diff nss/lib/freebl/mpi/mpi.c @ 0:1e5118fa0cb1

This is NSS with a Cmake Buildsyste To compile a static NSS library for Windows we've used the Chromium-NSS fork and added a Cmake buildsystem to compile it statically for Windows. See README.chromium for chromium changes and README.trustbridge for our modifications.
author Andre Heinecke <andre.heinecke@intevation.de>
date Mon, 28 Jul 2014 10:47:06 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/nss/lib/freebl/mpi/mpi.c	Mon Jul 28 10:47:06 2014 +0200
@@ -0,0 +1,4820 @@
+/*
+ *  mpi.c
+ *
+ *  Arbitrary precision integer arithmetic library
+ *
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "mpi-priv.h"
+#if defined(OSF1)
+#include <c_asm.h>
+#endif
+
+#if defined(__arm__) && \
+    ((defined(__thumb__) && !defined(__thumb2__)) || defined(__ARM_ARCH_3__))
+/* 16-bit thumb or ARM v3 doesn't work inlined assember version */
+#undef MP_ASSEMBLY_MULTIPLY
+#undef MP_ASSEMBLY_SQUARE
+#endif
+
+#if MP_LOGTAB
+/*
+  A table of the logs of 2 for various bases (the 0 and 1 entries of
+  this table are meaningless and should not be referenced).  
+
+  This table is used to compute output lengths for the mp_toradix()
+  function.  Since a number n in radix r takes up about log_r(n)
+  digits, we estimate the output size by taking the least integer
+  greater than log_r(n), where:
+
+  log_r(n) = log_2(n) * log_r(2)
+
+  This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
+  which are the output bases supported.  
+ */
+#include "logtab.h"
+#endif
+
+/* {{{ Constant strings */
+
+/* Constant strings returned by mp_strerror() */
+static const char *mp_err_string[] = {
+  "unknown result code",     /* say what?            */
+  "boolean true",            /* MP_OKAY, MP_YES      */
+  "boolean false",           /* MP_NO                */
+  "out of memory",           /* MP_MEM               */
+  "argument out of range",   /* MP_RANGE             */
+  "invalid input parameter", /* MP_BADARG            */
+  "result is undefined"      /* MP_UNDEF             */
+};
+
+/* Value to digit maps for radix conversion   */
+
+/* s_dmap_1 - standard digits and letters */
+static const char *s_dmap_1 = 
+  "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
+
+/* }}} */
+
+unsigned long mp_allocs;
+unsigned long mp_frees;
+unsigned long mp_copies;
+
+/* {{{ Default precision manipulation */
+
+/* Default precision for newly created mp_int's      */
+static mp_size s_mp_defprec = MP_DEFPREC;
+
+mp_size mp_get_prec(void)
+{
+  return s_mp_defprec;
+
+} /* end mp_get_prec() */
+
+void         mp_set_prec(mp_size prec)
+{
+  if(prec == 0)
+    s_mp_defprec = MP_DEFPREC;
+  else
+    s_mp_defprec = prec;
+
+} /* end mp_set_prec() */
+
+/* }}} */
+
+/*------------------------------------------------------------------------*/
+/* {{{ mp_init(mp) */
+
+/*
+  mp_init(mp)
+
+  Initialize a new zero-valued mp_int.  Returns MP_OKAY if successful,
+  MP_MEM if memory could not be allocated for the structure.
+ */
+
+mp_err mp_init(mp_int *mp)
+{
+  return mp_init_size(mp, s_mp_defprec);
+
+} /* end mp_init() */
+
+/* }}} */
+
+/* {{{ mp_init_size(mp, prec) */
+
+/*
+  mp_init_size(mp, prec)
+
+  Initialize a new zero-valued mp_int with at least the given
+  precision; returns MP_OKAY if successful, or MP_MEM if memory could
+  not be allocated for the structure.
+ */
+
+mp_err mp_init_size(mp_int *mp, mp_size prec)
+{
+  ARGCHK(mp != NULL && prec > 0, MP_BADARG);
+
+  prec = MP_ROUNDUP(prec, s_mp_defprec);
+  if((DIGITS(mp) = s_mp_alloc(prec, sizeof(mp_digit))) == NULL)
+    return MP_MEM;
+
+  SIGN(mp) = ZPOS;
+  USED(mp) = 1;
+  ALLOC(mp) = prec;
+
+  return MP_OKAY;
+
+} /* end mp_init_size() */
+
+/* }}} */
+
+/* {{{ mp_init_copy(mp, from) */
+
+/*
+  mp_init_copy(mp, from)
+
+  Initialize mp as an exact copy of from.  Returns MP_OKAY if
+  successful, MP_MEM if memory could not be allocated for the new
+  structure.
+ */
+
+mp_err mp_init_copy(mp_int *mp, const mp_int *from)
+{
+  ARGCHK(mp != NULL && from != NULL, MP_BADARG);
+
+  if(mp == from)
+    return MP_OKAY;
+
+  if((DIGITS(mp) = s_mp_alloc(ALLOC(from), sizeof(mp_digit))) == NULL)
+    return MP_MEM;
+
+  s_mp_copy(DIGITS(from), DIGITS(mp), USED(from));
+  USED(mp) = USED(from);
+  ALLOC(mp) = ALLOC(from);
+  SIGN(mp) = SIGN(from);
+
+  return MP_OKAY;
+
+} /* end mp_init_copy() */
+
+/* }}} */
+
+/* {{{ mp_copy(from, to) */
+
+/*
+  mp_copy(from, to)
+
+  Copies the mp_int 'from' to the mp_int 'to'.  It is presumed that
+  'to' has already been initialized (if not, use mp_init_copy()
+  instead). If 'from' and 'to' are identical, nothing happens.
+ */
+
+mp_err mp_copy(const mp_int *from, mp_int *to)
+{
+  ARGCHK(from != NULL && to != NULL, MP_BADARG);
+
+  if(from == to)
+    return MP_OKAY;
+
+  { /* copy */
+    mp_digit   *tmp;
+
+    /*
+      If the allocated buffer in 'to' already has enough space to hold
+      all the used digits of 'from', we'll re-use it to avoid hitting
+      the memory allocater more than necessary; otherwise, we'd have
+      to grow anyway, so we just allocate a hunk and make the copy as
+      usual
+     */
+    if(ALLOC(to) >= USED(from)) {
+      s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from));
+      s_mp_copy(DIGITS(from), DIGITS(to), USED(from));
+      
+    } else {
+      if((tmp = s_mp_alloc(ALLOC(from), sizeof(mp_digit))) == NULL)
+	return MP_MEM;
+
+      s_mp_copy(DIGITS(from), tmp, USED(from));
+
+      if(DIGITS(to) != NULL) {
+#if MP_CRYPTO
+	s_mp_setz(DIGITS(to), ALLOC(to));
+#endif
+	s_mp_free(DIGITS(to));
+      }
+
+      DIGITS(to) = tmp;
+      ALLOC(to) = ALLOC(from);
+    }
+
+    /* Copy the precision and sign from the original */
+    USED(to) = USED(from);
+    SIGN(to) = SIGN(from);
+  } /* end copy */
+
+  return MP_OKAY;
+
+} /* end mp_copy() */
+
+/* }}} */
+
+/* {{{ mp_exch(mp1, mp2) */
+
+/*
+  mp_exch(mp1, mp2)
+
+  Exchange mp1 and mp2 without allocating any intermediate memory
+  (well, unless you count the stack space needed for this call and the
+  locals it creates...).  This cannot fail.
+ */
+
+void mp_exch(mp_int *mp1, mp_int *mp2)
+{
+#if MP_ARGCHK == 2
+  assert(mp1 != NULL && mp2 != NULL);
+#else
+  if(mp1 == NULL || mp2 == NULL)
+    return;
+#endif
+
+  s_mp_exch(mp1, mp2);
+
+} /* end mp_exch() */
+
+/* }}} */
+
+/* {{{ mp_clear(mp) */
+
+/*
+  mp_clear(mp)
+
+  Release the storage used by an mp_int, and void its fields so that
+  if someone calls mp_clear() again for the same int later, we won't
+  get tollchocked.
+ */
+
+void   mp_clear(mp_int *mp)
+{
+  if(mp == NULL)
+    return;
+
+  if(DIGITS(mp) != NULL) {
+#if MP_CRYPTO
+    s_mp_setz(DIGITS(mp), ALLOC(mp));
+#endif
+    s_mp_free(DIGITS(mp));
+    DIGITS(mp) = NULL;
+  }
+
+  USED(mp) = 0;
+  ALLOC(mp) = 0;
+
+} /* end mp_clear() */
+
+/* }}} */
+
+/* {{{ mp_zero(mp) */
+
+/*
+  mp_zero(mp) 
+
+  Set mp to zero.  Does not change the allocated size of the structure,
+  and therefore cannot fail (except on a bad argument, which we ignore)
+ */
+void   mp_zero(mp_int *mp)
+{
+  if(mp == NULL)
+    return;
+
+  s_mp_setz(DIGITS(mp), ALLOC(mp));
+  USED(mp) = 1;
+  SIGN(mp) = ZPOS;
+
+} /* end mp_zero() */
+
+/* }}} */
+
+/* {{{ mp_set(mp, d) */
+
+void   mp_set(mp_int *mp, mp_digit d)
+{
+  if(mp == NULL)
+    return;
+
+  mp_zero(mp);
+  DIGIT(mp, 0) = d;
+
+} /* end mp_set() */
+
+/* }}} */
+
+/* {{{ mp_set_int(mp, z) */
+
+mp_err mp_set_int(mp_int *mp, long z)
+{
+  int            ix;
+  unsigned long  v = labs(z);
+  mp_err         res;
+
+  ARGCHK(mp != NULL, MP_BADARG);
+
+  mp_zero(mp);
+  if(z == 0)
+    return MP_OKAY;  /* shortcut for zero */
+
+  if (sizeof v <= sizeof(mp_digit)) {
+    DIGIT(mp,0) = v;
+  } else {
+    for (ix = sizeof(long) - 1; ix >= 0; ix--) {
+      if ((res = s_mp_mul_d(mp, (UCHAR_MAX + 1))) != MP_OKAY)
+	return res;
+
+      res = s_mp_add_d(mp, (mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX));
+      if (res != MP_OKAY)
+	return res;
+    }
+  }
+  if(z < 0)
+    SIGN(mp) = NEG;
+
+  return MP_OKAY;
+
+} /* end mp_set_int() */
+
+/* }}} */
+
+/* {{{ mp_set_ulong(mp, z) */
+
+mp_err mp_set_ulong(mp_int *mp, unsigned long z)
+{
+  int            ix;
+  mp_err         res;
+
+  ARGCHK(mp != NULL, MP_BADARG);
+
+  mp_zero(mp);
+  if(z == 0)
+    return MP_OKAY;  /* shortcut for zero */
+
+  if (sizeof z <= sizeof(mp_digit)) {
+    DIGIT(mp,0) = z;
+  } else {
+    for (ix = sizeof(long) - 1; ix >= 0; ix--) {
+      if ((res = s_mp_mul_d(mp, (UCHAR_MAX + 1))) != MP_OKAY)
+	return res;
+
+      res = s_mp_add_d(mp, (mp_digit)((z >> (ix * CHAR_BIT)) & UCHAR_MAX));
+      if (res != MP_OKAY)
+	return res;
+    }
+  }
+  return MP_OKAY;
+} /* end mp_set_ulong() */
+
+/* }}} */
+
+/*------------------------------------------------------------------------*/
+/* {{{ Digit arithmetic */
+
+/* {{{ mp_add_d(a, d, b) */
+
+/*
+  mp_add_d(a, d, b)
+
+  Compute the sum b = a + d, for a single digit d.  Respects the sign of
+  its primary addend (single digits are unsigned anyway).
+ */
+
+mp_err mp_add_d(const mp_int *a, mp_digit d, mp_int *b)
+{
+  mp_int   tmp;
+  mp_err   res;
+
+  ARGCHK(a != NULL && b != NULL, MP_BADARG);
+
+  if((res = mp_init_copy(&tmp, a)) != MP_OKAY)
+    return res;
+
+  if(SIGN(&tmp) == ZPOS) {
+    if((res = s_mp_add_d(&tmp, d)) != MP_OKAY)
+      goto CLEANUP;
+  } else if(s_mp_cmp_d(&tmp, d) >= 0) {
+    if((res = s_mp_sub_d(&tmp, d)) != MP_OKAY)
+      goto CLEANUP;
+  } else {
+    mp_neg(&tmp, &tmp);
+
+    DIGIT(&tmp, 0) = d - DIGIT(&tmp, 0);
+  }
+
+  if(s_mp_cmp_d(&tmp, 0) == 0)
+    SIGN(&tmp) = ZPOS;
+
+  s_mp_exch(&tmp, b);
+
+CLEANUP:
+  mp_clear(&tmp);
+  return res;
+
+} /* end mp_add_d() */
+
+/* }}} */
+
+/* {{{ mp_sub_d(a, d, b) */
+
+/*
+  mp_sub_d(a, d, b)
+
+  Compute the difference b = a - d, for a single digit d.  Respects the
+  sign of its subtrahend (single digits are unsigned anyway).
+ */
+
+mp_err mp_sub_d(const mp_int *a, mp_digit d, mp_int *b)
+{
+  mp_int   tmp;
+  mp_err   res;
+
+  ARGCHK(a != NULL && b != NULL, MP_BADARG);
+
+  if((res = mp_init_copy(&tmp, a)) != MP_OKAY)
+    return res;
+
+  if(SIGN(&tmp) == NEG) {
+    if((res = s_mp_add_d(&tmp, d)) != MP_OKAY)
+      goto CLEANUP;
+  } else if(s_mp_cmp_d(&tmp, d) >= 0) {
+    if((res = s_mp_sub_d(&tmp, d)) != MP_OKAY)
+      goto CLEANUP;
+  } else {
+    mp_neg(&tmp, &tmp);
+
+    DIGIT(&tmp, 0) = d - DIGIT(&tmp, 0);
+    SIGN(&tmp) = NEG;
+  }
+
+  if(s_mp_cmp_d(&tmp, 0) == 0)
+    SIGN(&tmp) = ZPOS;
+
+  s_mp_exch(&tmp, b);
+
+CLEANUP:
+  mp_clear(&tmp);
+  return res;
+
+} /* end mp_sub_d() */
+
+/* }}} */
+
+/* {{{ mp_mul_d(a, d, b) */
+
+/*
+  mp_mul_d(a, d, b)
+
+  Compute the product b = a * d, for a single digit d.  Respects the sign
+  of its multiplicand (single digits are unsigned anyway)
+ */
+
+mp_err mp_mul_d(const mp_int *a, mp_digit d, mp_int *b)
+{
+  mp_err  res;
+
+  ARGCHK(a != NULL && b != NULL, MP_BADARG);
+
+  if(d == 0) {
+    mp_zero(b);
+    return MP_OKAY;
+  }
+
+  if((res = mp_copy(a, b)) != MP_OKAY)
+    return res;
+
+  res = s_mp_mul_d(b, d);
+
+  return res;
+
+} /* end mp_mul_d() */
+
+/* }}} */
+
+/* {{{ mp_mul_2(a, c) */
+
+mp_err mp_mul_2(const mp_int *a, mp_int *c)
+{
+  mp_err  res;
+
+  ARGCHK(a != NULL && c != NULL, MP_BADARG);
+
+  if((res = mp_copy(a, c)) != MP_OKAY)
+    return res;
+
+  return s_mp_mul_2(c);
+
+} /* end mp_mul_2() */
+
+/* }}} */
+
+/* {{{ mp_div_d(a, d, q, r) */
+
+/*
+  mp_div_d(a, d, q, r)
+
+  Compute the quotient q = a / d and remainder r = a mod d, for a
+  single digit d.  Respects the sign of its divisor (single digits are
+  unsigned anyway).
+ */
+
+mp_err mp_div_d(const mp_int *a, mp_digit d, mp_int *q, mp_digit *r)
+{
+  mp_err   res;
+  mp_int   qp;
+  mp_digit rem;
+  int      pow;
+
+  ARGCHK(a != NULL, MP_BADARG);
+
+  if(d == 0)
+    return MP_RANGE;
+
+  /* Shortcut for powers of two ... */
+  if((pow = s_mp_ispow2d(d)) >= 0) {
+    mp_digit  mask;
+
+    mask = ((mp_digit)1 << pow) - 1;
+    rem = DIGIT(a, 0) & mask;
+
+    if(q) {
+      mp_copy(a, q);
+      s_mp_div_2d(q, pow);
+    }
+
+    if(r)
+      *r = rem;
+
+    return MP_OKAY;
+  }
+
+  if((res = mp_init_copy(&qp, a)) != MP_OKAY)
+    return res;
+
+  res = s_mp_div_d(&qp, d, &rem);
+
+  if(s_mp_cmp_d(&qp, 0) == 0)
+    SIGN(q) = ZPOS;
+
+  if(r)
+    *r = rem;
+
+  if(q)
+    s_mp_exch(&qp, q);
+
+  mp_clear(&qp);
+  return res;
+
+} /* end mp_div_d() */
+
+/* }}} */
+
+/* {{{ mp_div_2(a, c) */
+
+/*
+  mp_div_2(a, c)
+
+  Compute c = a / 2, disregarding the remainder.
+ */
+
+mp_err mp_div_2(const mp_int *a, mp_int *c)
+{
+  mp_err  res;
+
+  ARGCHK(a != NULL && c != NULL, MP_BADARG);
+
+  if((res = mp_copy(a, c)) != MP_OKAY)
+    return res;
+
+  s_mp_div_2(c);
+
+  return MP_OKAY;
+
+} /* end mp_div_2() */
+
+/* }}} */
+
+/* {{{ mp_expt_d(a, d, b) */
+
+mp_err mp_expt_d(const mp_int *a, mp_digit d, mp_int *c)
+{
+  mp_int   s, x;
+  mp_err   res;
+
+  ARGCHK(a != NULL && c != NULL, MP_BADARG);
+
+  if((res = mp_init(&s)) != MP_OKAY)
+    return res;
+  if((res = mp_init_copy(&x, a)) != MP_OKAY)
+    goto X;
+
+  DIGIT(&s, 0) = 1;
+
+  while(d != 0) {
+    if(d & 1) {
+      if((res = s_mp_mul(&s, &x)) != MP_OKAY)
+	goto CLEANUP;
+    }
+
+    d /= 2;
+
+    if((res = s_mp_sqr(&x)) != MP_OKAY)
+      goto CLEANUP;
+  }
+
+  s_mp_exch(&s, c);
+
+CLEANUP:
+  mp_clear(&x);
+X:
+  mp_clear(&s);
+
+  return res;
+
+} /* end mp_expt_d() */
+
+/* }}} */
+
+/* }}} */
+
+/*------------------------------------------------------------------------*/
+/* {{{ Full arithmetic */
+
+/* {{{ mp_abs(a, b) */
+
+/*
+  mp_abs(a, b)
+
+  Compute b = |a|.  'a' and 'b' may be identical.
