diff nss/lib/freebl/mpi/mpmontg.c @ 0:1e5118fa0cb1

This is NSS with a Cmake Buildsyste To compile a static NSS library for Windows we've used the Chromium-NSS fork and added a Cmake buildsystem to compile it statically for Windows. See README.chromium for chromium changes and README.trustbridge for our modifications.
author Andre Heinecke <andre.heinecke@intevation.de>
date Mon, 28 Jul 2014 10:47:06 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/nss/lib/freebl/mpi/mpmontg.c	Mon Jul 28 10:47:06 2014 +0200
@@ -0,0 +1,1173 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+/* This file implements moduluar exponentiation using Montgomery's
+ * method for modular reduction.  This file implements the method
+ * described as "Improvement 2" in the paper "A Cryptogrpahic Library for
+ * the Motorola DSP56000" by Stephen R. Dusse' and Burton S. Kaliski Jr.
+ * published in "Advances in Cryptology: Proceedings of EUROCRYPT '90"
+ * "Lecture Notes in Computer Science" volume 473, 1991, pg 230-244,
+ * published by Springer Verlag.
+ */
+
+#define MP_USING_CACHE_SAFE_MOD_EXP 1 
+#include <string.h>
+#include "mpi-priv.h"
+#include "mplogic.h"
+#include "mpprime.h"
+#ifdef MP_USING_MONT_MULF
+#include "montmulf.h"
+#endif
+#include <stddef.h> /* ptrdiff_t */
+
+/* if MP_CHAR_STORE_SLOW is defined, we  */
+/* need to know endianness of this platform. */
+#ifdef MP_CHAR_STORE_SLOW
+#if !defined(MP_IS_BIG_ENDIAN) && !defined(MP_IS_LITTLE_ENDIAN)
+#error "You must define MP_IS_BIG_ENDIAN or MP_IS_LITTLE_ENDIAN\n" \
+       "  if you define MP_CHAR_STORE_SLOW."
+#endif
+#endif
+
+#define STATIC
+
+#define MAX_ODD_INTS    32   /* 2 ** (WINDOW_BITS - 1) */
+
+/*! computes T = REDC(T), 2^b == R 
+    \param T < RN
+*/
+mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm)
+{
+  mp_err res;
+  mp_size i;
+
+  i = (MP_USED(&mmm->N) << 1) + 1;
+  MP_CHECKOK( s_mp_pad(T, i) );
+  for (i = 0; i < MP_USED(&mmm->N); ++i ) {
+    mp_digit m_i = MP_DIGIT(T, i) * mmm->n0prime;
+    /* T += N * m_i * (MP_RADIX ** i); */
+    MP_CHECKOK( s_mp_mul_d_add_offset(&mmm->N, m_i, T, i) );
+  }
+  s_mp_clamp(T);
+
+  /* T /= R */
+  s_mp_rshd( T, MP_USED(&mmm->N) );
+
+  if ((res = s_mp_cmp(T, &mmm->N)) >= 0) {
+    /* T = T - N */
+    MP_CHECKOK( s_mp_sub(T, &mmm->N) );
+#ifdef DEBUG
+    if ((res = mp_cmp(T, &mmm->N)) >= 0) {
+      res = MP_UNDEF;
+      goto CLEANUP;
+    }
+#endif
+  }
+  res = MP_OKAY;
+CLEANUP:
+  return res;
+}
+
+#if !defined(MP_MONT_USE_MP_MUL)
+
+/*! c <- REDC( a * b ) mod N
+    \param a < N  i.e. "reduced"
+    \param b < N  i.e. "reduced"
+    \param mmm modulus N and n0' of N
+*/
+mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c, 
+	           mp_mont_modulus *mmm)
+{
+  mp_digit *pb;
+  mp_digit m_i;
+  mp_err   res;
+  mp_size  ib; /* "index b": index of current digit of B */
+  mp_size  useda, usedb;
+
+  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
+
+  if (MP_USED(a) < MP_USED(b)) {
+    const mp_int *xch = b;	/* switch a and b, to do fewer outer loops */
+    b = a;
+    a = xch;
+  }
+
+  MP_USED(c) = 1; MP_DIGIT(c, 0) = 0;
+  ib = (MP_USED(&mmm->N) << 1) + 1;
+  if((res = s_mp_pad(c, ib)) != MP_OKAY)
+    goto CLEANUP;
+
+  useda = MP_USED(a);
+  pb = MP_DIGITS(b);
+  s_mpv_mul_d(MP_DIGITS(a), useda, *pb++, MP_DIGITS(c));
+  s_mp_setz(MP_DIGITS(c) + useda + 1, ib - (useda + 1));
+  m_i = MP_DIGIT(c, 0) * mmm->n0prime;
+  s_mp_mul_d_add_offset(&mmm->N, m_i, c, 0);
+
+  /* Outer loop:  Digits of b */
+  usedb = MP_USED(b);
+  for (ib = 1; ib < usedb; ib++) {
+    mp_digit b_i    = *pb++;
+
+    /* Inner product:  Digits of a */
+    if (b_i)
+      s_mpv_mul_d_add_prop(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib);
+    m_i = MP_DIGIT(c, ib) * mmm->n0prime;
+    s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
+  }
+  if (usedb < MP_USED(&mmm->N)) {
+    for (usedb = MP_USED(&mmm->N); ib < usedb; ++ib ) {
+      m_i = MP_DIGIT(c, ib) * mmm->n0prime;
+      s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
+    }
+  }
+  s_mp_clamp(c);
+  s_mp_rshd( c, MP_USED(&mmm->N) ); /* c /= R */
+  if (s_mp_cmp(c, &mmm->N) >= 0) {
+    MP_CHECKOK( s_mp_sub(c, &mmm->N) );
+  }
+  res = MP_OKAY;
+
+CLEANUP:
+  return res;
+}
+#endif
+
+STATIC
+mp_err s_mp_to_mont(const mp_int *x, mp_mont_modulus *mmm, mp_int *xMont)
+{
+  mp_err res;
+
+  /* xMont = x * R mod N   where  N is modulus */
+  MP_CHECKOK( mp_copy( x, xMont ) );
+  MP_CHECKOK( s_mp_lshd( xMont, MP_USED(&mmm->N) ) );	/* xMont = x << b */
+  MP_CHECKOK( mp_div(xMont, &mmm->N, 0, xMont) );	/*         mod N */
+CLEANUP:
+  return res;
+}
+
+#ifdef MP_USING_MONT_MULF
+
+/* the floating point multiply is already cache safe,
