diff nss/lib/freebl/ecl/ecl_mult.c @ 0:1e5118fa0cb1

This is NSS with a Cmake Buildsyste To compile a static NSS library for Windows we've used the Chromium-NSS fork and added a Cmake buildsystem to compile it statically for Windows. See README.chromium for chromium changes and README.trustbridge for our modifications.
author Andre Heinecke <andre.heinecke@intevation.de>
date Mon, 28 Jul 2014 10:47:06 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/nss/lib/freebl/ecl/ecl_mult.c	Mon Jul 28 10:47:06 2014 +0200
@@ -0,0 +1,322 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "mpi.h"
+#include "mplogic.h"
+#include "ecl.h"
+#include "ecl-priv.h"
+#include <stdlib.h>
+
+/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k * P(x, 
+ * y).  If x, y = NULL, then P is assumed to be the generator (base point) 
+ * of the group of points on the elliptic curve. Input and output values
+ * are assumed to be NOT field-encoded. */
+mp_err
+ECPoint_mul(const ECGroup *group, const mp_int *k, const mp_int *px,
+			const mp_int *py, mp_int *rx, mp_int *ry)
+{
+	mp_err res = MP_OKAY;
+	mp_int kt;
+
+	ARGCHK((k != NULL) && (group != NULL), MP_BADARG);
+	MP_DIGITS(&kt) = 0;
+
+	/* want scalar to be less than or equal to group order */
+	if (mp_cmp(k, &group->order) > 0) {
+		MP_CHECKOK(mp_init(&kt));
+		MP_CHECKOK(mp_mod(k, &group->order, &kt));
+	} else {
+		MP_SIGN(&kt) = MP_ZPOS;
+		MP_USED(&kt) = MP_USED(k);
+		MP_ALLOC(&kt) = MP_ALLOC(k);
+		MP_DIGITS(&kt) = MP_DIGITS(k);
+	}
+
+	if ((px == NULL) || (py == NULL)) {
+		if (group->base_point_mul) {
+			MP_CHECKOK(group->base_point_mul(&kt, rx, ry, group));
+		} else {
+			MP_CHECKOK(group->
+					   point_mul(&kt, &group->genx, &group->geny, rx, ry,
+								 group));
+		}
+	} else {
+		if (group->meth->field_enc) {
+			MP_CHECKOK(group->meth->field_enc(px, rx, group->meth));
+			MP_CHECKOK(group->meth->field_enc(py, ry, group->meth));
+			MP_CHECKOK(group->point_mul(&kt, rx, ry, rx, ry, group));
+		} else {
+			MP_CHECKOK(group->point_mul(&kt, px, py, rx, ry, group));
+		}
+	}
+	if (group->meth->field_dec) {
+		MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
+		MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
+	}
+
+  CLEANUP:
+	if (MP_DIGITS(&kt) != MP_DIGITS(k)) {
+		mp_clear(&kt);
+	}
+	return res;
+}
+
+/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + 
+ * k2 * P(x, y), where G is the generator (base point) of the group of
+ * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
+ * Input and output values are assumed to be NOT field-encoded. */
+mp_err
+ec_pts_mul_basic(const mp_int *k1, const mp_int *k2, const mp_int *px,
+				 const mp_int *py, mp_int *rx, mp_int *ry,
+				 const ECGroup *group)
+{
+	mp_err res = MP_OKAY;
+	mp_int sx, sy;
+
+	ARGCHK(group != NULL, MP_BADARG);
+	ARGCHK(!((k1 == NULL)
+			 && ((k2 == NULL) || (px == NULL)
+				 || (py == NULL))), MP_BADARG);
+
+	/* if some arguments are not defined used ECPoint_mul */
+	if (k1 == NULL) {
+		return ECPoint_mul(group, k2, px, py, rx, ry);
+	} else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
+		return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
+	}
+
+	MP_DIGITS(&sx) = 0;
+	MP_DIGITS(&sy) = 0;
+	MP_CHECKOK(mp_init(&sx));
+	MP_CHECKOK(mp_init(&sy));
+
+	MP_CHECKOK(ECPoint_mul(group, k1, NULL, NULL, &sx, &sy));
+	MP_CHECKOK(ECPoint_mul(group, k2, px, py, rx, ry));
+
+	if (group->meth->field_enc) {
+		MP_CHECKOK(group->meth->field_enc(&sx, &sx, group->meth));