+ */
+
+mp_err mp_abs(const mp_int *a, mp_int *b)
+{
+  mp_err   res;
+
+  ARGCHK(a != NULL && b != NULL, MP_BADARG);
+
+  if((res = mp_copy(a, b)) != MP_OKAY)
+    return res;
+
+  SIGN(b) = ZPOS;
+
+  return MP_OKAY;
+
+} /* end mp_abs() */
+
+/* }}} */
+
+/* {{{ mp_neg(a, b) */
+
+/*
+  mp_neg(a, b)
+
+  Compute b = -a.  'a' and 'b' may be identical.
+ */
+
+mp_err mp_neg(const mp_int *a, mp_int *b)
+{
+  mp_err   res;
+
+  ARGCHK(a != NULL && b != NULL, MP_BADARG);
+
+  if((res = mp_copy(a, b)) != MP_OKAY)
+    return res;
+
+  if(s_mp_cmp_d(b, 0) == MP_EQ) 
+    SIGN(b) = ZPOS;
+  else 
+    SIGN(b) = (SIGN(b) == NEG) ? ZPOS : NEG;
+
+  return MP_OKAY;
+
+} /* end mp_neg() */
+
+/* }}} */
+
+/* {{{ mp_add(a, b, c) */
+
+/*
+  mp_add(a, b, c)
+
+  Compute c = a + b.  All parameters may be identical.
+ */
+
+mp_err mp_add(const mp_int *a, const mp_int *b, mp_int *c)
+{
+  mp_err  res;
+
+  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
+
+  if(SIGN(a) == SIGN(b)) { /* same sign:  add values, keep sign */
+    MP_CHECKOK( s_mp_add_3arg(a, b, c) );
+  } else if(s_mp_cmp(a, b) >= 0) {  /* different sign: |a| >= |b|   */
+    MP_CHECKOK( s_mp_sub_3arg(a, b, c) );
+  } else {                          /* different sign: |a|  < |b|   */
+    MP_CHECKOK( s_mp_sub_3arg(b, a, c) );
+  }
+
+  if (s_mp_cmp_d(c, 0) == MP_EQ)
+    SIGN(c) = ZPOS;
+
+CLEANUP:
+  return res;
+
+} /* end mp_add() */
+
+/* }}} */
+
+/* {{{ mp_sub(a, b, c) */
+
+/*
+  mp_sub(a, b, c)
+
+  Compute c = a - b.  All parameters may be identical.
+ */
+
+mp_err mp_sub(const mp_int *a, const mp_int *b, mp_int *c)
+{
+  mp_err  res;
+  int     magDiff;
+
+  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
+
+  if (a == b) {
+    mp_zero(c);
+    return MP_OKAY;
+  }
+
+  if (MP_SIGN(a) != MP_SIGN(b)) {
+    MP_CHECKOK( s_mp_add_3arg(a, b, c) );
+  } else if (!(magDiff = s_mp_cmp(a, b))) {
+    mp_zero(c);
+    res = MP_OKAY;
+  } else if (magDiff > 0) {
+    MP_CHECKOK( s_mp_sub_3arg(a, b, c) );
+  } else {
+    MP_CHECKOK( s_mp_sub_3arg(b, a, c) );
+    MP_SIGN(c) = !MP_SIGN(a);
+  }
+
+  if (s_mp_cmp_d(c, 0) == MP_EQ)
+    MP_SIGN(c) = MP_ZPOS;
+
+CLEANUP:
+  return res;
+
+} /* end mp_sub() */
+
+/* }}} */
+
+/* {{{ mp_mul(a, b, c) */
+
+/*
+  mp_mul(a, b, c)
+
+  Compute c = a * b.  All parameters may be identical.
+ */
+mp_err   mp_mul(const mp_int *a, const mp_int *b, mp_int * c)
+{
+  mp_digit *pb;
+  mp_int   tmp;
+  mp_err   res;
+  mp_size  ib;
+  mp_size  useda, usedb;
+
+  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
+
+  if (a == c) {
+    if ((res = mp_init_copy(&tmp, a)) != MP_OKAY)
+      return res;
+    if (a == b) 
+      b = &tmp;
+    a = &tmp;
+  } else if (b == c) {
+    if ((res = mp_init_copy(&tmp, b)) != MP_OKAY)
+      return res;
+    b = &tmp;
+  } else {
+    MP_DIGITS(&tmp) = 0;
+  }
+
+  if (MP_USED(a) < MP_USED(b)) {
+    const mp_int *xch = b;	/* switch a and b, to do fewer outer loops */
+    b = a;
+    a = xch;
+  }
+
+  MP_USED(c) = 1; MP_DIGIT(c, 0) = 0;
+  if((res = s_mp_pad(c, USED(a) + USED(b))) != MP_OKAY)
+    goto CLEANUP;
+
+#ifdef NSS_USE_COMBA
+  if ((MP_USED(a) == MP_USED(b)) && IS_POWER_OF_2(MP_USED(b))) {
+      if (MP_USED(a) == 4) {
+          s_mp_mul_comba_4(a, b, c);
+          goto CLEANUP;
+      }
+      if (MP_USED(a) == 8) {
+          s_mp_mul_comba_8(a, b, c);
+          goto CLEANUP;
+      }
+      if (MP_USED(a) == 16) {
+          s_mp_mul_comba_16(a, b, c);
+          goto CLEANUP;
+      }
+      if (MP_USED(a) == 32) {
+          s_mp_mul_comba_32(a, b, c);
+          goto CLEANUP;
+      } 
+  }
+#endif
+
+  pb = MP_DIGITS(b);
+  s_mpv_mul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c));
+
+  /* Outer loop:  Digits of b */
+  useda = MP_USED(a);
+  usedb = MP_USED(b);
+  for (ib = 1; ib < usedb; ib++) {
+    mp_digit b_i    = *pb++;
+
+    /* Inner product:  Digits of a */
+    if (b_i)
+      s_mpv_mul_d_add(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib);
+    else
+      MP_DIGIT(c, ib + useda) = b_i;
+  }
+
+  s_mp_clamp(c);
+
+  if(SIGN(a) == SIGN(b) || s_mp_cmp_d(c, 0) == MP_EQ)
+    SIGN(c) = ZPOS;
+  else
+    SIGN(c) = NEG;
+
+CLEANUP:
+  mp_clear(&tmp);
+  return res;
+} /* end mp_mul() */
+
+/* }}} */
+
+/* {{{ mp_sqr(a, sqr) */
+
+#if MP_SQUARE
+/*
+  Computes the square of a.  This can be done more
+  efficiently than a general multiplication, because many of the
+  computation steps are redundant when squaring.  The inner product
+  step is a bit more complicated, but we save a fair number of
+  iterations of the multiplication loop.
+ */
+
+/* sqr = a^2;   Caller provides both a and tmp; */
+mp_err   mp_sqr(const mp_int *a, mp_int *sqr)
+{
+  mp_digit *pa;
+  mp_digit d;
+  mp_err   res;
+  mp_size  ix;
+  mp_int   tmp;
+  int      count;
+
+  ARGCHK(a != NULL && sqr != NULL, MP_BADARG);
+
+  if (a == sqr) {
+    if((res = mp_init_copy(&tmp, a)) != MP_OKAY)
+      return res;
+    a = &tmp;
+  } else {
+    DIGITS(&tmp) = 0;
+    res = MP_OKAY;
+  }
+
+  ix = 2 * MP_USED(a);
+  if (ix > MP_ALLOC(sqr)) {
+    MP_USED(sqr) = 1; 
+    MP_CHECKOK( s_mp_grow(sqr, ix) );
+  } 
+  MP_USED(sqr) = ix;
+  MP_DIGIT(sqr, 0) = 0;
+
+#ifdef NSS_USE_COMBA
+  if (IS_POWER_OF_2(MP_USED(a))) {
+      if (MP_USED(a) == 4) {
+          s_mp_sqr_comba_4(a, sqr);
+          goto CLEANUP;
+      }
+      if (MP_USED(a) == 8) {
+          s_mp_sqr_comba_8(a, sqr);
+          goto CLEANUP;
+      }
+      if (MP_USED(a) == 16) {
+          s_mp_sqr_comba_16(a, sqr);
+          goto CLEANUP;
+      }
+      if (MP_USED(a) == 32) {
+          s_mp_sqr_comba_32(a, sqr);
+          goto CLEANUP;
+      } 
+  }
+#endif
+
+  pa = MP_DIGITS(a);
+  count = MP_USED(a) - 1;
+  if (count > 0) {
+    d = *pa++;
+    s_mpv_mul_d(pa, count, d, MP_DIGITS(sqr) + 1);
+    for (ix = 3; --count > 0; ix += 2) {
+      d = *pa++;
+      s_mpv_mul_d_add(pa, count, d, MP_DIGITS(sqr) + ix);
+    } /* for(ix ...) */
+    MP_DIGIT(sqr, MP_USED(sqr)-1) = 0; /* above loop stopped short of this. */
+
+    /* now sqr *= 2 */
+    s_mp_mul_2(sqr);
+  } else {
+    MP_DIGIT(sqr, 1) = 0;
+  }
+
+  /* now add the squares of the digits of a to sqr. */
+  s_mpv_sqr_add_prop(MP_DIGITS(a), MP_USED(a), MP_DIGITS(sqr));
+
+  SIGN(sqr) = ZPOS;
+  s_mp_clamp(sqr);
+
+CLEANUP:
+  mp_clear(&tmp);
+  return res;
+
+} /* end mp_sqr() */
+#endif
+
+/* }}} */
+
+/* {{{ mp_div(a, b, q, r) */
+
+/*
+  mp_div(a, b, q, r)
+
+  Compute q = a / b and r = a mod b.  Input parameters may be re-used
+  as output parameters.  If q or r is NULL, that portion of the
+  computation will be discarded (although it will still be computed)
+ */
+mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r)
+{
+  mp_err   res;
+  mp_int   *pQ, *pR;
+  mp_int   qtmp, rtmp, btmp;
+  int      cmp;
+  mp_sign  signA;
+  mp_sign  signB;
+
+  ARGCHK(a != NULL && b != NULL, MP_BADARG);
+  
+  signA = MP_SIGN(a);
+  signB = MP_SIGN(b);
+
+  if(mp_cmp_z(b) == MP_EQ)
+    return MP_RANGE;
+
+  DIGITS(&qtmp) = 0;
+  DIGITS(&rtmp) = 0;
+  DIGITS(&btmp) = 0;
+
+  /* Set up some temporaries... */
+  if (!r || r == a || r == b) {
+    MP_CHECKOK( mp_init_copy(&rtmp, a) );
+    pR = &rtmp;
+  } else {
+    MP_CHECKOK( mp_copy(a, r) );
+    pR = r;
+  }
+
+  if (!q || q == a || q == b) {
+    MP_CHECKOK( mp_init_size(&qtmp, MP_USED(a)) );
+    pQ = &qtmp;
+  } else {
+    MP_CHECKOK( s_mp_pad(q, MP_USED(a)) );
+    pQ = q;
+    mp_zero(pQ);
+  }
+
+  /*
+    If |a| <= |b|, we can compute the solution without division;
+    otherwise, we actually do the work required.
+   */
+  if ((cmp = s_mp_cmp(a, b)) <= 0) {
+    if (cmp) {
+      /* r was set to a above. */
+      mp_zero(pQ);
+    } else {
+      mp_set(pQ, 1);
+      mp_zero(pR);
+    }
+  } else {
+    MP_CHECKOK( mp_init_copy(&btmp, b) );
+    MP_CHECKOK( s_mp_div(pR, &btmp, pQ) );
+  }
+
+  /* Compute the signs for the output  */
+  MP_SIGN(pR) = signA;   /* Sr = Sa              */
+  /* Sq = ZPOS if Sa == Sb */ /* Sq = NEG if Sa != Sb */
+  MP_SIGN(pQ) = (signA == signB) ? ZPOS : NEG;
+
+  if(s_mp_cmp_d(pQ, 0) == MP_EQ)
+    SIGN(pQ) = ZPOS;
+  if(s_mp_cmp_d(pR, 0) == MP_EQ)
+    SIGN(pR) = ZPOS;
+
+  /* Copy output, if it is needed      */
+  if(q && q != pQ) 
+    s_mp_exch(pQ, q);
+
+  if(r && r != pR) 
+    s_mp_exch(pR, r);
+
+CLEANUP:
+  mp_clear(&btmp);
+  mp_clear(&rtmp);
+  mp_clear(&qtmp);
+
+  return res;
+
+} /* end mp_div() */
+
+/* }}} */
+
+/* {{{ mp_div_2d(a, d, q, r) */
+
+mp_err mp_div_2d(const mp_int *a, mp_digit d, mp_int *q, mp_int *r)
+{
+  mp_err  res;
+
+  ARGCHK(a != NULL, MP_BADARG);
+
+  if(q) {
+    if((res = mp_copy(a, q)) != MP_OKAY)
+      return res;
+  }
+  if(r) {
+    if((res = mp_copy(a, r)) != MP_OKAY)
+      return res;
+  }
+  if(q) {
+    s_mp_div_2d(q, d);
+  }
+  if(r) {
+    s_mp_mod_2d(r, d);
+  }
+
+  return MP_OKAY;
+
+} /* end mp_div_2d() */
+
+/* }}} */
+
+/* {{{ mp_expt(a, b, c) */
+
+/*
+  mp_expt(a, b, c)
+
+  Compute c = a ** b, that is, raise a to the b power.  Uses a
+  standard iterative square-and-multiply technique.
+ */
+
+mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c)
+{
+  mp_int   s, x;
+  mp_err   res;
+  mp_digit d;
+  int      dig, bit;
+
+  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
+
+  if(mp_cmp_z(b) < 0)
+    return MP_RANGE;
+
+  if((res = mp_init(&s)) != MP_OKAY)
+    return res;
+
+  mp_set(&s, 1);
+
+  if((res = mp_init_copy(&x, a)) != MP_OKAY)
+    goto X;
+
+  /* Loop over low-order digits in ascending order */
+  for(dig = 0; dig < (USED(b) - 1); dig++) {
+    d = DIGIT(b, dig);
+
+    /* Loop over bits of each non-maximal digit */
+    for(bit = 0; bit < DIGIT_BIT; bit++) {
+      if(d & 1) {
+	if((res = s_mp_mul(&s, &x)) != MP_OKAY) 
+	  goto CLEANUP;
+      }
+
+      d >>= 1;
+      
+      if((res = s_mp_sqr(&x)) != MP_OKAY)
+	goto CLEANUP;
+    }
+  }
+
+  /* Consider now the last digit... */
+  d = DIGIT(b, dig);
+
+  while(d) {
+    if(d & 1) {
+      if((res = s_mp_mul(&s, &x)) != MP_OKAY)
+	goto CLEANUP;
+    }
+
+    d >>= 1;
+
+    if((res = s_mp_sqr(&x)) != MP_OKAY)
+      goto CLEANUP;
+  }
+  
+  if(mp_iseven(b))
+    SIGN(&s) = SIGN(a);
+
+  res = mp_copy(&s, c);
+
+CLEANUP:
+  mp_clear(&x);
+X:
+  mp_clear(&s);
+
+  return res;
+
+} /* end mp_expt() */
+
+/* }}} */
+
+/* {{{ mp_2expt(a, k) */
+
+/* Compute a = 2^k */
+
+mp_err mp_2expt(mp_int *a, mp_digit k)
+{
+  ARGCHK(a != NULL, MP_BADARG);
+
+  return s_mp_2expt(a, k);
+
+} /* end mp_2expt() */
+
+/* }}} */
+
+/* {{{ mp_mod(a, m, c) */
+
+/*
+  mp_mod(a, m, c)
+
+  Compute c = a (mod m).  Result will always be 0 <= c < m.
+ */
+
+mp_err mp_mod(const mp_int *a, const mp_int *m, mp_int *c)
+{
+  mp_err  res;
+  int     mag;
+
+  ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG);
+
+  if(SIGN(m) == NEG)
+    return MP_RANGE;
+
+  /*
+     If |a| > m, we need to divide to get the remainder and take the
+     absolute value.  
+
+     If |a| < m, we don't need to do any division, just copy and adjust
+     the sign (if a is negative).
+
+     If |a| == m, we can simply set the result to zero.
+
+     This order is intended to minimize the average path length of the
+     comparison chain on common workloads -- the most frequent cases are
+     that |a| != m, so we do those first.
+   */
+  if((mag = s_mp_cmp(a, m)) > 0) {
+    if((res = mp_div(a, m, NULL, c)) != MP_OKAY)
+      return res;
+    
+    if(SIGN(c) == NEG) {
+      if((res = mp_add(c, m, c)) != MP_OKAY)
+	return res;
+    }
+
+  } else if(mag < 0) {
+    if((res = mp_copy(a, c)) != MP_OKAY)
+      return res;
+
+    if(mp_cmp_z(a) < 0) {
+      if((res = mp_add(c, m, c)) != MP_OKAY)
+	return res;
+
+    }
+    
+  } else {
+    mp_zero(c);
+
+  }
+
+  return MP_OKAY;
+
+} /* end mp_mod() */
+
+/* }}} */
+
+/* {{{ mp_mod_d(a, d, c) */
+
+/*
+  mp_mod_d(a, d, c)
+
+  Compute c = a (mod d).  Result will always be 0 <= c < d
+ */
+mp_err mp_mod_d(const mp_int *a, mp_digit d, mp_digit *c)
+{
+  mp_err   res;
+  mp_digit rem;
+
+  ARGCHK(a != NULL && c != NULL, MP_BADARG);
+
+  if(s_mp_cmp_d(a, d) > 0) {
+    if((res = mp_div_d(a, d, NULL, &rem)) != MP_OKAY)
+      return res;
+
+  } else {
+    if(SIGN(a) == NEG)
+      rem = d - DIGIT(a, 0);
+    else
+      rem = DIGIT(a, 0);
+  }
+
+  if(c)
+    *c = rem;
+
+  return MP_OKAY;
+
+} /* end mp_mod_d() */
+
+/* }}} */
+
+/* {{{ mp_sqrt(a, b) */
+
+/*
+  mp_sqrt(a, b)
+
+  Compute the integer square root of a, and store the result in b.