+ * don't turn on cache safe unless we specifically
+ * force it */
+#ifndef MP_FORCE_CACHE_SAFE
+#undef MP_USING_CACHE_SAFE_MOD_EXP
+#endif
+
+unsigned int mp_using_mont_mulf = 1;
+
+/* computes montgomery square of the integer in mResult */
+#define SQR \
+  conv_i32_to_d32_and_d16(dm1, d16Tmp, mResult, nLen); \
+  mont_mulf_noconv(mResult, dm1, d16Tmp, \
+		   dTmp, dn, MP_DIGITS(modulus), nLen, dn0)
+
+/* computes montgomery product of x and the integer in mResult */
+#define MUL(x) \
+  conv_i32_to_d32(dm1, mResult, nLen); \
+  mont_mulf_noconv(mResult, dm1, oddPowers[x], \
+		   dTmp, dn, MP_DIGITS(modulus), nLen, dn0)
+
+/* Do modular exponentiation using floating point multiply code. */
+mp_err mp_exptmod_f(const mp_int *   montBase, 
+                    const mp_int *   exponent, 
+		    const mp_int *   modulus, 
+		    mp_int *         result, 
+		    mp_mont_modulus *mmm, 
+		    int              nLen, 
+		    mp_size          bits_in_exponent, 
+		    mp_size          window_bits,
+		    mp_size          odd_ints)
+{
+  mp_digit *mResult;
+  double   *dBuf = 0, *dm1, *dn, *dSqr, *d16Tmp, *dTmp;
+  double    dn0;
+  mp_size   i;
+  mp_err    res;
+  int       expOff;
+  int       dSize = 0, oddPowSize, dTmpSize;
+  mp_int    accum1;
+  double   *oddPowers[MAX_ODD_INTS];
+
+  /* function for computing n0prime only works if n0 is odd */
+
+  MP_DIGITS(&accum1) = 0;
+
+  for (i = 0; i < MAX_ODD_INTS; ++i)
+    oddPowers[i] = 0;
+
+  MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
+
+  mp_set(&accum1, 1);
+  MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
+  MP_CHECKOK( s_mp_pad(&accum1, nLen) );
+
+  oddPowSize = 2 * nLen + 1;
+  dTmpSize   = 2 * oddPowSize;
+  dSize = sizeof(double) * (nLen * 4 + 1 + 
+			    ((odd_ints + 1) * oddPowSize) + dTmpSize);
+  dBuf   = (double *)malloc(dSize);
+  dm1    = dBuf;		/* array of d32 */
+  dn     = dBuf   + nLen;	/* array of d32 */
+  dSqr   = dn     + nLen;    	/* array of d32 */
+  d16Tmp = dSqr   + nLen;	/* array of d16 */
+  dTmp   = d16Tmp + oddPowSize;
+
+  for (i = 0; i < odd_ints; ++i) {
+      oddPowers[i] = dTmp;
+      dTmp += oddPowSize;
+  }
+  mResult = (mp_digit *)(dTmp + dTmpSize);	/* size is nLen + 1 */
+
+  /* Make dn and dn0 */
+  conv_i32_to_d32(dn, MP_DIGITS(modulus), nLen);
+  dn0 = (double)(mmm->n0prime & 0xffff);
+
+  /* Make dSqr */
+  conv_i32_to_d32_and_d16(dm1, oddPowers[0], MP_DIGITS(montBase), nLen);
+  mont_mulf_noconv(mResult, dm1, oddPowers[0], 
+		   dTmp, dn, MP_DIGITS(modulus), nLen, dn0);
+  conv_i32_to_d32(dSqr, mResult, nLen);
+
+  for (i = 1; i < odd_ints; ++i) {
+    mont_mulf_noconv(mResult, dSqr, oddPowers[i - 1], 
+		     dTmp, dn, MP_DIGITS(modulus), nLen, dn0);
+    conv_i32_to_d16(oddPowers[i], mResult, nLen);
+  }
+
+  s_mp_copy(MP_DIGITS(&accum1), mResult, nLen); /* from, to, len */
+
+  for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) {
+    mp_size smallExp;
+    MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
+    smallExp = (mp_size)res;
+
+    if (window_bits == 1) {
+      if (!smallExp) {
+	SQR;
+      } else if (smallExp & 1) {
+	SQR; MUL(0); 
+      } else {
+	abort();
+      }
+    } else if (window_bits == 4) {
+      if (!smallExp) {
+	SQR; SQR; SQR; SQR;
+      } else if (smallExp & 1) {
+	SQR; SQR; SQR; SQR; MUL(smallExp/2); 
+      } else if (smallExp & 2) {
+	SQR; SQR; SQR; MUL(smallExp/4); SQR; 
+      } else if (smallExp & 4) {
+	SQR; SQR; MUL(smallExp/8); SQR; SQR; 
+      } else if (smallExp & 8) {
+	SQR; MUL(smallExp/16); SQR; SQR; SQR; 
+      } else {
+	abort();
+      }
+    } else if (window_bits == 5) {
+      if (!smallExp) {
+	SQR; SQR; SQR; SQR; SQR; 
+      } else if (smallExp & 1) {
+	SQR; SQR; SQR; SQR; SQR; MUL(smallExp/2);
+      } else if (smallExp & 2) {
+	SQR; SQR; SQR; SQR; MUL(smallExp/4); SQR;
+      } else if (smallExp & 4) {
+	SQR; SQR; SQR; MUL(smallExp/8); SQR; SQR;
+      } else if (smallExp & 8) {
+	SQR; SQR; MUL(smallExp/16); SQR; SQR; SQR;
+      } else if (smallExp & 0x10) {
+	SQR; MUL(smallExp/32); SQR; SQR; SQR; SQR;
+      } else {
+	abort();
+      }
+    } else if (window_bits == 6) {
+      if (!smallExp) {
+	SQR; SQR; SQR; SQR; SQR; SQR;
+      } else if (smallExp & 1) {
+	SQR; SQR; SQR; SQR; SQR; SQR; MUL(smallExp/2); 
+      } else if (smallExp & 2) {
+	SQR; SQR; SQR; SQR; SQR; MUL(smallExp/4); SQR; 
+      } else if (smallExp & 4) {
+	SQR; SQR; SQR; SQR; MUL(smallExp/8); SQR; SQR; 
+      } else if (smallExp & 8) {
+	SQR; SQR; SQR; MUL(smallExp/16); SQR; SQR; SQR; 
+      } else if (smallExp & 0x10) {
+	SQR; SQR; MUL(smallExp/32); SQR; SQR; SQR; SQR; 
+      } else if (smallExp & 0x20) {
+	SQR; MUL(smallExp/64); SQR; SQR; SQR; SQR; SQR; 
+      } else {
+	abort();
+      }
