. */
+    MASH;
+
+    /* step 6. Perform 6 mixing rounds. */
+
+    MIX(5);
+    MIX(6);
+    MIX(7);
+    MIX(8);
+    MIX(9);
+    MIX(10);
+
+    /* step 7. Perform 1 mashing round. */
+    MASH;
+
+    /* step 8. Perform 5 mixing rounds. */
+
+    MIX(11);
+    MIX(12);
+    MIX(13);
+    MIX(14);
+    MIX(15);
+
+    /* output results */
+    output->s[0] = R0;
+    output->s[1] = R1;
+    output->s[2] = R2;
+    output->s[3] = R3;
+}
+
+#define ROR(x,k) (x >> k | x << (16-k))
+#define R_MIX(j) \
+    R3 = ROR(R3,5); R3 = R3 - cx->K[ 4*j+3] - (R2 & R1) - (~R2 & R0);  \
+    R2 = ROR(R2,3); R2 = R2 - cx->K[ 4*j+2] - (R1 & R0) - (~R1 & R3);  \
+    R1 = ROR(R1,2); R1 = R1 - cx->K[ 4*j+1] - (R0 & R3) - (~R0 & R2);  \
+    R0 = ROR(R0,1); R0 = R0 - cx->K[ 4*j+0] - (R3 & R2) - (~R3 & R1)
+#define R_MASH \
+    R3 = R3 - cx->K[R2 & 63];\
+    R2 = R2 - cx->K[R1 & 63];\
+    R1 = R1 - cx->K[R0 & 63];\
+    R0 = R0 - cx->K[R3 & 63]
+
+/* Encrypt one block */
+static void 
+rc2_Decrypt1Block(RC2Context *cx, RC2Block *output, RC2Block *input)
+{
+    register PRUint16 R0, R1, R2, R3;
+
+    /* step 1. Initialize input. */
+    R0 = input->s[0];
+    R1 = input->s[1];
+    R2 = input->s[2];
+    R3 = input->s[3];
+
+    /* step 2.  Expand Key (already done, in context) */
+    /* step 3.  j = 63 */
+    /* step 4.  Perform 5 r_mixing rounds. */
+    R_MIX(15);
+    R_MIX(14);
+    R_MIX(13);
+    R_MIX(12);
+    R_MIX(11);
+
+    /* step 5.  Perform 1 r_mashing round. */
+    R_MASH;
+
+    /* step 6.  Perform 6 r_mixing rounds. */
+    R_MIX(10);
+    R_MIX(9);
+    R_MIX(8);
+    R_MIX(7);
+    R_MIX(6);
+    R_MIX(5);
+
+    /* step 7.  Perform 1 r_mashing round. */
+    R_MASH;
+
+    /* step 8.  Perform 5 r_mixing rounds. */
+    R_MIX(4);
+    R_MIX(3);
+    R_MIX(2);
+    R_MIX(1);
+    R_MIX(0);
+
+    /* output results */
+    output->s[0] = R0;
+    output->s[1] = R1;
+    output->s[2] = R2;
+    output->s[3] = R3;
+}
+
+static SECStatus
+rc2_EncryptECB(RC2Context *cx, unsigned char *output,
+	       const unsigned char *input, unsigned int inputLen)
+{
+    RC2Block  iBlock;
+
+    while (inputLen > 0) {
+    	LOAD(iBlock.s)
+	rc2_Encrypt1Block(cx, &iBlock, &iBlock);
+	STORE(iBlock.s)
+	output   += RC2_BLOCK_SIZE;
+	input    += RC2_BLOCK_SIZE;
+	inputLen -= RC2_BLOCK_SIZE;
+    }
+    return SECSuccess;
+}
+
+static SECStatus
+rc2_DecryptECB(RC2Context *cx, unsigned char *output,
+	       const unsigned char *input, unsigned int inputLen)
+{
+    RC2Block  iBlock;
+
+    while (inputLen > 0) {
+    	LOAD(iBlock.s)
+	rc2_Decrypt1Block(cx, &iBlock, &iBlock);
+	STORE(iBlock.s)
+	output   += RC2_BLOCK_SIZE;
+	input    += RC2_BLOCK_SIZE;
+	inputLen -= RC2_BLOCK_SIZE;
+    }
+    return SECSuccess;
+}
+
+static SECStatus
+rc2_EncryptCBC(RC2Context *cx, unsigned char *output,
+	       const unsigned char *input, unsigned int inputLen)
+{