+  Uses an integer-arithmetic version of Newton's iterative linear
+  approximation technique to determine this value; the result has the
+  following two properties:
+
+     b^2 <= a
+     (b+1)^2 >= a
+
+  It is a range error to pass a negative value.
+ */
+mp_err mp_sqrt(const mp_int *a, mp_int *b)
+{
+  mp_int   x, t;
+  mp_err   res;
+  mp_size  used;
+
+  ARGCHK(a != NULL && b != NULL, MP_BADARG);
+
+  /* Cannot take square root of a negative value */
+  if(SIGN(a) == NEG)
+    return MP_RANGE;
+
+  /* Special cases for zero and one, trivial     */
+  if(mp_cmp_d(a, 1) <= 0)
+    return mp_copy(a, b);
+    
+  /* Initialize the temporaries we'll use below  */
+  if((res = mp_init_size(&t, USED(a))) != MP_OKAY)
+    return res;
+
+  /* Compute an initial guess for the iteration as a itself */
+  if((res = mp_init_copy(&x, a)) != MP_OKAY)
+    goto X;
+
+  used = MP_USED(&x);
+  if (used > 1) {
+    s_mp_rshd(&x, used / 2);
+  }
+
+  for(;;) {
+    /* t = (x * x) - a */
+    mp_copy(&x, &t);      /* can't fail, t is big enough for original x */
+    if((res = mp_sqr(&t, &t)) != MP_OKAY ||
+       (res = mp_sub(&t, a, &t)) != MP_OKAY)
+      goto CLEANUP;
+
+    /* t = t / 2x       */
+    s_mp_mul_2(&x);
+    if((res = mp_div(&t, &x, &t, NULL)) != MP_OKAY)
+      goto CLEANUP;
+    s_mp_div_2(&x);
+
+    /* Terminate the loop, if the quotient is zero */
+    if(mp_cmp_z(&t) == MP_EQ)
+      break;
+
+    /* x = x - t       */
+    if((res = mp_sub(&x, &t, &x)) != MP_OKAY)
+      goto CLEANUP;
+
+  }
+
+  /* Copy result to output parameter */
+  mp_sub_d(&x, 1, &x);
+  s_mp_exch(&x, b);
+
+ CLEANUP:
+  mp_clear(&x);
+ X:
+  mp_clear(&t); 
+
+  return res;
+
+} /* end mp_sqrt() */
+
+/* }}} */
+
+/* }}} */
+
+/*------------------------------------------------------------------------*/
+/* {{{ Modular arithmetic */
+
+#if MP_MODARITH
+/* {{{ mp_addmod(a, b, m, c) */
+
+/*
+  mp_addmod(a, b, m, c)
+
+  Compute c = (a + b) mod m
+ */
+
+mp_err mp_addmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c)
+{
+  mp_err  res;
+
+  ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
+
+  if((res = mp_add(a, b, c)) != MP_OKAY)
+    return res;
+  if((res = mp_mod(c, m, c)) != MP_OKAY)
+    return res;
+
+  return MP_OKAY;
+
+}
+
+/* }}} */
+
+/* {{{ mp_submod(a, b, m, c) */
+
+/*
+  mp_submod(a, b, m, c)
+
+  Compute c = (a - b) mod m
+ */
+
+mp_err mp_submod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c)
+{
+  mp_err  res;
+
+  ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
+
+  if((res = mp_sub(a, b, c)) != MP_OKAY)
+    return res;
+  if((res = mp_mod(c, m, c)) != MP_OKAY)
+    return res;
+
+  return MP_OKAY;
+
+}
+
+/* }}} */
+
+/* {{{ mp_mulmod(a, b, m, c) */
+
+/*
+  mp_mulmod(a, b, m, c)
+
+  Compute c = (a * b) mod m
+ */
+
+mp_err mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c)
+{
+  mp_err  res;
+
+  ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
+
+  if((res = mp_mul(a, b, c)) != MP_OKAY)
+    return res;
+  if((res = mp_mod(c, m, c)) != MP_OKAY)
+    return res;
+
+  return MP_OKAY;
+
+}
+
+/* }}} */
+
+/* {{{ mp_sqrmod(a, m, c) */
+
+#if MP_SQUARE
+mp_err mp_sqrmod(const mp_int *a, const mp_int *m, mp_int *c)
+{
+  mp_err  res;
+
+  ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG);
+
+  if((res = mp_sqr(a, c)) != MP_OKAY)
+    return res;
+  if((res = mp_mod(c, m, c)) != MP_OKAY)
+    return res;
+
+  return MP_OKAY;
+
+} /* end mp_sqrmod() */
+#endif
+
+/* }}} */
+
+/* {{{ s_mp_exptmod(a, b, m, c) */
+
+/*
+  s_mp_exptmod(a, b, m, c)
+
+  Compute c = (a ** b) mod m.  Uses a standard square-and-multiply
+  method with modular reductions at each step. (This is basically the
+  same code as mp_expt(), except for the addition of the reductions)
+  
+  The modular reductions are done using Barrett's algorithm (see
+  s_mp_reduce() below for details)
+ */
+
+mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c)
+{
+  mp_int   s, x, mu;
+  mp_err   res;
+  mp_digit d;
+  int      dig, bit;
+
+  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
+
+  if(mp_cmp_z(b) < 0 || mp_cmp_z(m) <= 0)
+    return MP_RANGE;
+
+  if((res = mp_init(&s)) != MP_OKAY)
+    return res;
+  if((res = mp_init_copy(&x, a)) != MP_OKAY ||
+     (res = mp_mod(&x, m, &x)) != MP_OKAY)
+    goto X;
+  if((res = mp_init(&mu)) != MP_OKAY)
+    goto MU;
+
+  mp_set(&s, 1);
+
+  /* mu = b^2k / m */
+  s_mp_add_d(&mu, 1); 
+  s_mp_lshd(&mu, 2 * USED(m));
+  if((res = mp_div(&mu, m, &mu, NULL)) != MP_OKAY)
+    goto CLEANUP;
+
+  /* Loop over digits of b in ascending order, except highest order */
+  for(dig = 0; dig < (USED(b) - 1); dig++) {
+    d = DIGIT(b, dig);
+
+    /* Loop over the bits of the lower-order digits */
+    for(bit = 0; bit < DIGIT_BIT; bit++) {
+      if(d & 1) {
+	if((res = s_mp_mul(&s, &x)) != MP_OKAY)
+	  goto CLEANUP;
+	if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY)
+	  goto CLEANUP;
+      }
+
+      d >>= 1;
+
+      if((res = s_mp_sqr(&x)) != MP_OKAY)
+	goto CLEANUP;
+      if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY)
+	goto CLEANUP;
+    }
+  }
+
+  /* Now do the last digit... */
+  d = DIGIT(b, dig);
+
+  while(d) {
+    if(d & 1) {
+      if((res = s_mp_mul(&s, &x)) != MP_OKAY)
+	goto CLEANUP;
+      if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY)
+	goto CLEANUP;
+    }
+
+    d >>= 1;
+
+    if((res = s_mp_sqr(&x)) != MP_OKAY)
+      goto CLEANUP;
+    if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY)
+      goto CLEANUP;
+  }
+
+  s_mp_exch(&s, c);
+
+ CLEANUP:
+  mp_clear(&mu);
+ MU:
+  mp_clear(&x);
+ X:
+  mp_clear(&s);
+
+  return res;
+
+} /* end s_mp_exptmod() */
+
+/* }}} */
+
+/* {{{ mp_exptmod_d(a, d, m, c) */
+
+mp_err mp_exptmod_d(const mp_int *a, mp_digit d, const mp_int *m, mp_int *c)
+{
+  mp_int   s, x;
+  mp_err   res;
+
+  ARGCHK(a != NULL && c != NULL, MP_BADARG);
+
+  if((res = mp_init(&s)) != MP_OKAY)
+    return res;
+  if((res = mp_init_copy(&x, a)) != MP_OKAY)
+    goto X;
+
+  mp_set(&s, 1);
+
+  while(d != 0) {
+    if(d & 1) {
+      if((res = s_mp_mul(&s, &x)) != MP_OKAY ||
+	 (res = mp_mod(&s, m, &s)) != MP_OKAY)
+	goto CLEANUP;
+    }
+
+    d /= 2;
+
+    if((res = s_mp_sqr(&x)) != MP_OKAY ||
+       (res = mp_mod(&x, m, &x)) != MP_OKAY)
+      goto CLEANUP;
+  }
+
+  s_mp_exch(&s, c);
+
+CLEANUP:
+  mp_clear(&x);
+X:
+  mp_clear(&s);
+
+  return res;
+
+} /* end mp_exptmod_d() */
+
+/* }}} */
+#endif /* if MP_MODARITH */
+
+/* }}} */
+
+/*------------------------------------------------------------------------*/
+/* {{{ Comparison functions */
+
+/* {{{ mp_cmp_z(a) */
+
+/*
+  mp_cmp_z(a)
+
+  Compare a <=> 0.  Returns <0 if a<0, 0 if a=0, >0 if a>0.
+ */
+
+int    mp_cmp_z(const mp_int *a)
+{
+  if(SIGN(a) == NEG)
+    return MP_LT;
+  else if(USED(a) == 1 && DIGIT(a, 0) == 0)
+    return MP_EQ;
+  else
+    return MP_GT;
+
+} /* end mp_cmp_z() */
+
+/* }}} */
+
+/* {{{ mp_cmp_d(a, d) */
+
+/*
+  mp_cmp_d(a, d)
+
+  Compare a <=> d.  Returns <0 if a<d, 0 if a=d, >0 if a>d
+ */
+
+int    mp_cmp_d(const mp_int *a, mp_digit d)
+{
+  ARGCHK(a != NULL, MP_EQ);
+
+  if(SIGN(a) == NEG)
+    return MP_LT;
+
+  return s_mp_cmp_d(a, d);
+
+} /* end mp_cmp_d() */
+
+/* }}} */
+
+/* {{{ mp_cmp(a, b) */
+
+int    mp_cmp(const mp_int *a, const mp_int *b)
+{
+  ARGCHK(a != NULL && b != NULL, MP_EQ);
+
+  if(SIGN(a) == SIGN(b)) {
+    int  mag;
+
+    if((mag = s_mp_cmp(a, b)) == MP_EQ)
+      return MP_EQ;
+
+    if(SIGN(a) == ZPOS)
+      return mag;
+    else
+      return -mag;
+
+  } else if(SIGN(a) == ZPOS) {
+    return MP_GT;
+  } else {
+    return MP_LT;
+  }
+
+} /* end mp_cmp() */
+
+/* }}} */
+
+/* {{{ mp_cmp_mag(a, b) */
+
+/*
+  mp_cmp_mag(a, b)
+
+  Compares |a| <=> |b|, and returns an appropriate comparison result
+ */
+
+int    mp_cmp_mag(mp_int *a, mp_int *b)
+{
+  ARGCHK(a != NULL && b != NULL, MP_EQ);
+
+  return s_mp_cmp(a, b);
+
+} /* end mp_cmp_mag() */
+
+/* }}} */
+
+/* {{{ mp_cmp_int(a, z) */
+
+/*
+  This just converts z to an mp_int, and uses the existing comparison
+  routines.  This is sort of inefficient, but it's not clear to me how
+  frequently this wil get used anyway.  For small positive constants,
+  you can always use mp_cmp_d(), and for zero, there is mp_cmp_z().
+ */
+int    mp_cmp_int(const mp_int *a, long z)
+{
+  mp_int  tmp;
+  int     out;
+
+  ARGCHK(a != NULL, MP_EQ);
+  
+  mp_init(&tmp); mp_set_int(&tmp, z);
+  out = mp_cmp(a, &tmp);
+  mp_clear(&tmp);
+
+  return out;
+
+} /* end mp_cmp_int() */
+
+/* }}} */
+
+/* {{{ mp_isodd(a) */
+
+/*
+  mp_isodd(a)
+
+  Returns a true (non-zero) value if a is odd, false (zero) otherwise.
+ */
+int    mp_isodd(const mp_int *a)
+{
+  ARGCHK(a != NULL, 0);
+
+  return (int)(DIGIT(a, 0) & 1);
+
+} /* end mp_isodd() */
+
+/* }}} */
+
+/* {{{ mp_iseven(a) */
+
+int    mp_iseven(const mp_int *a)
+{
+  return !mp_isodd(a);
+
+} /* end mp_iseven() */
+
+/* }}} */
+
+/* }}} */
+
+/*------------------------------------------------------------------------*/
+/* {{{ Number theoretic functions */
+
+#if MP_NUMTH
+/* {{{ mp_gcd(a, b, c) */
+
+/*
+  Like the old mp_gcd() function, except computes the GCD using the
+  binary algorithm due to Josef Stein in 1961 (via Knuth).
+ */
+mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c)
+{
+  mp_err   res;
+  mp_int   u, v, t;
+  mp_size  k = 0;
+
+  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
+
+  if(mp_cmp_z(a) == MP_EQ && mp_cmp_z(b) == MP_EQ)
+      return MP_RANGE;
+  if(mp_cmp_z(a) == MP_EQ) {
+    return mp_copy(b, c);
+  } else if(mp_cmp_z(b) == MP_EQ) {
+    return mp_copy(a, c);
+  }
+
+  if((res = mp_init(&t)) != MP_OKAY)
+    return res;
+  if((res = mp_init_copy(&u, a)) != MP_OKAY)
+    goto U;
+  if((res = mp_init_copy(&v, b)) != MP_OKAY)
+    goto V;
+
+  SIGN(&u) = ZPOS;
+  SIGN(&v) = ZPOS;
+
+  /* Divide out common factors of 2 until at least 1 of a, b is even */
+  while(mp_iseven(&u) && mp_iseven(&v)) {
+    s_mp_div_2(&u);
+    s_mp_div_2(&v);
+    ++k;
+  }
+
+  /* Initialize t */
+  if(mp_isodd(&u)) {
+    if((res = mp_copy(&v, &t)) != MP_OKAY)
+      goto CLEANUP;
+    
+    /* t = -v */
+    if(SIGN(&v) == ZPOS)
+      SIGN(&t) = NEG;
+    else
+      SIGN(&t) = ZPOS;
+    
+  } else {
+    if((res = mp_copy(&u, &t)) != MP_OKAY)
+      goto CLEANUP;
+
+  }
+
+  for(;;) {
+    while(mp_iseven(&t)) {
+      s_mp_div_2(&t);
+    }
+
+    if(mp_cmp_z(&t) == MP_GT) {
+      if((res = mp_copy(&t, &u)) != MP_OKAY)
+	goto CLEANUP;
+
+    } else {
+      if((res = mp_copy(&t, &v)) != MP_OKAY)
+	goto CLEANUP;
+
+      /* v = -t */
+      if(SIGN(&t) == ZPOS)
+	SIGN(&v) = NEG;
+      else
+	SIGN(&v) = ZPOS;
+    }
+
+    if((res = mp_sub(&u, &v, &t)) != MP_OKAY)
+      goto CLEANUP;
+
+    if(s_mp_cmp_d(&t, 0) == MP_EQ)
+      break;
+  }
+
+  s_mp_2expt(&v, k);       /* v = 2^k   */
+  res = mp_mul(&u, &v, c); /* c = u * v */
+
+ CLEANUP:
+  mp_clear(&v);
+ V:
+  mp_clear(&u);
+ U:
+  mp_clear(&t);
+
+  return res;
+
+} /* end mp_gcd() */
+
+/* }}} */
+
+/* {{{ mp_lcm(a, b, c) */
+
+/* We compute the least common multiple using the rule:
+
+   ab = [a, b](a, b)
+
+   ... by computing the product, and dividing out the gcd.
+ */
+
+mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c)
+{
+  mp_int  gcd, prod;
+  mp_err  res;
+
+  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
+
+  /* Set up temporaries */
+  if((res = mp_init(&gcd)) != MP_OKAY)
+    return res;
+  if((res = mp_init(&prod)) != MP_OKAY)
+    goto GCD;
+
+  if((res = mp_mul(a, b, &prod)) != MP_OKAY)
+    goto CLEANUP;
+  if((res = mp_gcd(a, b, &gcd)) != MP_OKAY)
+    goto CLEANUP;
+
+  res = mp_div(&prod, &gcd, c, NULL);
+
+ CLEANUP:
+  mp_clear(&prod);
+ GCD:
+  mp_clear(&gcd);
+
+  return res;
+
+} /* end mp_lcm() */
+
+/* }}} */
+
+/* {{{ mp_xgcd(a, b, g, x, y) */
+
+/*
+  mp_xgcd(a, b, g, x, y)
+
+  Compute g = (a, b) and values x and y satisfying Bezout's identity
+  (that is, ax + by = g).  This uses the binary extended GCD algorithm
+  based on the Stein algorithm used for mp_gcd()
+  See algorithm 14.61 in Handbook of Applied Cryptogrpahy.