+    } else {
+      abort();
+    }
+  }
+
+  s_mp_copy(mResult, MP_DIGITS(&accum1), nLen); /* from, to, len */
+
+  res = s_mp_redc(&accum1, mmm);
+  mp_exch(&accum1, result);
+
+CLEANUP:
+  mp_clear(&accum1);
+  if (dBuf) {
+    if (dSize)
+      memset(dBuf, 0, dSize);
+    free(dBuf);
+  }
+
+  return res;
+}
+#undef SQR
+#undef MUL
+#endif
+
+#define SQR(a,b) \
+  MP_CHECKOK( mp_sqr(a, b) );\
+  MP_CHECKOK( s_mp_redc(b, mmm) )
+
+#if defined(MP_MONT_USE_MP_MUL)
+#define MUL(x,a,b) \
+  MP_CHECKOK( mp_mul(a, oddPowers + (x), b) ); \
+  MP_CHECKOK( s_mp_redc(b, mmm) ) 
+#else
+#define MUL(x,a,b) \
+  MP_CHECKOK( s_mp_mul_mont(a, oddPowers + (x), b, mmm) )
+#endif
+
+#define SWAPPA ptmp = pa1; pa1 = pa2; pa2 = ptmp
+
+/* Do modular exponentiation using integer multiply code. */
+mp_err mp_exptmod_i(const mp_int *   montBase, 
+                    const mp_int *   exponent, 
+		    const mp_int *   modulus, 
+		    mp_int *         result, 
+		    mp_mont_modulus *mmm, 
+		    int              nLen, 
+		    mp_size          bits_in_exponent, 
+		    mp_size          window_bits,
+		    mp_size          odd_ints)
+{
+  mp_int *pa1, *pa2, *ptmp;
+  mp_size i;
+  mp_err  res;
+  int     expOff;
+  mp_int  accum1, accum2, power2, oddPowers[MAX_ODD_INTS];
+
+  /* power2 = base ** 2; oddPowers[i] = base ** (2*i + 1); */
+  /* oddPowers[i] = base ** (2*i + 1); */
+
+  MP_DIGITS(&accum1) = 0;
+  MP_DIGITS(&accum2) = 0;
+  MP_DIGITS(&power2) = 0;
+  for (i = 0; i < MAX_ODD_INTS; ++i) {
+    MP_DIGITS(oddPowers + i) = 0;
+  }
+
+  MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
+  MP_CHECKOK( mp_init_size(&accum2, 3 * nLen + 2) );
+
+  MP_CHECKOK( mp_init_copy(&oddPowers[0], montBase) );
+
+  mp_init_size(&power2, nLen + 2 * MP_USED(montBase) + 2);
+  MP_CHECKOK( mp_sqr(montBase, &power2) );	/* power2 = montBase ** 2 */
+  MP_CHECKOK( s_mp_redc(&power2, mmm) );
+
+  for (i = 1; i < odd_ints; ++i) {
+    mp_init_size(oddPowers + i, nLen + 2 * MP_USED(&power2) + 2);
+    MP_CHECKOK( mp_mul(oddPowers + (i - 1), &power2, oddPowers + i) );
+    MP_CHECKOK( s_mp_redc(oddPowers + i, mmm) );
+  }
+
+  /* set accumulator to montgomery residue of 1 */
+  mp_set(&accum1, 1);
+  MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
+  pa1 = &accum1;
+  pa2 = &accum2;
+
+  for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) {
+    mp_size smallExp;
+    MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
+    smallExp = (mp_size)res;
+
+    if (window_bits == 1) {
+      if (!smallExp) {
+	SQR(pa1,pa2); SWAPPA;
+      } else if (smallExp & 1) {
+	SQR(pa1,pa2); MUL(0,pa2,pa1);
+      } else {
+	abort();
+      }
+    } else if (window_bits == 4) {
+      if (!smallExp) {
+	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+      } else if (smallExp & 1) {
+	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); 
+	MUL(smallExp/2, pa1,pa2); SWAPPA;
+      } else if (smallExp & 2) {
+	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); 
+	MUL(smallExp/4,pa2,pa1); SQR(pa1,pa2); SWAPPA;
+      } else if (smallExp & 4) {
+	SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/8,pa1,pa2); 
+	SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
+      } else if (smallExp & 8) {
+	SQR(pa1,pa2); MUL(smallExp/16,pa2,pa1); SQR(pa1,pa2); 
+	SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
+      } else {
+	abort();
+      }
+    } else if (window_bits == 5) {
+      if (!smallExp) {
+	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); 
+	SQR(pa1,pa2); SWAPPA;
+      } else if (smallExp & 1) {
+	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); 
+	SQR(pa1,pa2); MUL(smallExp/2,pa2,pa1);
+      } else if (smallExp & 2) {
+	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); 
+	MUL(smallExp/4,pa1,pa2); SQR(pa2,pa1);
+      } else if (smallExp & 4) {
+	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); 
+	MUL(smallExp/8,pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+      } else if (smallExp & 8) {
+	SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/16,pa1,pa2); 
+	SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+      } else if (smallExp & 0x10) {
+	SQR(pa1,pa2); MUL(smallExp/32,pa2,pa1); SQR(pa1,pa2); 
+	SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+      } else {
+	abort();
+      }
+    } else if (window_bits == 6) {
+      if (!smallExp) {
+	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); 
+	SQR(pa1,pa2); SQR(pa2,pa1);
+      } else if (smallExp & 1) {
+	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); 
+	SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/2,pa1,pa2); SWAPPA;
+      } else if (smallExp & 2) {
+	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); 