+    RC2Block  iBlock;
+
+    while (inputLen > 0) {
+
+	LOAD(iBlock.s)
+	iBlock.l[0] ^= cx->iv.l[0];
+	iBlock.l[1] ^= cx->iv.l[1];
+	rc2_Encrypt1Block(cx, &iBlock, &iBlock);
+	cx->iv = iBlock;
+	STORE(iBlock.s)
+	output   += RC2_BLOCK_SIZE;
+	input    += RC2_BLOCK_SIZE;
+	inputLen -= RC2_BLOCK_SIZE;
+    }
+    return SECSuccess;
+}
+
+static SECStatus
+rc2_DecryptCBC(RC2Context *cx, unsigned char *output,
+	       const unsigned char *input, unsigned int inputLen)
+{
+    RC2Block  iBlock;
+    RC2Block  oBlock;
+
+    while (inputLen > 0) {
+	LOAD(iBlock.s)
+	rc2_Decrypt1Block(cx, &oBlock, &iBlock);
+	oBlock.l[0] ^= cx->iv.l[0];
+	oBlock.l[1] ^= cx->iv.l[1];
+	cx->iv = iBlock;
+	STORE(oBlock.s)
+	output   += RC2_BLOCK_SIZE;
+	input    += RC2_BLOCK_SIZE;
+	inputLen -= RC2_BLOCK_SIZE;
+    }
+    return SECSuccess;
+}
+
+
+/*
+** Perform RC2 encryption.
+**	"cx" the context
+**	"output" the output buffer to store the encrypted data.
+**	"outputLen" how much data is stored in "output". Set by the routine
+**	   after some data is stored in output.
+**	"maxOutputLen" the maximum amount of data that can ever be
+**	   stored in "output"
+**	"input" the input data
+**	"inputLen" the amount of input data
+*/
+SECStatus RC2_Encrypt(RC2Context *cx, unsigned char *output,
+		      unsigned int *outputLen, unsigned int maxOutputLen,
+		      const unsigned char *input, unsigned int inputLen)
+{
+    SECStatus rv = SECSuccess;
+    if (inputLen) {
+	if (inputLen % RC2_BLOCK_SIZE) {
+	    PORT_SetError(SEC_ERROR_INPUT_LEN);
+	    return SECFailure;
+	}
+	if (maxOutputLen < inputLen) {
+	    PORT_SetError(SEC_ERROR_OUTPUT_LEN);
+	    return SECFailure;
+	}
+	rv = (*cx->enc)(cx, output, input, inputLen);
+    }
+    if (rv == SECSuccess) {
+    	*outputLen = inputLen;
+    }
+    return rv;
+}
+
+/*
+** Perform RC2 decryption.
+**	"cx" the context
+**	"output" the output buffer to store the decrypted data.
+**	"outputLen" how much data is stored in "output". Set by the routine
+**	   after some data is stored in output.
+**	"maxOutputLen" the maximum amount of data that can ever be
+**	   stored in "output"
+**	"input" the input data
+**	"inputLen" the amount of input data
+*/
+SECStatus RC2_Decrypt(RC2Context *cx, unsigned char *output,
+		      unsigned int *outputLen, unsigned int maxOutputLen,
+		      const unsigned char *input, unsigned int inputLen)
+{
+    SECStatus rv = SECSuccess;
+    if (inputLen) {
+	if (inputLen % RC2_BLOCK_SIZE) {
+	    PORT_SetError(SEC_ERROR_INPUT_LEN);
+	    return SECFailure;
+	}
+	if (maxOutputLen < inputLen) {
+	    PORT_SetError(SEC_ERROR_OUTPUT_LEN);
+	    return SECFailure;
+	}
+	rv = (*cx->dec)(cx, output, input, inputLen);
+    }
+    if (rv == SECSuccess) {
+	*outputLen = inputLen;
+    }
+    return rv;
+}
+
This site is hosted by Intevation GmbH (Datenschutzerklärung und Impressum | Privacy Policy and Imprint)