+ */
+
+mp_err mp_xgcd(const mp_int *a, const mp_int *b, mp_int *g, mp_int *x, mp_int *y)
+{
+  mp_int   gx, xc, yc, u, v, A, B, C, D;
+  mp_int  *clean[9];
+  mp_err   res;
+  int      last = -1;
+
+  if(mp_cmp_z(b) == 0)
+    return MP_RANGE;
+
+  /* Initialize all these variables we need */
+  MP_CHECKOK( mp_init(&u) );
+  clean[++last] = &u;
+  MP_CHECKOK( mp_init(&v) );
+  clean[++last] = &v;
+  MP_CHECKOK( mp_init(&gx) );
+  clean[++last] = &gx;
+  MP_CHECKOK( mp_init(&A) );
+  clean[++last] = &A;
+  MP_CHECKOK( mp_init(&B) );
+  clean[++last] = &B;
+  MP_CHECKOK( mp_init(&C) );
+  clean[++last] = &C;
+  MP_CHECKOK( mp_init(&D) );
+  clean[++last] = &D;
+  MP_CHECKOK( mp_init_copy(&xc, a) );
+  clean[++last] = &xc;
+  mp_abs(&xc, &xc);
+  MP_CHECKOK( mp_init_copy(&yc, b) );
+  clean[++last] = &yc;
+  mp_abs(&yc, &yc);
+
+  mp_set(&gx, 1);
+
+  /* Divide by two until at least one of them is odd */
+  while(mp_iseven(&xc) && mp_iseven(&yc)) {
+    mp_size nx = mp_trailing_zeros(&xc);
+    mp_size ny = mp_trailing_zeros(&yc);
+    mp_size n  = MP_MIN(nx, ny);
+    s_mp_div_2d(&xc,n);
+    s_mp_div_2d(&yc,n);
+    MP_CHECKOK( s_mp_mul_2d(&gx,n) );
+  }
+
+  mp_copy(&xc, &u);
+  mp_copy(&yc, &v);
+  mp_set(&A, 1); mp_set(&D, 1);
+
+  /* Loop through binary GCD algorithm */
+  do {
+    while(mp_iseven(&u)) {
+      s_mp_div_2(&u);
+
+      if(mp_iseven(&A) && mp_iseven(&B)) {
+	s_mp_div_2(&A); s_mp_div_2(&B);
+      } else {
+	MP_CHECKOK( mp_add(&A, &yc, &A) );
+	s_mp_div_2(&A);
+	MP_CHECKOK( mp_sub(&B, &xc, &B) );
+	s_mp_div_2(&B);
+      }
+    }
+
+    while(mp_iseven(&v)) {
+      s_mp_div_2(&v);
+
+      if(mp_iseven(&C) && mp_iseven(&D)) {
+	s_mp_div_2(&C); s_mp_div_2(&D);
+      } else {
+	MP_CHECKOK( mp_add(&C, &yc, &C) );
+	s_mp_div_2(&C);
+	MP_CHECKOK( mp_sub(&D, &xc, &D) );
+	s_mp_div_2(&D);
+      }
+    }
+
+    if(mp_cmp(&u, &v) >= 0) {
+      MP_CHECKOK( mp_sub(&u, &v, &u) );
+      MP_CHECKOK( mp_sub(&A, &C, &A) );
+      MP_CHECKOK( mp_sub(&B, &D, &B) );
+    } else {
+      MP_CHECKOK( mp_sub(&v, &u, &v) );
+      MP_CHECKOK( mp_sub(&C, &A, &C) );
+      MP_CHECKOK( mp_sub(&D, &B, &D) );
+    }
+  } while (mp_cmp_z(&u) != 0);
+
+  /* copy results to output */
+  if(x)
+    MP_CHECKOK( mp_copy(&C, x) );
+
+  if(y)
+    MP_CHECKOK( mp_copy(&D, y) );
+      
+  if(g)
+    MP_CHECKOK( mp_mul(&gx, &v, g) );
+
+ CLEANUP:
+  while(last >= 0)
+    mp_clear(clean[last--]);
+
+  return res;
+
+} /* end mp_xgcd() */
+
+/* }}} */
+
+mp_size mp_trailing_zeros(const mp_int *mp)
+{
+  mp_digit d;
+  mp_size  n = 0;
+  int      ix;
+
+  if (!mp || !MP_DIGITS(mp) || !mp_cmp_z(mp))
+    return n;
+
+  for (ix = 0; !(d = MP_DIGIT(mp,ix)) && (ix < MP_USED(mp)); ++ix)
+    n += MP_DIGIT_BIT;
+  if (!d)
+    return 0;	/* shouldn't happen, but ... */
+#if !defined(MP_USE_UINT_DIGIT)
+  if (!(d & 0xffffffffU)) {
+    d >>= 32;
+    n  += 32;
+  }
+#endif
+  if (!(d & 0xffffU)) {
+    d >>= 16;
+    n  += 16;
+  }
+  if (!(d & 0xffU)) {
+    d >>= 8;
+    n  += 8;
+  }
+  if (!(d & 0xfU)) {
+    d >>= 4;
+    n  += 4;
+  }
+  if (!(d & 0x3U)) {
+    d >>= 2;
+    n  += 2;
+  }
+  if (!(d & 0x1U)) {
+    d >>= 1;
+    n  += 1;
+  }
+#if MP_ARGCHK == 2
+  assert(0 != (d & 1));
+#endif
+  return n;
+}
+
+/* Given a and prime p, computes c and k such that a*c == 2**k (mod p).
+** Returns k (positive) or error (negative).
+** This technique from the paper "Fast Modular Reciprocals" (unpublished)
+** by Richard Schroeppel (a.k.a. Captain Nemo).
+*/
+mp_err s_mp_almost_inverse(const mp_int *a, const mp_int *p, mp_int *c)
+{
+  mp_err res;
+  mp_err k    = 0;
+  mp_int d, f, g;
+
+  ARGCHK(a && p && c, MP_BADARG);
+
+  MP_DIGITS(&d) = 0;
+  MP_DIGITS(&f) = 0;
+  MP_DIGITS(&g) = 0;
+  MP_CHECKOK( mp_init(&d) );
+  MP_CHECKOK( mp_init_copy(&f, a) );	/* f = a */
+  MP_CHECKOK( mp_init_copy(&g, p) );	/* g = p */
+
+  mp_set(c, 1);
+  mp_zero(&d);
+
+  if (mp_cmp_z(&f) == 0) {
+    res = MP_UNDEF;
+  } else 
+  for (;;) {
+    int diff_sign;
+    while (mp_iseven(&f)) {
+      mp_size n = mp_trailing_zeros(&f);
+      if (!n) {
+	res = MP_UNDEF;
+	goto CLEANUP;
+      }
+      s_mp_div_2d(&f, n);
+      MP_CHECKOK( s_mp_mul_2d(&d, n) );
+      k += n;
+    }
+    if (mp_cmp_d(&f, 1) == MP_EQ) {	/* f == 1 */
+      res = k;
+      break;
+    }
+    diff_sign = mp_cmp(&f, &g);
+    if (diff_sign < 0) {		/* f < g */
+      s_mp_exch(&f, &g);
+      s_mp_exch(c, &d);
+    } else if (diff_sign == 0) {		/* f == g */
+      res = MP_UNDEF;		/* a and p are not relatively prime */
+      break;
+    }
+    if ((MP_DIGIT(&f,0) % 4) == (MP_DIGIT(&g,0) % 4)) {
+      MP_CHECKOK( mp_sub(&f, &g, &f) );	/* f = f - g */
+      MP_CHECKOK( mp_sub(c,  &d,  c) );	/* c = c - d */
+    } else {
+      MP_CHECKOK( mp_add(&f, &g, &f) );	/* f = f + g */
+      MP_CHECKOK( mp_add(c,  &d,  c) );	/* c = c + d */
+    }
+  }
+  if (res >= 0) {
+    while (MP_SIGN(c) != MP_ZPOS) {
+      MP_CHECKOK( mp_add(c, p, c) );
+    }
+    res = k;
+  }
+
+CLEANUP:
+  mp_clear(&d);
+  mp_clear(&f);
+  mp_clear(&g);
+  return res;
+}
+
+/* Compute T = (P ** -1) mod MP_RADIX.  Also works for 16-bit mp_digits.
+** This technique from the paper "Fast Modular Reciprocals" (unpublished)
+** by Richard Schroeppel (a.k.a. Captain Nemo).
+*/
+mp_digit  s_mp_invmod_radix(mp_digit P)
+{
+  mp_digit T = P;
+  T *= 2 - (P * T);
+  T *= 2 - (P * T);
+  T *= 2 - (P * T);
+  T *= 2 - (P * T);
+#if !defined(MP_USE_UINT_DIGIT)
+  T *= 2 - (P * T);
+  T *= 2 - (P * T);
+#endif
+  return T;
+}
+
+/* Given c, k, and prime p, where a*c == 2**k (mod p), 
+** Compute x = (a ** -1) mod p.  This is similar to Montgomery reduction.
+** This technique from the paper "Fast Modular Reciprocals" (unpublished)
+** by Richard Schroeppel (a.k.a. Captain Nemo).
+*/
+mp_err  s_mp_fixup_reciprocal(const mp_int *c, const mp_int *p, int k, mp_int *x)
+{
+  int      k_orig = k;
+  mp_digit r;
+  mp_size  ix;
+  mp_err   res;
+
+  if (mp_cmp_z(c) < 0) {		/* c < 0 */
+    MP_CHECKOK( mp_add(c, p, x) );	/* x = c + p */
+  } else {
+    MP_CHECKOK( mp_copy(c, x) );	/* x = c */
+  }
+
+  /* make sure x is large enough */
+  ix = MP_HOWMANY(k, MP_DIGIT_BIT) + MP_USED(p) + 1;
+  ix = MP_MAX(ix, MP_USED(x));
+  MP_CHECKOK( s_mp_pad(x, ix) );
+
+  r = 0 - s_mp_invmod_radix(MP_DIGIT(p,0));
+
+  for (ix = 0; k > 0; ix++) {
+    int      j = MP_MIN(k, MP_DIGIT_BIT);
+    mp_digit v = r * MP_DIGIT(x, ix);
+    if (j < MP_DIGIT_BIT) {
+      v &= ((mp_digit)1 << j) - 1;	/* v = v mod (2 ** j) */
+    }
+    s_mp_mul_d_add_offset(p, v, x, ix); /* x += p * v * (RADIX ** ix) */
+    k -= j;
+  }
+  s_mp_clamp(x);
+  s_mp_div_2d(x, k_orig);
+  res = MP_OKAY;
+
+CLEANUP:
+  return res;
+}
+
+/* compute mod inverse using Schroeppel's method, only if m is odd */
+mp_err s_mp_invmod_odd_m(const mp_int *a, const mp_int *m, mp_int *c)
+{
+  int k;
+  mp_err  res;
+  mp_int  x;
+
+  ARGCHK(a && m && c, MP_BADARG);
+
+  if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0)
+    return MP_RANGE;
+  if (mp_iseven(m))
+    return MP_UNDEF;
+
+  MP_DIGITS(&x) = 0;
+
+  if (a == c) {
+    if ((res = mp_init_copy(&x, a)) != MP_OKAY)
+      return res;
+    if (a == m) 
+      m = &x;
+    a = &x;
+  } else if (m == c) {
+    if ((res = mp_init_copy(&x, m)) != MP_OKAY)
+      return res;
+    m = &x;
+  } else {
+    MP_DIGITS(&x) = 0;
+  }
+
+  MP_CHECKOK( s_mp_almost_inverse(a, m, c) );
+  k = res;
+  MP_CHECKOK( s_mp_fixup_reciprocal(c, m, k, c) );
+CLEANUP:
+  mp_clear(&x);
+  return res;
+}
+
+/* Known good algorithm for computing modular inverse.  But slow. */
+mp_err mp_invmod_xgcd(const mp_int *a, const mp_int *m, mp_int *c)
+{
+  mp_int  g, x;
+  mp_err  res;
+
+  ARGCHK(a && m && c, MP_BADARG);
+
+  if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0)
+    return MP_RANGE;
+
+  MP_DIGITS(&g) = 0;
+  MP_DIGITS(&x) = 0;
+  MP_CHECKOK( mp_init(&x) );
+  MP_CHECKOK( mp_init(&g) );
+
+  MP_CHECKOK( mp_xgcd(a, m, &g, &x, NULL) );
+
+  if (mp_cmp_d(&g, 1) != MP_EQ) {
+    res = MP_UNDEF;
+    goto CLEANUP;
+  }
+
+  res = mp_mod(&x, m, c);
+  SIGN(c) = SIGN(a);
+
+CLEANUP:
+  mp_clear(&x);
+  mp_clear(&g);
+
+  return res;
+}
+
+/* modular inverse where modulus is 2**k. */
+/* c = a**-1 mod 2**k */
+mp_err s_mp_invmod_2d(const mp_int *a, mp_size k, mp_int *c)
+{
+  mp_err res;
+  mp_size ix = k + 4;
+  mp_int t0, t1, val, tmp, two2k;
+
+  static const mp_digit d2 = 2;
+  static const mp_int two = { MP_ZPOS, 1, 1, (mp_digit *)&d2 };
+
+  if (mp_iseven(a))
+    return MP_UNDEF;
+  if (k <= MP_DIGIT_BIT) {
+    mp_digit i = s_mp_invmod_radix(MP_DIGIT(a,0));
+    if (k < MP_DIGIT_BIT)
+      i &= ((mp_digit)1 << k) - (mp_digit)1;
+    mp_set(c, i);
+    return MP_OKAY;
+  }
+  MP_DIGITS(&t0) = 0;
+  MP_DIGITS(&t1) = 0;
+  MP_DIGITS(&val) = 0;
+  MP_DIGITS(&tmp) = 0;
+  MP_DIGITS(&two2k) = 0;
+  MP_CHECKOK( mp_init_copy(&val, a) );
+  s_mp_mod_2d(&val, k);
+  MP_CHECKOK( mp_init_copy(&t0, &val) );
+  MP_CHECKOK( mp_init_copy(&t1, &t0)  );
+  MP_CHECKOK( mp_init(&tmp) );
+  MP_CHECKOK( mp_init(&two2k) );
+  MP_CHECKOK( s_mp_2expt(&two2k, k) );
+  do {
+    MP_CHECKOK( mp_mul(&val, &t1, &tmp)  );
+    MP_CHECKOK( mp_sub(&two, &tmp, &tmp) );
+    MP_CHECKOK( mp_mul(&t1, &tmp, &t1)   );
+    s_mp_mod_2d(&t1, k);
+    while (MP_SIGN(&t1) != MP_ZPOS) {
+      MP_CHECKOK( mp_add(&t1, &two2k, &t1) );
+    }
+    if (mp_cmp(&t1, &t0) == MP_EQ) 
+      break;
+    MP_CHECKOK( mp_copy(&t1, &t0) );
+  } while (--ix > 0);
+  if (!ix) {
+    res = MP_UNDEF;
+  } else {
+    mp_exch(c, &t1);
+  }
+
+CLEANUP:
+  mp_clear(&t0);
+  mp_clear(&t1);
+  mp_clear(&val);
+  mp_clear(&tmp);
+  mp_clear(&two2k);
+  return res;
+}
+
+mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c)
+{
+  mp_err res;
+  mp_size k;
+  mp_int oddFactor, evenFactor;	/* factors of the modulus */
+  mp_int oddPart, evenPart;	/* parts to combine via CRT. */
+  mp_int C2, tmp1, tmp2;
+
+  /*static const mp_digit d1 = 1; */
+  /*static const mp_int one = { MP_ZPOS, 1, 1, (mp_digit *)&d1 }; */
+
+  if ((res = s_mp_ispow2(m)) >= 0) {
+    k = res;
+    return s_mp_invmod_2d(a, k, c);
+  }
+  MP_DIGITS(&oddFactor) = 0;
+  MP_DIGITS(&evenFactor) = 0;
+  MP_DIGITS(&oddPart) = 0;
+  MP_DIGITS(&evenPart) = 0;
+  MP_DIGITS(&C2)     = 0;
+  MP_DIGITS(&tmp1)   = 0;
+  MP_DIGITS(&tmp2)   = 0;
+
+  MP_CHECKOK( mp_init_copy(&oddFactor, m) );    /* oddFactor = m */
+  MP_CHECKOK( mp_init(&evenFactor) );
+  MP_CHECKOK( mp_init(&oddPart) );
+  MP_CHECKOK( mp_init(&evenPart) );
+  MP_CHECKOK( mp_init(&C2)     );
+  MP_CHECKOK( mp_init(&tmp1)   );
+  MP_CHECKOK( mp_init(&tmp2)   );
+
+  k = mp_trailing_zeros(m);
+  s_mp_div_2d(&oddFactor, k);
+  MP_CHECKOK( s_mp_2expt(&evenFactor, k) );
+
+  /* compute a**-1 mod oddFactor. */
+  MP_CHECKOK( s_mp_invmod_odd_m(a, &oddFactor, &oddPart) );
+  /* compute a**-1 mod evenFactor, where evenFactor == 2**k. */
+  MP_CHECKOK( s_mp_invmod_2d(   a,       k,    &evenPart) );
+
+  /* Use Chinese Remainer theorem to compute a**-1 mod m. */
+  /* let m1 = oddFactor,  v1 = oddPart, 
+   * let m2 = evenFactor, v2 = evenPart.
+   */
+
+  /* Compute C2 = m1**-1 mod m2. */
+  MP_CHECKOK( s_mp_invmod_2d(&oddFactor, k,    &C2) );
+
+  /* compute u = (v2 - v1)*C2 mod m2 */
+  MP_CHECKOK( mp_sub(&evenPart, &oddPart,   &tmp1) );
+  MP_CHECKOK( mp_mul(&tmp1,     &C2,        &tmp2) );
+  s_mp_mod_2d(&tmp2, k);
+  while (MP_SIGN(&tmp2) != MP_ZPOS) {
+    MP_CHECKOK( mp_add(&tmp2, &evenFactor, &tmp2) );
+  }
+
+  /* compute answer = v1 + u*m1 */
+  MP_CHECKOK( mp_mul(&tmp2,     &oddFactor, c) );
+  MP_CHECKOK( mp_add(&oddPart,  c,          c) );
+  /* not sure this is necessary, but it's low cost if not. */
+  MP_CHECKOK( mp_mod(c,         m,          c) );
+
+CLEANUP:
+  mp_clear(&oddFactor);
+  mp_clear(&evenFactor);
+  mp_clear(&oddPart);
+  mp_clear(&evenPart);
+  mp_clear(&C2);
+  mp_clear(&tmp1);
+  mp_clear(&tmp2);
+  return res;
+}
+
+
+/* {{{ mp_invmod(a, m, c) */
+
+/*
+  mp_invmod(a, m, c)
+
+  Compute c = a^-1 (mod m), if there is an inverse for a (mod m).
+  This is equivalent to the question of whether (a, m) = 1.  If not,
+  MP_UNDEF is returned, and there is no inverse.
+ */
+
+mp_err mp_invmod(const mp_int *a, const mp_int *m, mp_int *c)
+{
+
+  ARGCHK(a && m && c, MP_BADARG);
+
+  if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0)
+    return MP_RANGE;
+
+  if (mp_isodd(m)) {
+    return s_mp_invmod_odd_m(a, m, c);
+  }
+  if (mp_iseven(a))
+    return MP_UNDEF;	/* not invertable */
+
+  return s_mp_invmod_even_m(a, m, c);
+
+} /* end mp_invmod() */
+
+/* }}} */
+#endif /* if MP_NUMTH */
+
+/* }}} */
+
+/*------------------------------------------------------------------------*/
+/* {{{ mp_print(mp, ofp) */
+
+#if MP_IOFUNC
+/*
+  mp_print(mp, ofp)
+
+  Print a textual representation of the given mp_int on the output
+  stream 'ofp'.  Output is generated using the internal radix.