+	SQR(pa1,pa2); MUL(smallExp/4,pa2,pa1); SQR(pa1,pa2); SWAPPA;
+      } else if (smallExp & 4) {
+	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); 
+	MUL(smallExp/8,pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
+      } else if (smallExp & 8) {
+	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); 
+	MUL(smallExp/16,pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); 
+	SQR(pa1,pa2); SWAPPA;
+      } else if (smallExp & 0x10) {
+	SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/32,pa1,pa2); 
+	SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
+      } else if (smallExp & 0x20) {
+	SQR(pa1,pa2); MUL(smallExp/64,pa2,pa1); SQR(pa1,pa2); 
+	SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
+      } else {
+	abort();
+      }
+    } else {
+      abort();
+    }
+  }
+
+  res = s_mp_redc(pa1, mmm);
+  mp_exch(pa1, result);
+
+CLEANUP:
+  mp_clear(&accum1);
+  mp_clear(&accum2);
+  mp_clear(&power2);
+  for (i = 0; i < odd_ints; ++i) {
+    mp_clear(oddPowers + i);
+  }
+  return res;
+}
+#undef SQR
+#undef MUL
+
+#ifdef MP_USING_CACHE_SAFE_MOD_EXP
+unsigned int mp_using_cache_safe_exp = 1;
+#endif
+
+mp_err mp_set_safe_modexp(int value) 
+{
+#ifdef MP_USING_CACHE_SAFE_MOD_EXP
+ mp_using_cache_safe_exp = value;
+ return MP_OKAY;
+#else
+ if (value == 0) {
+   return MP_OKAY;
+ }
+ return MP_BADARG;
+#endif
+}
+
+#ifdef MP_USING_CACHE_SAFE_MOD_EXP
+#define WEAVE_WORD_SIZE 4
+
+#ifndef MP_CHAR_STORE_SLOW
+/*
+ * mpi_to_weave takes an array of bignums, a matrix in which each bignum 
+ * occupies all the columns of a row, and transposes it into a matrix in 
+ * which each bignum occupies a column of every row.  The first row of the
+ * input matrix becomes the first column of the output matrix.  The n'th
+ * row of input becomes the n'th column of output.  The input data is said
+ * to be "interleaved" or "woven" into the output matrix.
+ *
+ * The array of bignums is left in this woven form.  Each time a single
+ * bignum value is needed, it is recreated by fetching the n'th column, 
+ * forming a single row which is the new bignum.
+ *
+ * The purpose of this interleaving is make it impossible to determine which
+ * of the bignums is being used in any one operation by examining the pattern
+ * of cache misses.
+ *
+ * The weaving function does not transpose the entire input matrix in one call.
+ * It transposes 4 rows of mp_ints into their respective columns of output.
+ *
+ * There are two different implementations of the weaving and unweaving code
+ * in this file.  One uses byte loads and stores.  The second uses loads and
+ * stores of mp_weave_word size values.  The weaved forms of these two 
+ * implementations differ.  Consequently, each one has its own explanation.
+ *
+ * Here is the explanation for the byte-at-a-time implementation.
+ *
+ * This implementation treats each mp_int bignum as an array of bytes, 
+ * rather than as an array of mp_digits.  It stores those bytes as a 
+ * column of bytes in the output matrix.  It doesn't care if the machine
+ * uses big-endian or little-endian byte ordering within mp_digits.
+ * The first byte of the mp_digit array becomes the first byte in the output
+ * column, regardless of whether that byte is the MSB or LSB of the mp_digit.
+ *
+ * "bignums" is an array of mp_ints.
+ * It points to four rows, four mp_ints, a subset of a larger array of mp_ints.
+ *
+ * "weaved" is the weaved output matrix. 
+ * The first byte of bignums[0] is stored in weaved[0].
+ * 
+ * "nBignums" is the total number of bignums in the array of which "bignums" 
+ * is a part.  
+ *
+ * "nDigits" is the size in mp_digits of each mp_int in the "bignums" array. 
+ * mp_ints that use less than nDigits digits are logically padded with zeros 
+ * while being stored in the weaved array.
+ */
+mp_err mpi_to_weave(const mp_int  *bignums, 
+                    unsigned char *weaved, 
+		    mp_size nDigits,  /* in each mp_int of input */
+		    mp_size nBignums) /* in the entire source array */
+{
+  mp_size i;
+  unsigned char * endDest = weaved + (nDigits * nBignums * sizeof(mp_digit));
+
+  for (i=0; i < WEAVE_WORD_SIZE; i++) {
+    mp_size used = MP_USED(&bignums[i]);
+    unsigned char *pSrc   = (unsigned char *)MP_DIGITS(&bignums[i]);
+    unsigned char *endSrc = pSrc + (used * sizeof(mp_digit));
+    unsigned char *pDest  = weaved + i;
+
+    ARGCHK(MP_SIGN(&bignums[i]) == MP_ZPOS, MP_BADARG);
+    ARGCHK(used <= nDigits, MP_BADARG);
+
+    for (; pSrc < endSrc; pSrc++) {
+      *pDest = *pSrc;
+      pDest += nBignums;
+    }
+    while (pDest < endDest) {
+      *pDest = 0;
+      pDest += nBignums;
+    }
+  }
+
+  return MP_OKAY;
+}
+
+/* Reverse the operation above for one mp_int.