+		MP_CHECKOK(group->meth->field_enc(&sy, &sy, group->meth));
+		MP_CHECKOK(group->meth->field_enc(rx, rx, group->meth));
+		MP_CHECKOK(group->meth->field_enc(ry, ry, group->meth));
+	}
+
+	MP_CHECKOK(group->point_add(&sx, &sy, rx, ry, rx, ry, group));
+
+	if (group->meth->field_dec) {
+		MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
+		MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
+	}
+
+  CLEANUP:
+	mp_clear(&sx);
+	mp_clear(&sy);
+	return res;
+}
+
+/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + 
+ * k2 * P(x, y), where G is the generator (base point) of the group of
+ * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
+ * Input and output values are assumed to be NOT field-encoded. Uses
+ * algorithm 15 (simultaneous multiple point multiplication) from Brown,
+ * Hankerson, Lopez, Menezes. Software Implementation of the NIST
+ * Elliptic Curves over Prime Fields. */
+mp_err
+ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2, const mp_int *px,
+					const mp_int *py, mp_int *rx, mp_int *ry,
+					const ECGroup *group)
+{
+	mp_err res = MP_OKAY;
+	mp_int precomp[4][4][2];
+	const mp_int *a, *b;
+	int i, j;
+	int ai, bi, d;
+
+	ARGCHK(group != NULL, MP_BADARG);
+	ARGCHK(!((k1 == NULL)
+			 && ((k2 == NULL) || (px == NULL)
+				 || (py == NULL))), MP_BADARG);
+
+	/* if some arguments are not defined used ECPoint_mul */
+	if (k1 == NULL) {
+		return ECPoint_mul(group, k2, px, py, rx, ry);
+	} else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
+		return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
+	}
+
+	/* initialize precomputation table */
+	for (i = 0; i < 4; i++) {
+		for (j = 0; j < 4; j++) {
+			MP_DIGITS(&precomp[i][j][0]) = 0;
+			MP_DIGITS(&precomp[i][j][1]) = 0;
+		}
+	}
+	for (i = 0; i < 4; i++) {
+		for (j = 0; j < 4; j++) {
+			 MP_CHECKOK( mp_init_size(&precomp[i][j][0],
+						 ECL_MAX_FIELD_SIZE_DIGITS) );
+			 MP_CHECKOK( mp_init_size(&precomp[i][j][1],
+						 ECL_MAX_FIELD_SIZE_DIGITS) );
+		}
+	}
+
+	/* fill precomputation table */
+	/* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
+	if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
+		a = k2;
+		b = k1;
+		if (group->meth->field_enc) {
+			MP_CHECKOK(group->meth->
+					   field_enc(px, &precomp[1][0][0], group->meth));
+			MP_CHECKOK(group->meth->
+					   field_enc(py, &precomp[1][0][1], group->meth));
+		} else {
+			MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
+			MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
+		}
+		MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
+		MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
+	} else {
+		a = k1;
+		b = k2;
+		MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
+		MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
+		if (group->meth->field_enc) {
+			MP_CHECKOK(group->meth->
+					   field_enc(px, &precomp[0][1][0], group->meth));
+			MP_CHECKOK(group->meth->
+					   field_enc(py, &precomp[0][1][1], group->meth));
+		} else {
+			MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
+			MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
+		}
+	}
+	/* precompute [*][0][*] */
+	mp_zero(&precomp[0][0][0]);
+	mp_zero(&precomp[0][0][1]);
+	MP_CHECKOK(group->
+			   point_dbl(&precomp[1][0][0], &precomp[1][0][1],
+						 &precomp[2][0][0], &precomp[2][0][1], group));
+	MP_CHECKOK(group->
+			   point_add(&precomp[1][0][0], &precomp[1][0][1],