+ */
+
+void   mp_print(mp_int *mp, FILE *ofp)
+{
+  int   ix;
+
+  if(mp == NULL || ofp == NULL)
+    return;
+
+  fputc((SIGN(mp) == NEG) ? '-' : '+', ofp);
+
+  for(ix = USED(mp) - 1; ix >= 0; ix--) {
+    fprintf(ofp, DIGIT_FMT, DIGIT(mp, ix));
+  }
+
+} /* end mp_print() */
+
+#endif /* if MP_IOFUNC */
+
+/* }}} */
+
+/*------------------------------------------------------------------------*/
+/* {{{ More I/O Functions */
+
+/* {{{ mp_read_raw(mp, str, len) */
+
+/* 
+   mp_read_raw(mp, str, len)
+
+   Read in a raw value (base 256) into the given mp_int
+ */
+
+mp_err  mp_read_raw(mp_int *mp, char *str, int len)
+{
+  int            ix;
+  mp_err         res;
+  unsigned char *ustr = (unsigned char *)str;
+
+  ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG);
+
+  mp_zero(mp);
+
+  /* Get sign from first byte */
+  if(ustr[0])
+    SIGN(mp) = NEG;
+  else
+    SIGN(mp) = ZPOS;
+
+  /* Read the rest of the digits */
+  for(ix = 1; ix < len; ix++) {
+    if((res = mp_mul_d(mp, 256, mp)) != MP_OKAY)
+      return res;
+    if((res = mp_add_d(mp, ustr[ix], mp)) != MP_OKAY)
+      return res;
+  }
+
+  return MP_OKAY;
+
+} /* end mp_read_raw() */
+
+/* }}} */
+
+/* {{{ mp_raw_size(mp) */
+
+int    mp_raw_size(mp_int *mp)
+{
+  ARGCHK(mp != NULL, 0);
+
+  return (USED(mp) * sizeof(mp_digit)) + 1;
+
+} /* end mp_raw_size() */
+
+/* }}} */
+
+/* {{{ mp_toraw(mp, str) */
+
+mp_err mp_toraw(mp_int *mp, char *str)
+{
+  int  ix, jx, pos = 1;
+
+  ARGCHK(mp != NULL && str != NULL, MP_BADARG);
+
+  str[0] = (char)SIGN(mp);
+
+  /* Iterate over each digit... */
+  for(ix = USED(mp) - 1; ix >= 0; ix--) {
+    mp_digit  d = DIGIT(mp, ix);
+
+    /* Unpack digit bytes, high order first */
+    for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) {
+      str[pos++] = (char)(d >> (jx * CHAR_BIT));
+    }
+  }
+
+  return MP_OKAY;
+
+} /* end mp_toraw() */
+
+/* }}} */
+
+/* {{{ mp_read_radix(mp, str, radix) */
+
+/*
+  mp_read_radix(mp, str, radix)
+
+  Read an integer from the given string, and set mp to the resulting
+  value.  The input is presumed to be in base 10.  Leading non-digit
+  characters are ignored, and the function reads until a non-digit
+  character or the end of the string.
+ */
+
+mp_err  mp_read_radix(mp_int *mp, const char *str, int radix)
+{
+  int     ix = 0, val = 0;
+  mp_err  res;
+  mp_sign sig = ZPOS;
+
+  ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX, 
+	 MP_BADARG);
+
+  mp_zero(mp);
+
+  /* Skip leading non-digit characters until a digit or '-' or '+' */
+  while(str[ix] && 
+	(s_mp_tovalue(str[ix], radix) < 0) && 
+	str[ix] != '-' &&
+	str[ix] != '+') {
+    ++ix;
+  }
+
+  if(str[ix] == '-') {
+    sig = NEG;
+    ++ix;
+  } else if(str[ix] == '+') {
+    sig = ZPOS; /* this is the default anyway... */
+    ++ix;
+  }
+
+  while((val = s_mp_tovalue(str[ix], radix)) >= 0) {
+    if((res = s_mp_mul_d(mp, radix)) != MP_OKAY)
+      return res;
+    if((res = s_mp_add_d(mp, val)) != MP_OKAY)
+      return res;
+    ++ix;
+  }
+
+  if(s_mp_cmp_d(mp, 0) == MP_EQ)
+    SIGN(mp) = ZPOS;
+  else
+    SIGN(mp) = sig;
+
+  return MP_OKAY;
+
+} /* end mp_read_radix() */
+
+mp_err mp_read_variable_radix(mp_int *a, const char * str, int default_radix)
+{
+  int     radix = default_radix;
+  int     cx;
+  mp_sign sig   = ZPOS;
+  mp_err  res;
+
+  /* Skip leading non-digit characters until a digit or '-' or '+' */
+  while ((cx = *str) != 0 && 
+	(s_mp_tovalue(cx, radix) < 0) && 
+	cx != '-' &&
+	cx != '+') {
+    ++str;
+  }
+
+  if (cx == '-') {
+    sig = NEG;
+    ++str;
+  } else if (cx == '+') {
+    sig = ZPOS; /* this is the default anyway... */
+    ++str;
+  }
+
+  if (str[0] == '0') {
+    if ((str[1] | 0x20) == 'x') {
+      radix = 16;
+      str += 2;
+    } else {
+      radix = 8;
+      str++;
+    }
+  }
+  res = mp_read_radix(a, str, radix);
+  if (res == MP_OKAY) {
+    MP_SIGN(a) = (s_mp_cmp_d(a, 0) == MP_EQ) ? ZPOS : sig;
+  }
+  return res;
+}
+
+/* }}} */
+
+/* {{{ mp_radix_size(mp, radix) */
+
+int    mp_radix_size(mp_int *mp, int radix)
+{
+  int  bits;
+
+  if(!mp || radix < 2 || radix > MAX_RADIX)
+    return 0;
+
+  bits = USED(mp) * DIGIT_BIT - 1;
+ 
+  return s_mp_outlen(bits, radix);
+
+} /* end mp_radix_size() */
+
+/* }}} */
+
+/* {{{ mp_toradix(mp, str, radix) */
+
+mp_err mp_toradix(mp_int *mp, char *str, int radix)
+{
+  int  ix, pos = 0;
+
+  ARGCHK(mp != NULL && str != NULL, MP_BADARG);
+  ARGCHK(radix > 1 && radix <= MAX_RADIX, MP_RANGE);
+
+  if(mp_cmp_z(mp) == MP_EQ) {
+    str[0] = '0';
+    str[1] = '\0';
+  } else {
+    mp_err   res;
+    mp_int   tmp;
+    mp_sign  sgn;
+    mp_digit rem, rdx = (mp_digit)radix;
+    char     ch;
+
+    if((res = mp_init_copy(&tmp, mp)) != MP_OKAY)
+      return res;
+
+    /* Save sign for later, and take absolute value */
+    sgn = SIGN(&tmp); SIGN(&tmp) = ZPOS;
+
+    /* Generate output digits in reverse order      */
+    while(mp_cmp_z(&tmp) != 0) {
+      if((res = mp_div_d(&tmp, rdx, &tmp, &rem)) != MP_OKAY) {
+	mp_clear(&tmp);
+	return res;
+      }
+
+      /* Generate digits, use capital letters */
+      ch = s_mp_todigit(rem, radix, 0);
+
+      str[pos++] = ch;
+    }
+
+    /* Add - sign if original value was negative */
+    if(sgn == NEG)
+      str[pos++] = '-';
+
+    /* Add trailing NUL to end the string        */
+    str[pos--] = '\0';
+
+    /* Reverse the digits and sign indicator     */
+    ix = 0;
+    while(ix < pos) {
+      char tmp = str[ix];
+
+      str[ix] = str[pos];
+      str[pos] = tmp;
+      ++ix;
+      --pos;
+    }
+    
+    mp_clear(&tmp);
+  }
+
+  return MP_OKAY;
+
+} /* end mp_toradix() */
+
+/* }}} */
+
+/* {{{ mp_tovalue(ch, r) */
+
+int    mp_tovalue(char ch, int r)
+{
+  return s_mp_tovalue(ch, r);
+
+} /* end mp_tovalue() */
+
+/* }}} */
+
+/* }}} */
+
+/* {{{ mp_strerror(ec) */
+
+/*
+  mp_strerror(ec)
+
+  Return a string describing the meaning of error code 'ec'.  The
+  string returned is allocated in static memory, so the caller should
+  not attempt to modify or free the memory associated with this
+  string.
+ */
+const char  *mp_strerror(mp_err ec)
+{
+  int   aec = (ec < 0) ? -ec : ec;
+
+  /* Code values are negative, so the senses of these comparisons
+     are accurate */
+  if(ec < MP_LAST_CODE || ec > MP_OKAY) {
+    return mp_err_string[0];  /* unknown error code */
+  } else {
+    return mp_err_string[aec + 1];
+  }
+
+} /* end mp_strerror() */
+
+/* }}} */
+
+/*========================================================================*/
+/*------------------------------------------------------------------------*/
+/* Static function definitions (internal use only)                        */
+
+/* {{{ Memory management */
+
+/* {{{ s_mp_grow(mp, min) */
+
+/* Make sure there are at least 'min' digits allocated to mp              */
+mp_err   s_mp_grow(mp_int *mp, mp_size min)
+{
+  if(min > ALLOC(mp)) {
+    mp_digit   *tmp;
+
+    /* Set min to next nearest default precision block size */
+    min = MP_ROUNDUP(min, s_mp_defprec);
+
+    if((tmp = s_mp_alloc(min, sizeof(mp_digit))) == NULL)
+      return MP_MEM;
+
+    s_mp_copy(DIGITS(mp), tmp, USED(mp));
+
+#if MP_CRYPTO
+    s_mp_setz(DIGITS(mp), ALLOC(mp));
+#endif
+    s_mp_free(DIGITS(mp));
+    DIGITS(mp) = tmp;
+    ALLOC(mp) = min;
+  }
+
+  return MP_OKAY;
+
+} /* end s_mp_grow() */
+
+/* }}} */
+
+/* {{{ s_mp_pad(mp, min) */
+
+/* Make sure the used size of mp is at least 'min', growing if needed     */
+mp_err   s_mp_pad(mp_int *mp, mp_size min)
+{
+  if(min > USED(mp)) {
+    mp_err  res;
+
+    /* Make sure there is room to increase precision  */
+    if (min > ALLOC(mp)) {
+      if ((res = s_mp_grow(mp, min)) != MP_OKAY)
+	return res;
+    } else {
+      s_mp_setz(DIGITS(mp) + USED(mp), min - USED(mp));
+    }
+
+    /* Increase precision; should already be 0-filled */
+    USED(mp) = min;
+  }
+
+  return MP_OKAY;
+
+} /* end s_mp_pad() */
+
+/* }}} */
+
+/* {{{ s_mp_setz(dp, count) */
+
+#if MP_MACRO == 0
+/* Set 'count' digits pointed to by dp to be zeroes                       */
+void s_mp_setz(mp_digit *dp, mp_size count)
+{
+#if MP_MEMSET == 0
+  int  ix;
+
+  for(ix = 0; ix < count; ix++)
+    dp[ix] = 0;
+#else
+  memset(dp, 0, count * sizeof(mp_digit));
+#endif
+
+} /* end s_mp_setz() */
+#endif
+
+/* }}} */
+
+/* {{{ s_mp_copy(sp, dp, count) */
+
+#if MP_MACRO == 0
+/* Copy 'count' digits from sp to dp                                      */
+void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count)
+{
+#if MP_MEMCPY == 0
+  int  ix;
+
+  for(ix = 0; ix < count; ix++)
+    dp[ix] = sp[ix];
+#else
+  memcpy(dp, sp, count * sizeof(mp_digit));
+#endif
+  ++mp_copies;
+
+} /* end s_mp_copy() */
+#endif
+
+/* }}} */
+
+/* {{{ s_mp_alloc(nb, ni) */
+
+#if MP_MACRO == 0
+/* Allocate ni records of nb bytes each, and return a pointer to that     */
+void    *s_mp_alloc(size_t nb, size_t ni)
+{
+  ++mp_allocs;
+  return calloc(nb, ni);
+
+} /* end s_mp_alloc() */
+#endif
+
+/* }}} */
+
+/* {{{ s_mp_free(ptr) */
+
+#if MP_MACRO == 0
+/* Free the memory pointed to by ptr                                      */
+void     s_mp_free(void *ptr)
+{
+  if(ptr) {
+    ++mp_frees;
+    free(ptr);
+  }
+} /* end s_mp_free() */
+#endif
+
+/* }}} */
+
+/* {{{ s_mp_clamp(mp) */
+
+#if MP_MACRO == 0
+/* Remove leading zeroes from the given value                             */
+void     s_mp_clamp(mp_int *mp)
+{
+  mp_size used = MP_USED(mp);
+  while (used > 1 && DIGIT(mp, used - 1) == 0)
+    --used;
+  MP_USED(mp) = used;
+} /* end s_mp_clamp() */
+#endif
+
+/* }}} */
+
+/* {{{ s_mp_exch(a, b) */
+
+/* Exchange the data for a and b; (b, a) = (a, b)                         */
+void     s_mp_exch(mp_int *a, mp_int *b)
+{
+  mp_int   tmp;
+
+  tmp = *a;
+  *a = *b;
+  *b = tmp;
+
+} /* end s_mp_exch() */
+
+/* }}} */
+
+/* }}} */
+
+/* {{{ Arithmetic helpers */
+
+/* {{{ s_mp_lshd(mp, p) */
+
+/* 
+   Shift mp leftward by p digits, growing if needed, and zero-filling
+   the in-shifted digits at the right end.  This is a convenient
+   alternative to multiplication by powers of the radix
+ */   
+
+mp_err   s_mp_lshd(mp_int *mp, mp_size p)
+{
+  mp_err  res;
+  mp_size pos;
+  int     ix;
+
+  if(p == 0)
+    return MP_OKAY;
+
+  if (MP_USED(mp) == 1 && MP_DIGIT(mp, 0) == 0)
+    return MP_OKAY;
+
+  if((res = s_mp_pad(mp, USED(mp) + p)) != MP_OKAY)
+    return res;
+
+  pos = USED(mp) - 1;
+
+  /* Shift all the significant figures over as needed */
+  for(ix = pos - p; ix >= 0; ix--) 
+    DIGIT(mp, ix + p) = DIGIT(mp, ix);
+
+  /* Fill the bottom digits with zeroes */
+  for(ix = 0; ix < p; ix++)
+    DIGIT(mp, ix) = 0;
+
+  return MP_OKAY;
+
+} /* end s_mp_lshd() */
+
+/* }}} */
+
+/* {{{ s_mp_mul_2d(mp, d) */
+
+/*
+  Multiply the integer by 2^d, where d is a number of bits.  This
+  amounts to a bitwise shift of the value.
+ */
+mp_err   s_mp_mul_2d(mp_int *mp, mp_digit d)
+{
+  mp_err   res;
+  mp_digit dshift, bshift;
+  mp_digit mask;
+
+  ARGCHK(mp != NULL,  MP_BADARG);
+
+  dshift = d / MP_DIGIT_BIT;
+  bshift = d % MP_DIGIT_BIT;
+  /* bits to be shifted out of the top word */
+  mask   = ((mp_digit)~0 << (MP_DIGIT_BIT - bshift)); 
+  mask  &= MP_DIGIT(mp, MP_USED(mp) - 1);
+
+  if (MP_OKAY != (res = s_mp_pad(mp, MP_USED(mp) + dshift + (mask != 0) )))
+    return res;
+
+  if (dshift && MP_OKAY != (res = s_mp_lshd(mp, dshift)))
+    return res;
+
+  if (bshift) { 
+    mp_digit *pa = MP_DIGITS(mp);
+    mp_digit *alim = pa + MP_USED(mp);
+    mp_digit  prev = 0;
+
+    for (pa += dshift; pa < alim; ) {
+      mp_digit x = *pa;
+      *pa++ = (x << bshift) | prev;
+      prev = x >> (DIGIT_BIT - bshift);
+    }
+  }
+
+  s_mp_clamp(mp);
+  return MP_OKAY;
+} /* end s_mp_mul_2d() */
+
+/* {{{ s_mp_rshd(mp, p) */
+
+/* 
+   Shift mp rightward by p digits.  Maintains the invariant that
+   digits above the precision are all zero.  Digits shifted off the
+   end are lost.  Cannot fail.