+ * Reconstruct one mp_int from its column in the weaved array.
+ * "pSrc" points to the offset into the weave array of the bignum we 
+ * are going to reconstruct.
+ */
+mp_err weave_to_mpi(mp_int *a,                /* output, result */
+                    const unsigned char *pSrc, /* input, byte matrix */
+		    mp_size nDigits,          /* per mp_int output */
+		    mp_size nBignums)         /* bignums in weaved matrix */
+{
+  unsigned char *pDest   = (unsigned char *)MP_DIGITS(a);
+  unsigned char *endDest = pDest + (nDigits * sizeof(mp_digit));
+
+  MP_SIGN(a) = MP_ZPOS;
+  MP_USED(a) = nDigits;
+
+  for (; pDest < endDest; pSrc += nBignums, pDest++) {
+    *pDest = *pSrc;
+  }
+  s_mp_clamp(a);
+  return MP_OKAY;
+}
+
+#else
+
+/* Need a primitive that we know is 32 bits long... */
+/* this is true on all modern processors we know of today*/
+typedef unsigned int mp_weave_word;
+
+/*
+ * on some platforms character stores into memory is very expensive since they
+ * generate a read/modify/write operation on the bus. On those platforms
+ * we need to do integer writes to the bus. Because of some unrolled code,
+ * in this current code the size of mp_weave_word must be four. The code that
+ * makes this assumption explicity is called out. (on some platforms a write
+ * of 4 bytes still requires a single read-modify-write operation.
+ *
+ * This function is takes the identical parameters as the function above, 
+ * however it lays out the final array differently. Where the previous function
+ * treats the mpi_int as an byte array, this function treats it as an array of
+ * mp_digits where each digit is stored in big endian order.
+ * 
+ * since we need to interleave on a byte by byte basis, we need to collect 
+ * several mpi structures together into a single PRUint32 before we write. We
+ * also need to make sure the PRUint32 is arranged so that the first value of
+ * the first array winds up in b[0]. This means construction of that PRUint32
+ * is endian specific (even though the layout of the mp_digits in the array 
+ * is always big endian).
+ *
+ * The final data is stored as follows :
+ *
+ * Our same logical array p array, m is sizeof(mp_digit),
+ * N is still count and n is now b_size. If we define p[i].digit[j]0 as the 
+ * most significant byte of the word p[i].digit[j], p[i].digit[j]1 as 
+ * the next most significant byte of p[i].digit[j], ...  and p[i].digit[j]m-1
+ * is the least significant byte. 
+ * Our array would look like:
+ * p[0].digit[0]0     p[1].digit[0]0    ...  p[N-2].digit[0]0    p[N-1].digit[0]0
+ * p[0].digit[0]1     p[1].digit[0]1    ...  p[N-2].digit[0]1    p[N-1].digit[0]1
+ *                .                                         .
+ * p[0].digit[0]m-1   p[1].digit[0]m-1  ...  p[N-2].digit[0]m-1  p[N-1].digit[0]m-1
+ * p[0].digit[1]0     p[1].digit[1]0    ...  p[N-2].digit[1]0    p[N-1].digit[1]0
+ *                .                                         .
+ *                .                                         .
+ * p[0].digit[n-1]m-2 p[1].digit[n-1]m-2 ... p[N-2].digit[n-1]m-2 p[N-1].digit[n-1]m-2
+ * p[0].digit[n-1]m-1 p[1].digit[n-1]m-1 ... p[N-2].digit[n-1]m-1 p[N-1].digit[n-1]m-1 
+ *
+ */
+mp_err mpi_to_weave(const mp_int *a, unsigned char *b, 
+					mp_size b_size, mp_size count)
+{
+  mp_size i;
+  mp_digit *digitsa0;
+  mp_digit *digitsa1;
+  mp_digit *digitsa2;
+  mp_digit *digitsa3;
+  mp_size   useda0;
+  mp_size   useda1;
+  mp_size   useda2;
+  mp_size   useda3;
+  mp_weave_word *weaved = (mp_weave_word *)b;
+
+  count = count/sizeof(mp_weave_word);
+
+  /* this code pretty much depends on this ! */
+#if MP_ARGCHK == 2
+  assert(WEAVE_WORD_SIZE == 4); 
+  assert(sizeof(mp_weave_word) == 4);
+#endif
+
+  digitsa0 = MP_DIGITS(&a[0]);
+  digitsa1 = MP_DIGITS(&a[1]);
+  digitsa2 = MP_DIGITS(&a[2]);
+  digitsa3 = MP_DIGITS(&a[3]);
+  useda0 = MP_USED(&a[0]);
+  useda1 = MP_USED(&a[1]);
+  useda2 = MP_USED(&a[2]);
+  useda3 = MP_USED(&a[3]);
+
+  ARGCHK(MP_SIGN(&a[0]) == MP_ZPOS, MP_BADARG);
+  ARGCHK(MP_SIGN(&a[1]) == MP_ZPOS, MP_BADARG);
+  ARGCHK(MP_SIGN(&a[2]) == MP_ZPOS, MP_BADARG);
+  ARGCHK(MP_SIGN(&a[3]) == MP_ZPOS, MP_BADARG);
+  ARGCHK(useda0 <= b_size, MP_BADARG);
+  ARGCHK(useda1 <= b_size, MP_BADARG);
+  ARGCHK(useda2 <= b_size, MP_BADARG);
+  ARGCHK(useda3 <= b_size, MP_BADARG);
+
+#define SAFE_FETCH(digit, used, word) ((word) < (used) ? (digit[word]) : 0)
+
+  for (i=0; i < b_size; i++) {
+    mp_digit d0 = SAFE_FETCH(digitsa0,useda0,i);
+    mp_digit d1 = SAFE_FETCH(digitsa1,useda1,i);
+    mp_digit d2 = SAFE_FETCH(digitsa2,useda2,i);
+    mp_digit d3 = SAFE_FETCH(digitsa3,useda3,i);
+    register mp_weave_word acc;
+
+/*
+ * ONE_STEP takes the MSB of each of our current digits and places that
+ * byte in the appropriate position for writing to the weaved array.