+						 &precomp[2][0][0], &precomp[2][0][1],
+						 &precomp[3][0][0], &precomp[3][0][1], group));
+	/* precompute [*][1][*] */
+	for (i = 1; i < 4; i++) {
+		MP_CHECKOK(group->
+				   point_add(&precomp[0][1][0], &precomp[0][1][1],
+							 &precomp[i][0][0], &precomp[i][0][1],
+							 &precomp[i][1][0], &precomp[i][1][1], group));
+	}
+	/* precompute [*][2][*] */
+	MP_CHECKOK(group->
+			   point_dbl(&precomp[0][1][0], &precomp[0][1][1],
+						 &precomp[0][2][0], &precomp[0][2][1], group));
+	for (i = 1; i < 4; i++) {
+		MP_CHECKOK(group->
+				   point_add(&precomp[0][2][0], &precomp[0][2][1],
+							 &precomp[i][0][0], &precomp[i][0][1],
+							 &precomp[i][2][0], &precomp[i][2][1], group));
+	}
+	/* precompute [*][3][*] */
+	MP_CHECKOK(group->
+			   point_add(&precomp[0][1][0], &precomp[0][1][1],
+						 &precomp[0][2][0], &precomp[0][2][1],
+						 &precomp[0][3][0], &precomp[0][3][1], group));
+	for (i = 1; i < 4; i++) {
+		MP_CHECKOK(group->
+				   point_add(&precomp[0][3][0], &precomp[0][3][1],
+							 &precomp[i][0][0], &precomp[i][0][1],
+							 &precomp[i][3][0], &precomp[i][3][1], group));
+	}
+
+	d = (mpl_significant_bits(a) + 1) / 2;
+
+	/* R = inf */
+	mp_zero(rx);
+	mp_zero(ry);
+
+	for (i = d - 1; i >= 0; i--) {
+		ai = MP_GET_BIT(a, 2 * i + 1);
+		ai <<= 1;
+		ai |= MP_GET_BIT(a, 2 * i);
+		bi = MP_GET_BIT(b, 2 * i + 1);
+		bi <<= 1;
+		bi |= MP_GET_BIT(b, 2 * i);
+		/* R = 2^2 * R */
+		MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
+		MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
+		/* R = R + (ai * A + bi * B) */
+		MP_CHECKOK(group->
+				   point_add(rx, ry, &precomp[ai][bi][0],
+							 &precomp[ai][bi][1], rx, ry, group));
+	}
+
+	if (group->meth->field_dec) {
+		MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
+		MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
+	}
+
+  CLEANUP:
+	for (i = 0; i < 4; i++) {
+		for (j = 0; j < 4; j++) {
+			mp_clear(&precomp[i][j][0]);
+			mp_clear(&precomp[i][j][1]);
+		}
+	}
+	return res;
+}
+
+/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + 
+ * k2 * P(x, y), where G is the generator (base point) of the group of
+ * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
+ * Input and output values are assumed to be NOT field-encoded. */
+mp_err
+ECPoints_mul(const ECGroup *group, const mp_int *k1, const mp_int *k2,
+			 const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry)
+{
+	mp_err res = MP_OKAY;
+	mp_int k1t, k2t;
+	const mp_int *k1p, *k2p;
+
+	MP_DIGITS(&k1t) = 0;
+	MP_DIGITS(&k2t) = 0;
+
+	ARGCHK(group != NULL, MP_BADARG);
+
+	/* want scalar to be less than or equal to group order */
+	if (k1 != NULL) {
+		if (mp_cmp(k1, &group->order) >= 0) {
+			MP_CHECKOK(mp_init(&k1t));
+			MP_CHECKOK(mp_mod(k1, &group->order, &k1t));
+			k1p = &k1t;
+		} else {
+			k1p = k1;
+		}
+	} else {
+		k1p = k1;
+	}
+	if (k2 != NULL) {
+		if (mp_cmp(k2, &group->order) >= 0) {
+			MP_CHECKOK(mp_init(&k2t));
+			MP_CHECKOK(mp_mod(k2, &group->order, &k2t));
+			k2p = &k2t;
+		} else {
+			k2p = k2;
+		}
+	} else {
+		k2p = k2;
+	}
+
+	/* if points_mul is defined, then use it */
+	if (group->points_mul) {
+		res = group->points_mul(k1p, k2p, px, py, rx, ry, group);
+	} else {
+		res = ec_pts_mul_simul_w2(k1p, k2p, px, py, rx, ry, group);
+	}
+
+  CLEANUP:
+	mp_clear(&k1t);
+	mp_clear(&k2t);
+	return res;
+}
This site is hosted by Intevation GmbH (Datenschutzerklärung und Impressum | Privacy Policy and Imprint)