+ */
+
+void     s_mp_rshd(mp_int *mp, mp_size p)
+{
+  mp_size  ix;
+  mp_digit *src, *dst;
+
+  if(p == 0)
+    return;
+
+  /* Shortcut when all digits are to be shifted off */
+  if(p >= USED(mp)) {
+    s_mp_setz(DIGITS(mp), ALLOC(mp));
+    USED(mp) = 1;
+    SIGN(mp) = ZPOS;
+    return;
+  }
+
+  /* Shift all the significant figures over as needed */
+  dst = MP_DIGITS(mp);
+  src = dst + p;
+  for (ix = USED(mp) - p; ix > 0; ix--)
+    *dst++ = *src++;
+
+  MP_USED(mp) -= p;
+  /* Fill the top digits with zeroes */
+  while (p-- > 0)
+    *dst++ = 0;
+
+#if 0
+  /* Strip off any leading zeroes    */
+  s_mp_clamp(mp);
+#endif
+
+} /* end s_mp_rshd() */
+
+/* }}} */
+
+/* {{{ s_mp_div_2(mp) */
+
+/* Divide by two -- take advantage of radix properties to do it fast      */
+void     s_mp_div_2(mp_int *mp)
+{
+  s_mp_div_2d(mp, 1);
+
+} /* end s_mp_div_2() */
+
+/* }}} */
+
+/* {{{ s_mp_mul_2(mp) */
+
+mp_err s_mp_mul_2(mp_int *mp)
+{
+  mp_digit *pd;
+  int      ix, used;
+  mp_digit kin = 0;
+
+  /* Shift digits leftward by 1 bit */
+  used = MP_USED(mp);
+  pd = MP_DIGITS(mp);
+  for (ix = 0; ix < used; ix++) {
+    mp_digit d = *pd;
+    *pd++ = (d << 1) | kin;
+    kin = (d >> (DIGIT_BIT - 1));
+  }
+
+  /* Deal with rollover from last digit */
+  if (kin) {
+    if (ix >= ALLOC(mp)) {
+      mp_err res;
+      if((res = s_mp_grow(mp, ALLOC(mp) + 1)) != MP_OKAY)
+	return res;
+    }
+
+    DIGIT(mp, ix) = kin;
+    USED(mp) += 1;
+  }
+
+  return MP_OKAY;
+
+} /* end s_mp_mul_2() */
+
+/* }}} */
+
+/* {{{ s_mp_mod_2d(mp, d) */
+
+/*
+  Remainder the integer by 2^d, where d is a number of bits.  This
+  amounts to a bitwise AND of the value, and does not require the full
+  division code
+ */
+void     s_mp_mod_2d(mp_int *mp, mp_digit d)
+{
+  mp_size  ndig = (d / DIGIT_BIT), nbit = (d % DIGIT_BIT);
+  mp_size  ix;
+  mp_digit dmask;
+
+  if(ndig >= USED(mp))
+    return;
+
+  /* Flush all the bits above 2^d in its digit */
+  dmask = ((mp_digit)1 << nbit) - 1;
+  DIGIT(mp, ndig) &= dmask;
+
+  /* Flush all digits above the one with 2^d in it */
+  for(ix = ndig + 1; ix < USED(mp); ix++)
+    DIGIT(mp, ix) = 0;
+
+  s_mp_clamp(mp);
+
+} /* end s_mp_mod_2d() */
+
+/* }}} */
+
+/* {{{ s_mp_div_2d(mp, d) */
+
+/*
+  Divide the integer by 2^d, where d is a number of bits.  This
+  amounts to a bitwise shift of the value, and does not require the
+  full division code (used in Barrett reduction, see below)
+ */
+void     s_mp_div_2d(mp_int *mp, mp_digit d)
+{
+  int       ix;
+  mp_digit  save, next, mask;
+
+  s_mp_rshd(mp, d / DIGIT_BIT);
+  d %= DIGIT_BIT;
+  if (d) {
+    mask = ((mp_digit)1 << d) - 1;
+    save = 0;
+    for(ix = USED(mp) - 1; ix >= 0; ix--) {
+      next = DIGIT(mp, ix) & mask;
+      DIGIT(mp, ix) = (DIGIT(mp, ix) >> d) | (save << (DIGIT_BIT - d));
+      save = next;
+    }
+  }
+  s_mp_clamp(mp);
+
+} /* end s_mp_div_2d() */
+
+/* }}} */
+
+/* {{{ s_mp_norm(a, b, *d) */
+
+/*
+  s_mp_norm(a, b, *d)
+
+  Normalize a and b for division, where b is the divisor.  In order
+  that we might make good guesses for quotient digits, we want the
+  leading digit of b to be at least half the radix, which we
+  accomplish by multiplying a and b by a power of 2.  The exponent 
+  (shift count) is placed in *pd, so that the remainder can be shifted 
+  back at the end of the division process.
+ */
+
+mp_err   s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd)
+{
+  mp_digit  d;
+  mp_digit  mask;
+  mp_digit  b_msd;
+  mp_err    res    = MP_OKAY;
+
+  d = 0;
+  mask  = DIGIT_MAX & ~(DIGIT_MAX >> 1);	/* mask is msb of digit */
+  b_msd = DIGIT(b, USED(b) - 1);
+  while (!(b_msd & mask)) {
+    b_msd <<= 1;
+    ++d;
+  }
+
+  if (d) {
+    MP_CHECKOK( s_mp_mul_2d(a, d) );
+    MP_CHECKOK( s_mp_mul_2d(b, d) );
+  }
+
+  *pd = d;
+CLEANUP:
+  return res;
+
+} /* end s_mp_norm() */
+
+/* }}} */
+
+/* }}} */
+
+/* {{{ Primitive digit arithmetic */
+
+/* {{{ s_mp_add_d(mp, d) */
+
+/* Add d to |mp| in place                                                 */
+mp_err   s_mp_add_d(mp_int *mp, mp_digit d)    /* unsigned digit addition */
+{
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
+  mp_word   w, k = 0;
+  mp_size   ix = 1;
+
+  w = (mp_word)DIGIT(mp, 0) + d;
+  DIGIT(mp, 0) = ACCUM(w);
+  k = CARRYOUT(w);
+
+  while(ix < USED(mp) && k) {
+    w = (mp_word)DIGIT(mp, ix) + k;
+    DIGIT(mp, ix) = ACCUM(w);
+    k = CARRYOUT(w);
+    ++ix;
+  }
+
+  if(k != 0) {
+    mp_err  res;
+
+    if((res = s_mp_pad(mp, USED(mp) + 1)) != MP_OKAY)
+      return res;
+
+    DIGIT(mp, ix) = (mp_digit)k;
+  }
+
+  return MP_OKAY;
+#else
+  mp_digit * pmp = MP_DIGITS(mp);
+  mp_digit sum, mp_i, carry = 0;
+  mp_err   res = MP_OKAY;
+  int used = (int)MP_USED(mp);
+
+  mp_i = *pmp;
+  *pmp++ = sum = d + mp_i;
+  carry = (sum < d);
+  while (carry && --used > 0) {
+    mp_i = *pmp;
+    *pmp++ = sum = carry + mp_i;
+    carry = !sum;
+  }
+  if (carry && !used) {
+    /* mp is growing */
+    used = MP_USED(mp);
+    MP_CHECKOK( s_mp_pad(mp, used + 1) );
+    MP_DIGIT(mp, used) = carry;
+  }
+CLEANUP:
+  return res;
+#endif
+} /* end s_mp_add_d() */
+
+/* }}} */
+
+/* {{{ s_mp_sub_d(mp, d) */
+
+/* Subtract d from |mp| in place, assumes |mp| > d                        */
+mp_err   s_mp_sub_d(mp_int *mp, mp_digit d)    /* unsigned digit subtract */
+{
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD)
+  mp_word   w, b = 0;
+  mp_size   ix = 1;
+
+  /* Compute initial subtraction    */
+  w = (RADIX + (mp_word)DIGIT(mp, 0)) - d;
+  b = CARRYOUT(w) ? 0 : 1;
+  DIGIT(mp, 0) = ACCUM(w);
+
+  /* Propagate borrows leftward     */
+  while(b && ix < USED(mp)) {
+    w = (RADIX + (mp_word)DIGIT(mp, ix)) - b;
+    b = CARRYOUT(w) ? 0 : 1;
+    DIGIT(mp, ix) = ACCUM(w);
+    ++ix;
+  }
+
+  /* Remove leading zeroes          */
+  s_mp_clamp(mp);
+
+  /* If we have a borrow out, it's a violation of the input invariant */
+  if(b)
+    return MP_RANGE;
+  else
+    return MP_OKAY;
+#else
+  mp_digit *pmp = MP_DIGITS(mp);
+  mp_digit mp_i, diff, borrow;
+  mp_size  used = MP_USED(mp);
+
+  mp_i = *pmp;
+  *pmp++ = diff = mp_i - d;
+  borrow = (diff > mp_i);
+  while (borrow && --used) {
+    mp_i = *pmp;
+    *pmp++ = diff = mp_i - borrow;
+    borrow = (diff > mp_i);
+  }
+  s_mp_clamp(mp);
+  return (borrow && !used) ? MP_RANGE : MP_OKAY;
+#endif
+} /* end s_mp_sub_d() */
+
+/* }}} */
+
+/* {{{ s_mp_mul_d(a, d) */
+
+/* Compute a = a * d, single digit multiplication                         */
+mp_err   s_mp_mul_d(mp_int *a, mp_digit d)
+{
+  mp_err  res;
+  mp_size used;
+  int     pow;
+
+  if (!d) {
+    mp_zero(a);
+    return MP_OKAY;
+  }
+  if (d == 1)
+    return MP_OKAY;
+  if (0 <= (pow = s_mp_ispow2d(d))) {
+    return s_mp_mul_2d(a, (mp_digit)pow);
+  }
+
+  used = MP_USED(a);
+  MP_CHECKOK( s_mp_pad(a, used + 1) );
+
+  s_mpv_mul_d(MP_DIGITS(a), used, d, MP_DIGITS(a));
+
+  s_mp_clamp(a);
+
+CLEANUP:
+  return res;
+  
+} /* end s_mp_mul_d() */
+
+/* }}} */
+
+/* {{{ s_mp_div_d(mp, d, r) */
+
+/*
+  s_mp_div_d(mp, d, r)
+
+  Compute the quotient mp = mp / d and remainder r = mp mod d, for a
+  single digit d.  If r is null, the remainder will be discarded.
+ */
+
+mp_err   s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r)
+{
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD)
+  mp_word   w = 0, q;
+#else
+  mp_digit  w, q;
+#endif
+  int       ix;
+  mp_err    res;
+  mp_int    quot;
+  mp_int    rem;
+
+  if(d == 0)
+    return MP_RANGE;
+  if (d == 1) {
+    if (r)
+      *r = 0;
+    return MP_OKAY;
+  }
+  /* could check for power of 2 here, but mp_div_d does that. */
+  if (MP_USED(mp) == 1) {
+    mp_digit n   = MP_DIGIT(mp,0);
+    mp_digit rem;
+
+    q   = n / d;
+    rem = n % d;
+    MP_DIGIT(mp,0) = q;
+    if (r)
+      *r = rem;
+    return MP_OKAY;
+  }
+
+  MP_DIGITS(&rem)  = 0;
+  MP_DIGITS(&quot) = 0;
+  /* Make room for the quotient */
+  MP_CHECKOK( mp_init_size(&quot, USED(mp)) );
+
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD)
+  for(ix = USED(mp) - 1; ix >= 0; ix--) {
+    w = (w << DIGIT_BIT) | DIGIT(mp, ix);
+
+    if(w >= d) {
+      q = w / d;
+      w = w % d;
+    } else {
+      q = 0;
+    }
+
+    s_mp_lshd(&quot, 1);
+    DIGIT(&quot, 0) = (mp_digit)q;
+  }
+#else
+  {
+    mp_digit p;
+#if !defined(MP_ASSEMBLY_DIV_2DX1D)
+    mp_digit norm;
+#endif
+
+    MP_CHECKOK( mp_init_copy(&rem, mp) );
+
+#if !defined(MP_ASSEMBLY_DIV_2DX1D)
+    MP_DIGIT(&quot, 0) = d;
+    MP_CHECKOK( s_mp_norm(&rem, &quot, &norm) );
+    if (norm)
+      d <<= norm;
+    MP_DIGIT(&quot, 0) = 0;
+#endif
+
+    p = 0;
+    for (ix = USED(&rem) - 1; ix >= 0; ix--) {
+      w = DIGIT(&rem, ix);
+
+      if (p) {
+        MP_CHECKOK( s_mpv_div_2dx1d(p, w, d, &q, &w) );
+      } else if (w >= d) {
+	q = w / d;
+	w = w % d;
+      } else {
+	q = 0;
+      }
+
+      MP_CHECKOK( s_mp_lshd(&quot, 1) );
+      DIGIT(&quot, 0) = q;
+      p = w;
+    }
+#if !defined(MP_ASSEMBLY_DIV_2DX1D)
+    if (norm)
+      w >>= norm;
+#endif
+  }
+#endif
+
+  /* Deliver the remainder, if desired */
+  if(r)
+    *r = (mp_digit)w;
+
+  s_mp_clamp(&quot);
+  mp_exch(&quot, mp);
+CLEANUP:
+  mp_clear(&quot);
+  mp_clear(&rem);
+
+  return res;
+} /* end s_mp_div_d() */
+
+/* }}} */
+
+
+/* }}} */
+
+/* {{{ Primitive full arithmetic */
+
+/* {{{ s_mp_add(a, b) */
+
+/* Compute a = |a| + |b|                                                  */
+mp_err   s_mp_add(mp_int *a, const mp_int *b)  /* magnitude addition      */
+{
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
+  mp_word   w = 0;
+#else
+  mp_digit  d, sum, carry = 0;
+#endif
+  mp_digit *pa, *pb;
+  mp_size   ix;
+  mp_size   used;
+  mp_err    res;
+
+  /* Make sure a has enough precision for the output value */
+  if((USED(b) > USED(a)) && (res = s_mp_pad(a, USED(b))) != MP_OKAY)
+    return res;
+
+  /*
+    Add up all digits up to the precision of b.  If b had initially
+    the same precision as a, or greater, we took care of it by the
+    padding step above, so there is no problem.  If b had initially
+    less precision, we'll have to make sure the carry out is duly
+    propagated upward among the higher-order digits of the sum.
+   */
+  pa = MP_DIGITS(a);
+  pb = MP_DIGITS(b);
+  used = MP_USED(b);
+  for(ix = 0; ix < used; ix++) {
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
+    w = w + *pa + *pb++;
+    *pa++ = ACCUM(w);
+    w = CARRYOUT(w);
+#else
+    d = *pa;
+    sum = d + *pb++;
+    d = (sum < d);			/* detect overflow */
+    *pa++ = sum += carry;
+    carry = d + (sum < carry);		/* detect overflow */
+#endif
+  }
+
+  /* If we run out of 'b' digits before we're actually done, make
+     sure the carries get propagated upward...  
+   */
+  used = MP_USED(a);
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
+  while (w && ix < used) {
+    w = w + *pa;
+    *pa++ = ACCUM(w);
+    w = CARRYOUT(w);
+    ++ix;
+  }
+#else
+  while (carry && ix < used) {
+    sum = carry + *pa;
+    *pa++ = sum;
+    carry = !sum;
+    ++ix;
+  }
+#endif
+
+  /* If there's an overall carry out, increase precision and include
+     it.  We could have done this initially, but why touch the memory
+     allocator unless we're sure we have to?
+   */
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
+  if (w) {
+    if((res = s_mp_pad(a, used + 1)) != MP_OKAY)
+      return res;
+
+    DIGIT(a, ix) = (mp_digit)w;
+  }
+#else
+  if (carry) {
+    if((res = s_mp_pad(a, used + 1)) != MP_OKAY)
+      return res;
+
+    DIGIT(a, used) = carry;
+  }
+#endif
+
+  return MP_OKAY;
+} /* end s_mp_add() */
+
+/* }}} */
+
+/* Compute c = |a| + |b|         */ /* magnitude addition      */
+mp_err   s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c)  
+{
+  mp_digit *pa, *pb, *pc;
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
+  mp_word   w = 0;
+#else
+  mp_digit  sum, carry = 0, d;
+#endif
+  mp_size   ix;
+  mp_size   used;
+  mp_err    res;
+
+  MP_SIGN(c) = MP_SIGN(a);
+  if (MP_USED(a) < MP_USED(b)) {
+    const mp_int *xch = a;
+    a = b;
+    b = xch;
+  }
+
+  /* Make sure a has enough precision for the output value */
+  if (MP_OKAY != (res = s_mp_pad(c, MP_USED(a))))
+    return res;
+
+  /*
+    Add up all digits up to the precision of b.  If b had initially
+    the same precision as a, or greater, we took care of it by the
+    exchange step above, so there is no problem.  If b had initially
+    less precision, we'll have to make sure the carry out is duly
+    propagated upward among the higher-order digits of the sum.
+   */
+  pa = MP_DIGITS(a);
+  pb = MP_DIGITS(b);
+  pc = MP_DIGITS(c);
+  used = MP_USED(b);
+  for (ix = 0; ix < used; ix++) {
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
+    w = w + *pa++ + *pb++;
+    *pc++ = ACCUM(w);
+    w = CARRYOUT(w);
+#else
+    d = *pa++;
+    sum = d + *pb++;
+    d = (sum < d);			/* detect overflow */
+    *pc++ = sum += carry;
+    carry = d + (sum < carry);		/* detect overflow */
+#endif
+  }
+
+  /* If we run out of 'b' digits before we're actually done, make
+     sure the carries get propagated upward...  
+   */
+  for (used = MP_USED(a); ix < used; ++ix) {
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
+    w = w + *pa++;
+    *pc++ = ACCUM(w);
+    w = CARRYOUT(w);
+#else
+    *pc++ = sum = carry + *pa++;
+    carry = (sum < carry);
+#endif
+  }
+
+  /* If there's an overall carry out, increase precision and include
+     it.  We could have done this initially, but why touch the memory
+     allocator unless we're sure we have to?
+   */
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
+  if (w) {
+    if((res = s_mp_pad(c, used + 1)) != MP_OKAY)
+      return res;
+
+    DIGIT(c, used) = (mp_digit)w;
+    ++used;
+  }
+#else
+  if (carry) {
+    if((res = s_mp_pad(c, used + 1)) != MP_OKAY)
+      return res;
+
+    DIGIT(c, used) = carry;
+    ++used;
+  }
+#endif
+  MP_USED(c) = used;
+  return MP_OKAY;
+}
+/* {{{ s_mp_add_offset(a, b, offset) */
+
+/* Compute a = |a| + ( |b| * (RADIX ** offset) )             */
+mp_err   s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset)   
+{
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
+  mp_word   w, k = 0;
+#else
+  mp_digit  d, sum, carry = 0;
+#endif
+  mp_size   ib;
+  mp_size   ia;
+  mp_size   lim;
+  mp_err    res;
+
+  /* Make sure a has enough precision for the output value */
+  lim = MP_USED(b) + offset;
+  if((lim > USED(a)) && (res = s_mp_pad(a, lim)) != MP_OKAY)
+    return res;
+
+  /*
+    Add up all digits up to the precision of b.  If b had initially
+    the same precision as a, or greater, we took care of it by the
+    padding step above, so there is no problem.  If b had initially
+    less precision, we'll have to make sure the carry out is duly
+    propagated upward among the higher-order digits of the sum.
+   */
+  lim = USED(b);
+  for(ib = 0, ia = offset; ib < lim; ib++, ia++) {
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
+    w = (mp_word)DIGIT(a, ia) + DIGIT(b, ib) + k;
+    DIGIT(a, ia) = ACCUM(w);
+    k = CARRYOUT(w);
+#else
+    d = MP_DIGIT(a, ia);
+    sum = d + MP_DIGIT(b, ib);
+    d = (sum < d);
+    MP_DIGIT(a,ia) = sum += carry;
+    carry = d + (sum < carry);
+#endif
+  }
+
+  /* If we run out of 'b' digits before we're actually done, make
+     sure the carries get propagated upward...  
+   */
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
+  for (lim = MP_USED(a); k && (ia < lim); ++ia) {
+    w = (mp_word)DIGIT(a, ia) + k;
+    DIGIT(a, ia) = ACCUM(w);
+    k = CARRYOUT(w);
+  }
+#else
+  for (lim = MP_USED(a); carry && (ia < lim); ++ia) {
+    d = MP_DIGIT(a, ia);
+    MP_DIGIT(a,ia) = sum = d + carry;
+    carry = (sum < d);
+  }
+#endif
+
+  /* If there's an overall carry out, increase precision and include
+     it.  We could have done this initially, but why touch the memory
+     allocator unless we're sure we have to?