+ *  On little endian:
+ *   b3 b2 b1 b0
+ *  On big endian:
+ *   b0 b1 b2 b3
+ *  When the data is written it would always wind up:
+ *   b[0] = b0
+ *   b[1] = b1
+ *   b[2] = b2
+ *   b[3] = b3
+ *
+ * Once we've written the MSB, we shift the whole digit up left one
+ * byte, putting the Next Most Significant Byte in the MSB position,
+ * so we we repeat the next one step that byte will be written.
+ * NOTE: This code assumes sizeof(mp_weave_word) and MP_WEAVE_WORD_SIZE
+ * is 4.
+ */
+#ifdef MP_IS_LITTLE_ENDIAN 
+#define MPI_WEAVE_ONE_STEP \
+    acc  = (d0 >> (MP_DIGIT_BIT-8))  & 0x000000ff; d0 <<= 8; /*b0*/ \
+    acc |= (d1 >> (MP_DIGIT_BIT-16)) & 0x0000ff00; d1 <<= 8; /*b1*/ \
+    acc |= (d2 >> (MP_DIGIT_BIT-24)) & 0x00ff0000; d2 <<= 8; /*b2*/ \
+    acc |= (d3 >> (MP_DIGIT_BIT-32)) & 0xff000000; d3 <<= 8; /*b3*/ \
+    *weaved = acc; weaved += count;
+#else 
+#define MPI_WEAVE_ONE_STEP \
+    acc  = (d0 >> (MP_DIGIT_BIT-32)) & 0xff000000; d0 <<= 8; /*b0*/ \
+    acc |= (d1 >> (MP_DIGIT_BIT-24)) & 0x00ff0000; d1 <<= 8; /*b1*/ \
+    acc |= (d2 >> (MP_DIGIT_BIT-16)) & 0x0000ff00; d2 <<= 8; /*b2*/ \
+    acc |= (d3 >> (MP_DIGIT_BIT-8))  & 0x000000ff; d3 <<= 8; /*b3*/ \
+    *weaved = acc; weaved += count;
+#endif 
+   switch (sizeof(mp_digit)) {
+   case 32:
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+   case 16:
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+   case 8:
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+   case 4:
+    MPI_WEAVE_ONE_STEP
+    MPI_WEAVE_ONE_STEP
+   case 2:
+    MPI_WEAVE_ONE_STEP
+   case 1:
+    MPI_WEAVE_ONE_STEP
+    break;
+   }
+  }
+
+  return MP_OKAY;
+}
+
+/* reverse the operation above for one entry.
+ * b points to the offset into the weave array of the power we are
+ * calculating */
+mp_err weave_to_mpi(mp_int *a, const unsigned char *b, 
+					mp_size b_size, mp_size count)
+{
+  mp_digit *pb = MP_DIGITS(a);
+  mp_digit *end = &pb[b_size];
+
+  MP_SIGN(a) = MP_ZPOS;
+  MP_USED(a) = b_size;
+
+  for (; pb < end; pb++) {
+    register mp_digit digit;
+
+    digit = *b << 8; b += count;
+#define MPI_UNWEAVE_ONE_STEP  digit |= *b; b += count; digit = digit << 8;
+    switch (sizeof(mp_digit)) {
+    case 32:
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+    case 16:
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+    case 8:
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+    case 4:
+	MPI_UNWEAVE_ONE_STEP 
+	MPI_UNWEAVE_ONE_STEP 
+    case 2:
+	break;
+    }
+    digit |= *b; b += count; 
+
+    *pb = digit;
+  }
+  s_mp_clamp(a);
+  return MP_OKAY;
+}
+#endif
+
+
+#define SQR(a,b) \
+  MP_CHECKOK( mp_sqr(a, b) );\
+  MP_CHECKOK( s_mp_redc(b, mmm) )
+
+#if defined(MP_MONT_USE_MP_MUL)
+#define MUL_NOWEAVE(x,a,b) \
+  MP_CHECKOK( mp_mul(a, x, b) ); \
+  MP_CHECKOK( s_mp_redc(b, mmm) ) 
+#else
+#define MUL_NOWEAVE(x,a,b) \
+  MP_CHECKOK( s_mp_mul_mont(a, x, b, mmm) )
+#endif
+
+#define MUL(x,a,b) \
+  MP_CHECKOK( weave_to_mpi(&tmp, powers + (x), nLen, num_powers) ); \
+  MUL_NOWEAVE(&tmp,a,b)
+
+#define SWAPPA ptmp = pa1; pa1 = pa2; pa2 = ptmp
+#define MP_ALIGN(x,y) ((((ptrdiff_t)(x))+((y)-1))&(((ptrdiff_t)0)-(y)))
+
+/* Do modular exponentiation using integer multiply code. */
+mp_err mp_exptmod_safe_i(const mp_int *   montBase, 
+                    const mp_int *   exponent, 
+		    const mp_int *   modulus, 
+		    mp_int *         result, 
+		    mp_mont_modulus *mmm, 
+		    int              nLen, 
+		    mp_size          bits_in_exponent, 
+		    mp_size          window_bits,
+		    mp_size          num_powers)
+{
+  mp_int *pa1, *pa2, *ptmp;
+  mp_size i;
+  mp_size first_window;
+  mp_err  res;
+  int     expOff;
+  mp_int  accum1, accum2, accum[WEAVE_WORD_SIZE];
+  mp_int  tmp;
+  unsigned char *powersArray;
+  unsigned char *powers;
+
+  MP_DIGITS(&accum1) = 0;
+  MP_DIGITS(&accum2) = 0;
+  MP_DIGITS(&accum[0]) = 0;
+  MP_DIGITS(&accum[1]) = 0;
+  MP_DIGITS(&accum[2]) = 0;
+  MP_DIGITS(&accum[3]) = 0;
+  MP_DIGITS(&tmp) = 0;
+
+  powersArray = (unsigned char *)malloc(num_powers*(nLen*sizeof(mp_digit)+1));
+  if (powersArray == NULL) {
+    res = MP_MEM;
+    goto CLEANUP;
+  }
+
+  /* powers[i] = base ** (i); */
+  powers = (unsigned char *)MP_ALIGN(powersArray,num_powers);
+
+  /* grab the first window value. This allows us to preload accumulator1
+   * and save a conversion, some squares and a multiple*/
+  MP_CHECKOK( mpl_get_bits(exponent, 
+				bits_in_exponent-window_bits, window_bits) );
+  first_window = (mp_size)res;
+
+  MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
+  MP_CHECKOK( mp_init_size(&accum2, 3 * nLen + 2) );
+  MP_CHECKOK( mp_init_size(&tmp, 3 * nLen + 2) );
+
+  /* build the first WEAVE_WORD powers inline */
+  /* if WEAVE_WORD_SIZE is not 4, this code will have to change */
+  if (num_powers > 2) {
+    MP_CHECKOK( mp_init_size(&accum[0], 3 * nLen + 2) );
+    MP_CHECKOK( mp_init_size(&accum[1], 3 * nLen + 2) );
+    MP_CHECKOK( mp_init_size(&accum[2], 3 * nLen + 2) );
+    MP_CHECKOK( mp_init_size(&accum[3], 3 * nLen + 2) );
+    mp_set(&accum[0], 1);
+    MP_CHECKOK( s_mp_to_mont(&accum[0], mmm, &accum[0]) );
+    MP_CHECKOK( mp_copy(montBase, &accum[1]) );
+    SQR(montBase, &accum[2]);
+    MUL_NOWEAVE(montBase, &accum[2], &accum[3]);
+    MP_CHECKOK( mpi_to_weave(accum, powers, nLen, num_powers) );
+    if (first_window < 4) {
+      MP_CHECKOK( mp_copy(&accum[first_window], &accum1) );
+      first_window = num_powers;
+    }
+  } else {
+      if (first_window == 0) {
+        mp_set(&accum1, 1);
+        MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
+      } else {
+        /* assert first_window == 1? */
+        MP_CHECKOK( mp_copy(montBase, &accum1) );
+      }
+  }
+
+  /*
+   * calculate all the powers in the powers array.
+   * this adds 2**(k-1)-2 square operations over just calculating the
+   * odd powers where k is the window size in the two other mp_modexpt
+   * implementations in this file. We will get some of that
+   * back by not needing the first 'k' squares and one multiply for the 
+   * first window */ 
+  for (i = WEAVE_WORD_SIZE; i < num_powers; i++) {
+    int acc_index = i & (WEAVE_WORD_SIZE-1); /* i % WEAVE_WORD_SIZE */
+    if ( i & 1 ) {
+      MUL_NOWEAVE(montBase, &accum[acc_index-1] , &accum[acc_index]);
+      /* we've filled the array do our 'per array' processing */
+      if (acc_index == (WEAVE_WORD_SIZE-1)) {
+        MP_CHECKOK( mpi_to_weave(accum, powers + i - (WEAVE_WORD_SIZE-1),
+							 nLen, num_powers) );
+
+        if (first_window <= i) {
+          MP_CHECKOK( mp_copy(&accum[first_window & (WEAVE_WORD_SIZE-1)], 
+								&accum1) );
+          first_window = num_powers;
+        }
+      }
+    } else {
+      /* up to 8 we can find 2^i-1 in the accum array, but at 8 we our source
+       * and target are the same so we need to copy.. After that, the
+       * value is overwritten, so we need to fetch it from the stored
+       * weave array */
+      if (i > 2* WEAVE_WORD_SIZE) {
+        MP_CHECKOK(weave_to_mpi(&accum2, powers+i/2, nLen, num_powers));
+        SQR(&accum2, &accum[acc_index]);
+      } else {
+	int half_power_index = (i/2) & (WEAVE_WORD_SIZE-1);
+	if (half_power_index == acc_index) {
+	   /* copy is cheaper than weave_to_mpi */
+	   MP_CHECKOK(mp_copy(&accum[half_power_index], &accum2));
+	   SQR(&accum2,&accum[acc_index]);
+	} else {
+	   SQR(&accum[half_power_index],&accum[acc_index]);
+	}
+      }
+    }
+  }
+  /* if the accum1 isn't set, Then there is something wrong with our logic 
+   * above and is an internal programming error. 