+   */
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
+  if(k) {
+    if((res = s_mp_pad(a, USED(a) + 1)) != MP_OKAY)
+      return res;
+
+    DIGIT(a, ia) = (mp_digit)k;
+  }
+#else
+  if (carry) {
+    if((res = s_mp_pad(a, lim + 1)) != MP_OKAY)
+      return res;
+
+    DIGIT(a, lim) = carry;
+  }
+#endif
+  s_mp_clamp(a);
+
+  return MP_OKAY;
+
+} /* end s_mp_add_offset() */
+
+/* }}} */
+
+/* {{{ s_mp_sub(a, b) */
+
+/* Compute a = |a| - |b|, assumes |a| >= |b|                              */
+mp_err   s_mp_sub(mp_int *a, const mp_int *b)  /* magnitude subtract      */
+{
+  mp_digit *pa, *pb, *limit;
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD)
+  mp_sword  w = 0;
+#else
+  mp_digit  d, diff, borrow = 0;
+#endif
+
+  /*
+    Subtract and propagate borrow.  Up to the precision of b, this
+    accounts for the digits of b; after that, we just make sure the
+    carries get to the right place.  This saves having to pad b out to
+    the precision of a just to make the loops work right...
+   */
+  pa = MP_DIGITS(a);
+  pb = MP_DIGITS(b);
+  limit = pb + MP_USED(b);
+  while (pb < limit) {
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD)
+    w = w + *pa - *pb++;
+    *pa++ = ACCUM(w);
+    w >>= MP_DIGIT_BIT;
+#else
+    d = *pa;
+    diff = d - *pb++;
+    d = (diff > d);				/* detect borrow */
+    if (borrow && --diff == MP_DIGIT_MAX)
+      ++d;
+    *pa++ = diff;
+    borrow = d;	
+#endif
+  }
+  limit = MP_DIGITS(a) + MP_USED(a);
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD)
+  while (w && pa < limit) {
+    w = w + *pa;
+    *pa++ = ACCUM(w);
+    w >>= MP_DIGIT_BIT;
+  }
+#else
+  while (borrow && pa < limit) {
+    d = *pa;
+    *pa++ = diff = d - borrow;
+    borrow = (diff > d);
+  }
+#endif
+
+  /* Clobber any leading zeroes we created    */
+  s_mp_clamp(a);
+
+  /* 
+     If there was a borrow out, then |b| > |a| in violation
+     of our input invariant.  We've already done the work,
+     but we'll at least complain about it...
+   */
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD)
+  return w ? MP_RANGE : MP_OKAY;
+#else
+  return borrow ? MP_RANGE : MP_OKAY;
+#endif
+} /* end s_mp_sub() */
+
+/* }}} */
+
+/* Compute c = |a| - |b|, assumes |a| >= |b| */ /* magnitude subtract      */
+mp_err   s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c)  
+{
+  mp_digit *pa, *pb, *pc;
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD)
+  mp_sword  w = 0;
+#else
+  mp_digit  d, diff, borrow = 0;
+#endif
+  int       ix, limit;
+  mp_err    res;
+
+  MP_SIGN(c) = MP_SIGN(a);
+
+  /* Make sure a has enough precision for the output value */
+  if (MP_OKAY != (res = s_mp_pad(c, MP_USED(a))))
+    return res;
+
+  /*
+    Subtract and propagate borrow.  Up to the precision of b, this
+    accounts for the digits of b; after that, we just make sure the
+    carries get to the right place.  This saves having to pad b out to
+    the precision of a just to make the loops work right...
+   */
+  pa = MP_DIGITS(a);
+  pb = MP_DIGITS(b);
+  pc = MP_DIGITS(c);
+  limit = MP_USED(b);
+  for (ix = 0; ix < limit; ++ix) {
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD)
+    w = w + *pa++ - *pb++;
+    *pc++ = ACCUM(w);
+    w >>= MP_DIGIT_BIT;
+#else
+    d = *pa++;
+    diff = d - *pb++;
+    d = (diff > d);
+    if (borrow && --diff == MP_DIGIT_MAX)
+      ++d;
+    *pc++ = diff;
+    borrow = d;
+#endif
+  }
+  for (limit = MP_USED(a); ix < limit; ++ix) {
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD)
+    w = w + *pa++;
+    *pc++ = ACCUM(w);
+    w >>= MP_DIGIT_BIT;
+#else
+    d = *pa++;
+    *pc++ = diff = d - borrow;
+    borrow = (diff > d);
+#endif
+  }
+
+  /* Clobber any leading zeroes we created    */
+  MP_USED(c) = ix;
+  s_mp_clamp(c);
+
+  /* 
+     If there was a borrow out, then |b| > |a| in violation
+     of our input invariant.  We've already done the work,
+     but we'll at least complain about it...
+   */
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD)
+  return w ? MP_RANGE : MP_OKAY;
+#else
+  return borrow ? MP_RANGE : MP_OKAY;
+#endif
+}
+/* {{{ s_mp_mul(a, b) */
+
+/* Compute a = |a| * |b|                                                  */
+mp_err   s_mp_mul(mp_int *a, const mp_int *b)
+{
+  return mp_mul(a, b, a);
+} /* end s_mp_mul() */
+
+/* }}} */
+
+#if defined(MP_USE_UINT_DIGIT) && defined(MP_USE_LONG_LONG_MULTIPLY)
+/* This trick works on Sparc V8 CPUs with the Workshop compilers. */
+#define MP_MUL_DxD(a, b, Phi, Plo) \
+  { unsigned long long product = (unsigned long long)a * b; \
+    Plo = (mp_digit)product; \
+    Phi = (mp_digit)(product >> MP_DIGIT_BIT); }
+#elif defined(OSF1)
+#define MP_MUL_DxD(a, b, Phi, Plo) \
+  { Plo = asm ("mulq %a0, %a1, %v0", a, b);\
+    Phi = asm ("umulh %a0, %a1, %v0", a, b); }
+#else
+#define MP_MUL_DxD(a, b, Phi, Plo) \
+  { mp_digit a0b1, a1b0; \
+    Plo = (a & MP_HALF_DIGIT_MAX) * (b & MP_HALF_DIGIT_MAX); \
+    Phi = (a >> MP_HALF_DIGIT_BIT) * (b >> MP_HALF_DIGIT_BIT); \
+    a0b1 = (a & MP_HALF_DIGIT_MAX) * (b >> MP_HALF_DIGIT_BIT); \
+    a1b0 = (a >> MP_HALF_DIGIT_BIT) * (b & MP_HALF_DIGIT_MAX); \
+    a1b0 += a0b1; \
+    Phi += a1b0 >> MP_HALF_DIGIT_BIT; \
+    if (a1b0 < a0b1)  \
+      Phi += MP_HALF_RADIX; \
+    a1b0 <<= MP_HALF_DIGIT_BIT; \
+    Plo += a1b0; \
+    if (Plo < a1b0) \
+      ++Phi; \
+  }
+#endif
+
+#if !defined(MP_ASSEMBLY_MULTIPLY)
+/* c = a * b */
+void s_mpv_mul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c)
+{
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD)
+  mp_digit   d = 0;
+
+  /* Inner product:  Digits of a */
+  while (a_len--) {
+    mp_word w = ((mp_word)b * *a++) + d;
+    *c++ = ACCUM(w);
+    d = CARRYOUT(w);
+  }
+  *c = d;
+#else
+  mp_digit carry = 0;
+  while (a_len--) {
+    mp_digit a_i = *a++;
+    mp_digit a0b0, a1b1;
+
+    MP_MUL_DxD(a_i, b, a1b1, a0b0);
+
+    a0b0 += carry;
+    if (a0b0 < carry)
+      ++a1b1;
+    *c++ = a0b0;
+    carry = a1b1;
+  }
+  *c = carry;
+#endif
+}
+
+/* c += a * b */
+void s_mpv_mul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, 
+			      mp_digit *c)
+{
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD)
+  mp_digit   d = 0;
+
+  /* Inner product:  Digits of a */
+  while (a_len--) {
+    mp_word w = ((mp_word)b * *a++) + *c + d;
+    *c++ = ACCUM(w);
+    d = CARRYOUT(w);
+  }
+  *c = d;
+#else
+  mp_digit carry = 0;
+  while (a_len--) {
+    mp_digit a_i = *a++;
+    mp_digit a0b0, a1b1;
+
+    MP_MUL_DxD(a_i, b, a1b1, a0b0);
+
+    a0b0 += carry;
+    if (a0b0 < carry)
+      ++a1b1;
+    a0b0 += a_i = *c;
+    if (a0b0 < a_i)
+      ++a1b1;
+    *c++ = a0b0;
+    carry = a1b1;
+  }
+  *c = carry;
+#endif
+}
+
+/* Presently, this is only used by the Montgomery arithmetic code. */
+/* c += a * b */
+void s_mpv_mul_d_add_prop(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c)
+{
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD)
+  mp_digit   d = 0;
+
+  /* Inner product:  Digits of a */
+  while (a_len--) {
+    mp_word w = ((mp_word)b * *a++) + *c + d;
+    *c++ = ACCUM(w);
+    d = CARRYOUT(w);
+  }
+
+  while (d) {
+    mp_word w = (mp_word)*c + d;
+    *c++ = ACCUM(w);
+    d = CARRYOUT(w);
+  }
+#else
+  mp_digit carry = 0;
+  while (a_len--) {
+    mp_digit a_i = *a++;
+    mp_digit a0b0, a1b1;
+
+    MP_MUL_DxD(a_i, b, a1b1, a0b0);
+
+    a0b0 += carry;
+    if (a0b0 < carry)
+      ++a1b1;
+
+    a0b0 += a_i = *c;
+    if (a0b0 < a_i)
+      ++a1b1;
+
+    *c++ = a0b0;
+    carry = a1b1;
+  }
+  while (carry) {
+    mp_digit c_i = *c;
+    carry += c_i;
+    *c++ = carry;
+    carry = carry < c_i;
+  }
+#endif
+}
+#endif
+
+#if defined(MP_USE_UINT_DIGIT) && defined(MP_USE_LONG_LONG_MULTIPLY)
+/* This trick works on Sparc V8 CPUs with the Workshop compilers. */
+#define MP_SQR_D(a, Phi, Plo) \
+  { unsigned long long square = (unsigned long long)a * a; \
+    Plo = (mp_digit)square; \
+    Phi = (mp_digit)(square >> MP_DIGIT_BIT); }
+#elif defined(OSF1)
+#define MP_SQR_D(a, Phi, Plo) \
+  { Plo = asm ("mulq  %a0, %a0, %v0", a);\
+    Phi = asm ("umulh %a0, %a0, %v0", a); }
+#else
+#define MP_SQR_D(a, Phi, Plo) \
+  { mp_digit Pmid; \
+    Plo  = (a  & MP_HALF_DIGIT_MAX) * (a  & MP_HALF_DIGIT_MAX); \
+    Phi  = (a >> MP_HALF_DIGIT_BIT) * (a >> MP_HALF_DIGIT_BIT); \
+    Pmid = (a  & MP_HALF_DIGIT_MAX) * (a >> MP_HALF_DIGIT_BIT); \
+    Phi += Pmid >> (MP_HALF_DIGIT_BIT - 1);  \
+    Pmid <<= (MP_HALF_DIGIT_BIT + 1);  \
+    Plo += Pmid;  \
+    if (Plo < Pmid)  \
+      ++Phi;  \
+  }
+#endif
+
+#if !defined(MP_ASSEMBLY_SQUARE)
+/* Add the squares of the digits of a to the digits of b. */
+void s_mpv_sqr_add_prop(const mp_digit *pa, mp_size a_len, mp_digit *ps)
+{
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD)
+  mp_word  w;
+  mp_digit d;
+  mp_size  ix;
+
+  w  = 0;
+#define ADD_SQUARE(n) \
+    d = pa[n]; \
+    w += (d * (mp_word)d) + ps[2*n]; \
+    ps[2*n] = ACCUM(w); \
+    w = (w >> DIGIT_BIT) + ps[2*n+1]; \
+    ps[2*n+1] = ACCUM(w); \
+    w = (w >> DIGIT_BIT)
+
+  for (ix = a_len; ix >= 4; ix -= 4) {
+    ADD_SQUARE(0);
+    ADD_SQUARE(1);
+    ADD_SQUARE(2);
+    ADD_SQUARE(3);
+    pa += 4;
+    ps += 8;
+  }
+  if (ix) {
+    ps += 2*ix;
+    pa += ix;
+    switch (ix) {
+    case 3: ADD_SQUARE(-3); /* FALLTHRU */
+    case 2: ADD_SQUARE(-2); /* FALLTHRU */
+    case 1: ADD_SQUARE(-1); /* FALLTHRU */
+    case 0: break;
+    }
+  }
+  while (w) {
+    w += *ps;
+    *ps++ = ACCUM(w);
+    w = (w >> DIGIT_BIT);
+  }
+#else
+  mp_digit carry = 0;
+  while (a_len--) {
+    mp_digit a_i = *pa++;
+    mp_digit a0a0, a1a1;
+
+    MP_SQR_D(a_i, a1a1, a0a0);
+
+    /* here a1a1 and a0a0 constitute a_i ** 2 */
+    a0a0 += carry;
+    if (a0a0 < carry)
+      ++a1a1;
+
+    /* now add to ps */
+    a0a0 += a_i = *ps;
+    if (a0a0 < a_i)
+      ++a1a1;
+    *ps++ = a0a0;
+    a1a1 += a_i = *ps;
+    carry = (a1a1 < a_i);
+    *ps++ = a1a1;
+  }
+  while (carry) {
+    mp_digit s_i = *ps;
+    carry += s_i;
+    *ps++ = carry;
+    carry = carry < s_i;
+  }
+#endif
+}
+#endif
+
+#if (defined(MP_NO_MP_WORD) || defined(MP_NO_DIV_WORD)) \
+&& !defined(MP_ASSEMBLY_DIV_2DX1D)
+/*
+** Divide 64-bit (Nhi,Nlo) by 32-bit divisor, which must be normalized 
+** so its high bit is 1.   This code is from NSPR.
+*/
+mp_err s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo, mp_digit divisor, 
+		       mp_digit *qp, mp_digit *rp)
+{
+    mp_digit d1, d0, q1, q0;
+    mp_digit r1, r0, m;
+
+    d1 = divisor >> MP_HALF_DIGIT_BIT;
+    d0 = divisor & MP_HALF_DIGIT_MAX;
+    r1 = Nhi % d1;
+    q1 = Nhi / d1;
+    m = q1 * d0;
+    r1 = (r1 << MP_HALF_DIGIT_BIT) | (Nlo >> MP_HALF_DIGIT_BIT);
+    if (r1 < m) {
+        q1--, r1 += divisor;
+        if (r1 >= divisor && r1 < m) {
+	    q1--, r1 += divisor;
+	}
+    }
+    r1 -= m;
+    r0 = r1 % d1;
+    q0 = r1 / d1;
+    m = q0 * d0;
+    r0 = (r0 << MP_HALF_DIGIT_BIT) | (Nlo & MP_HALF_DIGIT_MAX);
+    if (r0 < m) {
+        q0--, r0 += divisor;
+        if (r0 >= divisor && r0 < m) {
+	    q0--, r0 += divisor;
+	}
+    }
+    if (qp)
+	*qp = (q1 << MP_HALF_DIGIT_BIT) | q0;
+    if (rp)
+	*rp = r0 - m;
+    return MP_OKAY;
+}
+#endif
+
+#if MP_SQUARE
+/* {{{ s_mp_sqr(a) */
+
+mp_err   s_mp_sqr(mp_int *a)
+{
+  mp_err   res;
+  mp_int   tmp;
+
+  if((res = mp_init_size(&tmp, 2 * USED(a))) != MP_OKAY)
+    return res;
+  res = mp_sqr(a, &tmp);
+  if (res == MP_OKAY) {
+    s_mp_exch(&tmp, a);
+  }
+  mp_clear(&tmp);
+  return res;
+}
+
+/* }}} */
+#endif
+
+/* {{{ s_mp_div(a, b) */
+
+/*
+  s_mp_div(a, b)
+
+  Compute a = a / b and b = a mod b.  Assumes b > a.
+ */
+
+mp_err   s_mp_div(mp_int *rem, 	/* i: dividend, o: remainder */
+                  mp_int *div, 	/* i: divisor                */
+		  mp_int *quot)	/* i: 0;        o: quotient  */
+{
+  mp_int   part, t;
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD)
+  mp_word  q_msd;
+#else
+  mp_digit q_msd;
+#endif
+  mp_err   res;
+  mp_digit d;
+  mp_digit div_msd;
+  int      ix;
+
+  if(mp_cmp_z(div) == 0)
+    return MP_RANGE;
+
+  DIGITS(&t) = 0;
+  /* Shortcut if divisor is power of two */
+  if((ix = s_mp_ispow2(div)) >= 0) {
+    MP_CHECKOK( mp_copy(rem, quot) );
+    s_mp_div_2d(quot, (mp_digit)ix);
+    s_mp_mod_2d(rem,  (mp_digit)ix);
+
+    return MP_OKAY;
+  }
+
+  MP_SIGN(rem) = ZPOS;
+  MP_SIGN(div) = ZPOS;
+
+  /* A working temporary for division     */
+  MP_CHECKOK( mp_init_size(&t, MP_ALLOC(rem)));
+
+  /* Normalize to optimize guessing       */
+  MP_CHECKOK( s_mp_norm(rem, div, &d) );
+
+  part = *rem;
+
+  /* Perform the division itself...woo!   */
+  MP_USED(quot) = MP_ALLOC(quot);
+
+  /* Find a partial substring of rem which is at least div */
+  /* If we didn't find one, we're finished dividing    */
+  while (MP_USED(rem) > MP_USED(div) || s_mp_cmp(rem, div) >= 0) {
+    int i;
+    int unusedRem;
+
+    unusedRem = MP_USED(rem) - MP_USED(div);
+    MP_DIGITS(&part) = MP_DIGITS(rem) + unusedRem;
+    MP_ALLOC(&part)  = MP_ALLOC(rem)  - unusedRem;
+    MP_USED(&part)   = MP_USED(div);
+    if (s_mp_cmp(&part, div) < 0) {
+      -- unusedRem;
+#if MP_ARGCHK == 2
+      assert(unusedRem >= 0);
+#endif
+      -- MP_DIGITS(&part);
+      ++ MP_USED(&part);
+      ++ MP_ALLOC(&part);
+    }
+
+    /* Compute a guess for the next quotient digit       */
+    q_msd = MP_DIGIT(&part, MP_USED(&part) - 1);
+    div_msd = MP_DIGIT(div, MP_USED(div) - 1);
+    if (q_msd >= div_msd) {
+      q_msd = 1;
+    } else if (MP_USED(&part) > 1) {
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD)
+      q_msd = (q_msd << MP_DIGIT_BIT) | MP_DIGIT(&part, MP_USED(&part) - 2);
+      q_msd /= div_msd;
+      if (q_msd == RADIX)
+        --q_msd;
+#else
+      mp_digit r;
+      MP_CHECKOK( s_mpv_div_2dx1d(q_msd, MP_DIGIT(&part, MP_USED(&part) - 2), 
+				  div_msd, &q_msd, &r) );
+#endif
+    } else {
+      q_msd = 0;
+    }
+#if MP_ARGCHK == 2
+    assert(q_msd > 0); /* This case should never occur any more. */
+#endif
+    if (q_msd <= 0)
+      break;
+
+    /* See what that multiplies out to                   */
+    mp_copy(div, &t);
+    MP_CHECKOK( s_mp_mul_d(&t, (mp_digit)q_msd) );
+
+    /* 
+       If it's too big, back it off.  We should not have to do this
+       more than once, or, in rare cases, twice.  Knuth describes a
+       method by which this could be reduced to a maximum of once, but
+       I didn't implement that here.
+     * When using s_mpv_div_2dx1d, we may have to do this 3 times.
+     */
+    for (i = 4; s_mp_cmp(&t, &part) > 0 && i > 0; --i) {
+      --q_msd;
+      s_mp_sub(&t, div);	/* t -= div */
+    }
+    if (i < 0) {
+      res = MP_RANGE;
+      goto CLEANUP;
+    }
+
+    /* At this point, q_msd should be the right next digit   */
+    MP_CHECKOK( s_mp_sub(&part, &t) );	/* part -= t */
+    s_mp_clamp(rem);
+
+    /*
+      Include the digit in the quotient.  We allocated enough memory
+      for any quotient we could ever possibly get, so we should not
+      have to check for failures here
+     */
+    MP_DIGIT(quot, unusedRem) = (mp_digit)q_msd;
+  }
+
+  /* Denormalize remainder                */
+  if (d) {
+    s_mp_div_2d(rem, d);
+  }
+
+  s_mp_clamp(quot);
+
+CLEANUP:
+  mp_clear(&t);
+
+  return res;
+
+} /* end s_mp_div() */
+
+
+/* }}} */
+
+/* {{{ s_mp_2expt(a, k) */
+
+mp_err   s_mp_2expt(mp_int *a, mp_digit k)
+{
+  mp_err    res;
+  mp_size   dig, bit;
+
+  dig = k / DIGIT_BIT;
+  bit = k % DIGIT_BIT;
+
+  mp_zero(a);
+  if((res = s_mp_pad(a, dig + 1)) != MP_OKAY)
+    return res;
+  
+  DIGIT(a, dig) |= ((mp_digit)1 << bit);
+
+  return MP_OKAY;
+
+} /* end s_mp_2expt() */
+
+/* }}} */
+
+/* {{{ s_mp_reduce(x, m, mu) */
+
+/*
+  Compute Barrett reduction, x (mod m), given a precomputed value for
+  mu = b^2k / m, where b = RADIX and k = #digits(m).  This should be
+  faster than straight division, when many reductions by the same
+  value of m are required (such as in modular exponentiation).  This
+  can nearly halve the time required to do modular exponentiation,
+  as compared to using the full integer divide to reduce.
+
+  This algorithm was derived from the _Handbook of Applied
+  Cryptography_ by Menezes, Oorschot and VanStone, Ch. 14,
+  pp. 603-604.  
+ */
+
+mp_err   s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu)
+{
+  mp_int   q;
+  mp_err   res;
+
+  if((res = mp_init_copy(&q, x)) != MP_OKAY)
+    return res;
+
+  s_mp_rshd(&q, USED(m) - 1);  /* q1 = x / b^(k-1)  */
+  s_mp_mul(&q, mu);            /* q2 = q1 * mu      */
+  s_mp_rshd(&q, USED(m) + 1);  /* q3 = q2 / b^(k+1) */
+
+  /* x = x mod b^(k+1), quick (no division) */
+  s_mp_mod_2d(x, DIGIT_BIT * (USED(m) + 1));
+
+  /* q = q * m mod b^(k+1), quick (no division) */
+  s_mp_mul(&q, m);
+  s_mp_mod_2d(&q, DIGIT_BIT * (USED(m) + 1));
+
+  /* x = x - q */
+  if((res = mp_sub(x, &q, x)) != MP_OKAY)
+    goto CLEANUP;
+
+  /* If x < 0, add b^(k+1) to it */
+  if(mp_cmp_z(x) < 0) {
+    mp_set(&q, 1);
+    if((res = s_mp_lshd(&q, USED(m) + 1)) != MP_OKAY)
+      goto CLEANUP;
+    if((res = mp_add(x, &q, x)) != MP_OKAY)
+      goto CLEANUP;
+  }
+
+  /* Back off if it's too big */
+  while(mp_cmp(x, m) >= 0) {
+    if((res = s_mp_sub(x, m)) != MP_OKAY)
+      break;
+  }
+
+ CLEANUP:
+  mp_clear(&q);
+
+  return res;
+
+} /* end s_mp_reduce() */
+
+/* }}} */
+
+/* }}} */
+
+/* {{{ Primitive comparisons */
+
+/* {{{ s_mp_cmp(a, b) */
+
+/* Compare |a| <=> |b|, return 0 if equal, <0 if a<b, >0 if a>b           */
+int      s_mp_cmp(const mp_int *a, const mp_int *b)
+{
+  mp_size used_a = MP_USED(a);
+  {
+    mp_size used_b = MP_USED(b);
+
+    if (used_a > used_b)
+      goto IS_GT;
+    if (used_a < used_b)
+      goto IS_LT;
+  }
+  {
+    mp_digit *pa, *pb;
+    mp_digit da = 0, db = 0;
+
+#define CMP_AB(n) if ((da = pa[n]) != (db = pb[n])) goto done
+
+    pa = MP_DIGITS(a) + used_a;
+    pb = MP_DIGITS(b) + used_a;
+    while (used_a >= 4) {
+      pa     -= 4;
+      pb     -= 4;
+      used_a -= 4;
+      CMP_AB(3);
+      CMP_AB(2);
+      CMP_AB(1);
+      CMP_AB(0);
+    }
+    while (used_a-- > 0 && ((da = *--pa) == (db = *--pb))) 
+      /* do nothing */;
+done:
+    if (da > db)
+      goto IS_GT;
+    if (da < db) 
+      goto IS_LT;
+  }
+  return MP_EQ;
+IS_LT:
+  return MP_LT;
+IS_GT:
+  return MP_GT;
+} /* end s_mp_cmp() */
+
+/* }}} */
+
+/* {{{ s_mp_cmp_d(a, d) */
+
+/* Compare |a| <=> d, return 0 if equal, <0 if a<d, >0 if a>d             */
+int      s_mp_cmp_d(const mp_int *a, mp_digit d)
+{
+  if(USED(a) > 1)
+    return MP_GT;
+
+  if(DIGIT(a, 0) < d)
+    return MP_LT;
+  else if(DIGIT(a, 0) > d)
+    return MP_GT;
+  else
+    return MP_EQ;
+
+} /* end s_mp_cmp_d() */
+
+/* }}} */
+
+/* {{{ s_mp_ispow2(v) */
+
+/*
+  Returns -1 if the value is not a power of two; otherwise, it returns
+  k such that v = 2^k, i.e. lg(v).
+ */
+int      s_mp_ispow2(const mp_int *v)
+{
+  mp_digit d;
+  int      extra = 0, ix;
+
+  ix = MP_USED(v) - 1;
+  d = MP_DIGIT(v, ix); /* most significant digit of v */
+
+  extra = s_mp_ispow2d(d);
+  if (extra < 0 || ix == 0)
+    return extra;
+
+  while (--ix >= 0) {
+    if (DIGIT(v, ix) != 0)
+      return -1; /* not a power of two */
+    extra += MP_DIGIT_BIT;
+  }
+
+  return extra;
+
+} /* end s_mp_ispow2() */
+
+/* }}} */
+
+/* {{{ s_mp_ispow2d(d) */
+
+int      s_mp_ispow2d(mp_digit d)
+{
+  if ((d != 0) && ((d & (d-1)) == 0)) { /* d is a power of 2 */
+    int pow = 0;
+#if defined (MP_USE_UINT_DIGIT)
+    if (d & 0xffff0000U)
+      pow += 16;
+    if (d & 0xff00ff00U)
+      pow += 8;
+    if (d & 0xf0f0f0f0U)
+      pow += 4;
+    if (d & 0xccccccccU)
+      pow += 2;
+    if (d & 0xaaaaaaaaU)
+      pow += 1;
+#elif defined(MP_USE_LONG_LONG_DIGIT)
+    if (d & 0xffffffff00000000ULL)
+      pow += 32;
+    if (d & 0xffff0000ffff0000ULL)
+      pow += 16;
+    if (d & 0xff00ff00ff00ff00ULL)
+      pow += 8;
+    if (d & 0xf0f0f0f0f0f0f0f0ULL)
+      pow += 4;
+    if (d & 0xccccccccccccccccULL)
+      pow += 2;
+    if (d & 0xaaaaaaaaaaaaaaaaULL)
+      pow += 1;
+#elif defined(MP_USE_LONG_DIGIT)
+    if (d & 0xffffffff00000000UL)
+      pow += 32;
+    if (d & 0xffff0000ffff0000UL)
+      pow += 16;
+    if (d & 0xff00ff00ff00ff00UL)
+      pow += 8;
+    if (d & 0xf0f0f0f0f0f0f0f0UL)
+      pow += 4;
+    if (d & 0xccccccccccccccccUL)
+      pow += 2;
+    if (d & 0xaaaaaaaaaaaaaaaaUL)
+      pow += 1;
+#else
+#error "unknown type for mp_digit"
+#endif
+    return pow;
+  }
+  return -1;
+
+} /* end s_mp_ispow2d() */
+
+/* }}} */
+
+/* }}} */
+
+/* {{{ Primitive I/O helpers */
+
+/* {{{ s_mp_tovalue(ch, r) */
+
+/*
+  Convert the given character to its digit value, in the given radix.
+  If the given character is not understood in the given radix, -1 is
+  returned.  Otherwise the digit's numeric value is returned.
+
+  The results will be odd if you use a radix < 2 or > 62, you are
+  expected to know what you're up to.
+ */
+int      s_mp_tovalue(char ch, int r)
+{
+  int    val, xch;
+  
+  if(r > 36)
+    xch = ch;
+  else
+    xch = toupper(ch);
+
+  if(isdigit(xch))
+    val = xch - '0';
+  else if(isupper(xch))
+    val = xch - 'A' + 10;
+  else if(islower(xch))
+    val = xch - 'a' + 36;
+  else if(xch == '+')
+    val = 62;
+  else if(xch == '/')
+    val = 63;
+  else 
+    return -1;
+
+  if(val < 0 || val >= r)
+    return -1;
+
+  return val;
+
+} /* end s_mp_tovalue() */
+
+/* }}} */
+
+/* {{{ s_mp_todigit(val, r, low) */
+
+/*
+  Convert val to a radix-r digit, if possible.  If val is out of range
+  for r, returns zero.  Otherwise, returns an ASCII character denoting
+  the value in the given radix.
+
+  The results may be odd if you use a radix < 2 or > 64, you are
+  expected to know what you're doing.
+ */
+  
+char     s_mp_todigit(mp_digit val, int r, int low)
+{
+  char   ch;
+
+  if(val >= r)
+    return 0;
+
+  ch = s_dmap_1[val];
+
+  if(r <= 36 && low)
+    ch = tolower(ch);
+
+  return ch;
+
+} /* end s_mp_todigit() */
+
+/* }}} */
+
+/* {{{ s_mp_outlen(bits, radix) */
+
+/* 
+   Return an estimate for how long a string is needed to hold a radix
+   r representation of a number with 'bits' significant bits, plus an
+   extra for a zero terminator (assuming C style strings here)
+ */
+int      s_mp_outlen(int bits, int r)
+{
+  return (int)((double)bits * LOG_V_2(r) + 1.5) + 1;
+
+} /* end s_mp_outlen() */
+
+/* }}} */
+
+/* }}} */
+
+/* {{{ mp_read_unsigned_octets(mp, str, len) */
+/* mp_read_unsigned_octets(mp, str, len)
+   Read in a raw value (base 256) into the given mp_int
+   No sign bit, number is positive.  Leading zeros ignored.
+ */
+
+mp_err  
+mp_read_unsigned_octets(mp_int *mp, const unsigned char *str, mp_size len)
+{
+  int            count;
+  mp_err         res;
+  mp_digit       d;
+
+  ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG);
+
+  mp_zero(mp);
+
+  count = len % sizeof(mp_digit);
+  if (count) {
+    for (d = 0; count-- > 0; --len) {
+      d = (d << 8) | *str++;
+    }
+    MP_DIGIT(mp, 0) = d;
+  }
+
+  /* Read the rest of the digits */
+  for(; len > 0; len -= sizeof(mp_digit)) {
+    for (d = 0, count = sizeof(mp_digit); count > 0; --count) {
+      d = (d << 8) | *str++;
+    }
+    if (MP_EQ == mp_cmp_z(mp)) {
+      if (!d)
+	continue;
+    } else {
+      if((res = s_mp_lshd(mp, 1)) != MP_OKAY)
+	return res;
+    }
+    MP_DIGIT(mp, 0) = d;
+  }
+  return MP_OKAY;
+} /* end mp_read_unsigned_octets() */
+/* }}} */
+
+/* {{{ mp_unsigned_octet_size(mp) */
+int    
+mp_unsigned_octet_size(const mp_int *mp)
+{
+  int  bytes;
+  int  ix;
+  mp_digit  d = 0;
+
+  ARGCHK(mp != NULL, MP_BADARG);
+  ARGCHK(MP_ZPOS == SIGN(mp), MP_BADARG);
+
+  bytes = (USED(mp) * sizeof(mp_digit));
+
+  /* subtract leading zeros. */
+  /* Iterate over each digit... */
+  for(ix = USED(mp) - 1; ix >= 0; ix--) {
+    d = DIGIT(mp, ix);
+    if (d) 
+	break;
+    bytes -= sizeof(d);
+  }
+  if (!bytes)
+    return 1;
+
+  /* Have MSD, check digit bytes, high order first */
+  for(ix = sizeof(mp_digit) - 1; ix >= 0; ix--) {
+    unsigned char x = (unsigned char)(d >> (ix * CHAR_BIT));
+    if (x) 
+	break;
+    --bytes;
+  }
+  return bytes;
+} /* end mp_unsigned_octet_size() */
+/* }}} */
+
+/* {{{ mp_to_unsigned_octets(mp, str) */
+/* output a buffer of big endian octets no longer than specified. */
+mp_err 
+mp_to_unsigned_octets(const mp_int *mp, unsigned char *str, mp_size maxlen)
+{
+  int  ix, pos = 0;
+  int  bytes;
+
+  ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG);
+
+  bytes = mp_unsigned_octet_size(mp);
+  ARGCHK(bytes >= 0 && bytes <= maxlen, MP_BADARG);
+
+  /* Iterate over each digit... */
+  for(ix = USED(mp) - 1; ix >= 0; ix--) {
+    mp_digit  d = DIGIT(mp, ix);
+    int       jx;
+
+    /* Unpack digit bytes, high order first */
+    for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) {
+      unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT));
+      if (!pos && !x)	/* suppress leading zeros */
+	continue;
+      str[pos++] = x;
+    }
+  }
+  if (!pos)
+    str[pos++] = 0;
+  return pos;
+} /* end mp_to_unsigned_octets() */
+/* }}} */
+
+/* {{{ mp_to_signed_octets(mp, str) */
+/* output a buffer of big endian octets no longer than specified. */
+mp_err 
+mp_to_signed_octets(const mp_int *mp, unsigned char *str, mp_size maxlen)
+{
+  int  ix, pos = 0;
+  int  bytes;
+
+  ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG);
+
+  bytes = mp_unsigned_octet_size(mp);
+  ARGCHK(bytes >= 0 && bytes <= maxlen, MP_BADARG);
+
+  /* Iterate over each digit... */
+  for(ix = USED(mp) - 1; ix >= 0; ix--) {
+    mp_digit  d = DIGIT(mp, ix);
+    int       jx;
+
+    /* Unpack digit bytes, high order first */
+    for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) {
+      unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT));
+      if (!pos) {
+	if (!x)		/* suppress leading zeros */
+	  continue;
+	if (x & 0x80) { /* add one leading zero to make output positive.  */
+	  ARGCHK(bytes + 1 <= maxlen, MP_BADARG);
+	  if (bytes + 1 > maxlen)
+	    return MP_BADARG;
+	  str[pos++] = 0;
+	}
+      }
+      str[pos++] = x;
+    }
+  }
+  if (!pos)
+    str[pos++] = 0;
+  return pos;
+} /* end mp_to_signed_octets() */
+/* }}} */
+
+/* {{{ mp_to_fixlen_octets(mp, str) */
+/* output a buffer of big endian octets exactly as long as requested. */
+mp_err 
+mp_to_fixlen_octets(const mp_int *mp, unsigned char *str, mp_size length)
+{
+  int  ix, pos = 0;
+  int  bytes;
+
+  ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG);
+
+  bytes = mp_unsigned_octet_size(mp);
+  ARGCHK(bytes >= 0 && bytes <= length, MP_BADARG);
+
+  /* place any needed leading zeros */
+  for (;length > bytes; --length) {
+	*str++ = 0;
+  }
+
+  /* Iterate over each digit... */
+  for(ix = USED(mp) - 1; ix >= 0; ix--) {
+    mp_digit  d = DIGIT(mp, ix);
+    int       jx;
+
+    /* Unpack digit bytes, high order first */
+    for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) {
+      unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT));
+      if (!pos && !x)	/* suppress leading zeros */
+	continue;
+      str[pos++] = x;
+    }
+  }
+  if (!pos)
+    str[pos++] = 0;
+  return MP_OKAY;
+} /* end mp_to_fixlen_octets() */
+/* }}} */
+
+
+/*------------------------------------------------------------------------*/
+/* HERE THERE BE DRAGONS                                                  */
This site is hosted by Intevation GmbH (Datenschutzerklärung und Impressum | Privacy Policy and Imprint)