+   */
+#if MP_ARGCHK == 2
+  assert(MP_USED(&accum1) != 0);
+#endif
+
+  /* set accumulator to montgomery residue of 1 */
+  pa1 = &accum1;
+  pa2 = &accum2;
+
+  for (expOff = bits_in_exponent - window_bits*2; expOff >= 0; expOff -= window_bits) {
+    mp_size smallExp;
+    MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
+    smallExp = (mp_size)res;
+
+    /* handle unroll the loops */
+    switch (window_bits) {
+    case 1:
+	if (!smallExp) {
+	    SQR(pa1,pa2); SWAPPA;
+	} else if (smallExp & 1) {
+	    SQR(pa1,pa2); MUL_NOWEAVE(montBase,pa2,pa1);
+	} else {
+	    abort();
+	}
+	break;
+    case 6:
+	SQR(pa1,pa2); SQR(pa2,pa1); 
+	/* fall through */
+    case 4:
+	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
+	MUL(smallExp, pa1,pa2); SWAPPA;
+	break;
+    case 5:
+	SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); 
+	SQR(pa1,pa2); MUL(smallExp,pa2,pa1);
+	break;
+    default:
+	abort(); /* could do a loop? */
+    }
+  }
+
+  res = s_mp_redc(pa1, mmm);
+  mp_exch(pa1, result);
+
+CLEANUP:
+  mp_clear(&accum1);
+  mp_clear(&accum2);
+  mp_clear(&accum[0]);
+  mp_clear(&accum[1]);
+  mp_clear(&accum[2]);
+  mp_clear(&accum[3]);
+  mp_clear(&tmp);
+  /* PORT_Memset(powers,0,num_powers*nLen*sizeof(mp_digit)); */
+  free(powersArray);
+  return res;
+}
+#undef SQR
+#undef MUL
+#endif
+
+mp_err mp_exptmod(const mp_int *inBase, const mp_int *exponent, 
+		  const mp_int *modulus, mp_int *result)
+{
+  const mp_int *base;
+  mp_size bits_in_exponent, i, window_bits, odd_ints;
+  mp_err  res;
+  int     nLen;
+  mp_int  montBase, goodBase;
+  mp_mont_modulus mmm;
+#ifdef MP_USING_CACHE_SAFE_MOD_EXP
+  static unsigned int max_window_bits;
+#endif
+
+  /* function for computing n0prime only works if n0 is odd */
+  if (!mp_isodd(modulus))
+    return s_mp_exptmod(inBase, exponent, modulus, result);
+
+  MP_DIGITS(&montBase) = 0;
+  MP_DIGITS(&goodBase) = 0;
+
+  if (mp_cmp(inBase, modulus) < 0) {
+    base = inBase;
+  } else {
+    MP_CHECKOK( mp_init(&goodBase) );
+    base = &goodBase;
+    MP_CHECKOK( mp_mod(inBase, modulus, &goodBase) );
+  }
+
+  nLen  = MP_USED(modulus);
+  MP_CHECKOK( mp_init_size(&montBase, 2 * nLen + 2) );
+
+  mmm.N = *modulus;			/* a copy of the mp_int struct */
+
+  /* compute n0', given n0, n0' = -(n0 ** -1) mod MP_RADIX
+  **		where n0 = least significant mp_digit of N, the modulus.
+  */
+  mmm.n0prime = 0 - s_mp_invmod_radix( MP_DIGIT(modulus, 0) );
+
+  MP_CHECKOK( s_mp_to_mont(base, &mmm, &montBase) );
+
+  bits_in_exponent = mpl_significant_bits(exponent);
+#ifdef MP_USING_CACHE_SAFE_MOD_EXP
+  if (mp_using_cache_safe_exp) {
+    if (bits_in_exponent > 780)
+	window_bits = 6;
+    else if (bits_in_exponent > 256)
+	window_bits = 5;
+    else if (bits_in_exponent > 20)
+	window_bits = 4;
+       /* RSA public key exponents are typically under 20 bits (common values 
+        * are: 3, 17, 65537) and a 4-bit window is inefficient
+        */
+    else 
+	window_bits = 1;
+  } else
+#endif
+  if (bits_in_exponent > 480)
+    window_bits = 6;
+  else if (bits_in_exponent > 160)
+    window_bits = 5;
+  else if (bits_in_exponent > 20)
+    window_bits = 4;
+  /* RSA public key exponents are typically under 20 bits (common values 
+   * are: 3, 17, 65537) and a 4-bit window is inefficient
+   */
+  else 
+    window_bits = 1;
+
+#ifdef MP_USING_CACHE_SAFE_MOD_EXP
+  /*
+   * clamp the window size based on
+   * the cache line size.
+   */
+  if (!max_window_bits) {
+    unsigned long cache_size = s_mpi_getProcessorLineSize();
+    /* processor has no cache, use 'fast' code always */
+    if (cache_size == 0) {
+      mp_using_cache_safe_exp = 0;
+    } 
+    if ((cache_size == 0) || (cache_size >= 64)) {
+      max_window_bits = 6;
+    } else if (cache_size >= 32) {
+      max_window_bits = 5;
+    } else if (cache_size >= 16) {
+      max_window_bits = 4;
+    } else max_window_bits = 1; /* should this be an assert? */
+  }
+
+  /* clamp the window size down before we caclulate bits_in_exponent */
+  if (mp_using_cache_safe_exp) {
+    if (window_bits > max_window_bits) {
+      window_bits = max_window_bits;
+    }
+  }
+#endif
+
+  odd_ints = 1 << (window_bits - 1);
+  i = bits_in_exponent % window_bits;
+  if (i != 0) {
+    bits_in_exponent += window_bits - i;
+  } 
+
+#ifdef MP_USING_MONT_MULF
+  if (mp_using_mont_mulf) {
+    MP_CHECKOK( s_mp_pad(&montBase, nLen) );
+    res = mp_exptmod_f(&montBase, exponent, modulus, result, &mmm, nLen, 
+		     bits_in_exponent, window_bits, odd_ints);
+  } else
+#endif
+#ifdef MP_USING_CACHE_SAFE_MOD_EXP
+  if (mp_using_cache_safe_exp) {
+    res = mp_exptmod_safe_i(&montBase, exponent, modulus, result, &mmm, nLen, 
+		     bits_in_exponent, window_bits, 1 << window_bits);
+  } else
+#endif
+  res = mp_exptmod_i(&montBase, exponent, modulus, result, &mmm, nLen, 
+		     bits_in_exponent, window_bits, odd_ints);
+
+CLEANUP:
+  mp_clear(&montBase);
+  mp_clear(&goodBase);
+  /* Don't mp_clear mmm.N because it is merely a copy of modulus.
+  ** Just zap it.
+  */
+  memset(&mmm, 0, sizeof mmm);
+  return res;
+}
This site is hosted by Intevation GmbH (Datenschutzerklärung und Impressum | Privacy Policy and Imprint)