diff nss/lib/freebl/rsa.c @ 0:1e5118fa0cb1

This is NSS with a Cmake Buildsyste To compile a static NSS library for Windows we've used the Chromium-NSS fork and added a Cmake buildsystem to compile it statically for Windows. See README.chromium for chromium changes and README.trustbridge for our modifications.
author Andre Heinecke <andre.heinecke@intevation.de>
date Mon, 28 Jul 2014 10:47:06 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/nss/lib/freebl/rsa.c	Mon Jul 28 10:47:06 2014 +0200
@@ -0,0 +1,1548 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+/*
+ * RSA key generation, public key op, private key op.
+ */
+#ifdef FREEBL_NO_DEPEND
+#include "stubs.h"
+#endif
+
+#include "secerr.h"
+
+#include "prclist.h"
+#include "nssilock.h"
+#include "prinit.h"
+#include "blapi.h"
+#include "mpi.h"
+#include "mpprime.h"
+#include "mplogic.h"
+#include "secmpi.h"
+#include "secitem.h"
+#include "blapii.h"
+
+/*
+** Number of times to attempt to generate a prime (p or q) from a random
+** seed (the seed changes for each iteration).
+*/
+#define MAX_PRIME_GEN_ATTEMPTS 10
+/*
+** Number of times to attempt to generate a key.  The primes p and q change
+** for each attempt.
+*/
+#define MAX_KEY_GEN_ATTEMPTS 10
+
+/* Blinding Parameters max cache size  */
+#define RSA_BLINDING_PARAMS_MAX_CACHE_SIZE 20
+
+/* exponent should not be greater than modulus */
+#define BAD_RSA_KEY_SIZE(modLen, expLen) \
+    ((expLen) > (modLen) || (modLen) > RSA_MAX_MODULUS_BITS/8 || \
+    (expLen) > RSA_MAX_EXPONENT_BITS/8)
+
+struct blindingParamsStr;
+typedef struct blindingParamsStr blindingParams;
+
+struct blindingParamsStr {
+    blindingParams *next;
+    mp_int         f, g;             /* blinding parameter                 */
+    int            counter;          /* number of remaining uses of (f, g) */
+};
+
+/*
+** RSABlindingParamsStr
+**
+** For discussion of Paul Kocher's timing attack against an RSA private key
+** operation, see http://www.cryptography.com/timingattack/paper.html.  The 
+** countermeasure to this attack, known as blinding, is also discussed in 
+** the Handbook of Applied Cryptography, 11.118-11.119.
+*/
+struct RSABlindingParamsStr
+{
+    /* Blinding-specific parameters */
+    PRCList   link;                  /* link to list of structs            */
+    SECItem   modulus;               /* list element "key"                 */
+    blindingParams *free, *bp;       /* Blinding parameters queue          */
+    blindingParams array[RSA_BLINDING_PARAMS_MAX_CACHE_SIZE];
+};
+typedef struct RSABlindingParamsStr RSABlindingParams;
+
+/*
+** RSABlindingParamsListStr
+**
+** List of key-specific blinding params.  The arena holds the volatile pool
+** of memory for each entry and the list itself.  The lock is for list
+** operations, in this case insertions and iterations, as well as control
+** of the counter for each set of blinding parameters.
+*/
+struct RSABlindingParamsListStr
+{
+    PZLock  *lock;   /* Lock for the list   */
+    PRCondVar *cVar; /* Condidtion Variable */
+    int  waitCount;  /* Number of threads waiting on cVar */
+    PRCList  head;   /* Pointer to the list */
+};
+
+/*
+** The master blinding params list.
+*/
+static struct RSABlindingParamsListStr blindingParamsList = { 0 };
+
+/* Number of times to reuse (f, g).  Suggested by Paul Kocher */
+#define RSA_BLINDING_PARAMS_MAX_REUSE 50
+
+/* Global, allows optional use of blinding.  On by default. */
+/* Cannot be changed at the moment, due to thread-safety issues. */
+static PRBool nssRSAUseBlinding = PR_TRUE;
+
+static SECStatus
+rsa_build_from_primes(mp_int *p, mp_int *q, 
+		mp_int *e, PRBool needPublicExponent, 
+		mp_int *d, PRBool needPrivateExponent,
+		RSAPrivateKey *key, unsigned int keySizeInBits)
+{
+    mp_int n, phi;
+    mp_int psub1, qsub1, tmp;
+    mp_err   err = MP_OKAY;
+    SECStatus rv = SECSuccess;
+    MP_DIGITS(&n)     = 0;
+    MP_DIGITS(&phi)   = 0;
+    MP_DIGITS(&psub1) = 0;
+    MP_DIGITS(&qsub1) = 0;
+    MP_DIGITS(&tmp)   = 0;
+    CHECK_MPI_OK( mp_init(&n)     );
+    CHECK_MPI_OK( mp_init(&phi)   );
+    CHECK_MPI_OK( mp_init(&psub1) );
+    CHECK_MPI_OK( mp_init(&qsub1) );
+    CHECK_MPI_OK( mp_init(&tmp)   );
+    /* 1.  Compute n = p*q */
+    CHECK_MPI_OK( mp_mul(p, q, &n) );
+    /*     verify that the modulus has the desired number of bits */
+    if ((unsigned)mpl_significant_bits(&n) != keySizeInBits) {
+	PORT_SetError(SEC_ERROR_NEED_RANDOM);
+	rv = SECFailure;
+	goto cleanup;
+    }
+
+    /* at least one exponent must be given */
+    PORT_Assert(!(needPublicExponent && needPrivateExponent));
+
+    /* 2.  Compute phi = (p-1)*(q-1) */
+    CHECK_MPI_OK( mp_sub_d(p, 1, &psub1) );
+    CHECK_MPI_OK( mp_sub_d(q, 1, &qsub1) );
+    if (needPublicExponent || needPrivateExponent) {
+	CHECK_MPI_OK( mp_mul(&psub1, &qsub1, &phi) );
+	/* 3.  Compute d = e**-1 mod(phi) */
+	/*     or      e = d**-1 mod(phi) as necessary */
+	if (needPublicExponent) {
+	    err = mp_invmod(d, &phi, e);
+	} else {
+	    err = mp_invmod(e, &phi, d);
+	}
+    } else {
+	err = MP_OKAY;
+    }
+    /*     Verify that phi(n) and e have no common divisors */
+    if (err != MP_OKAY) {
+	if (err == MP_UNDEF) {
+	    PORT_SetError(SEC_ERROR_NEED_RANDOM);
+	    err = MP_OKAY; /* to keep PORT_SetError from being called again */
+	    rv = SECFailure;
+	}
+	goto cleanup;
+    }
+
+    /* 4.  Compute exponent1 = d mod (p-1) */
+    CHECK_MPI_OK( mp_mod(d, &psub1, &tmp) );
+    MPINT_TO_SECITEM(&tmp, &key->exponent1, key->arena);
+    /* 5.  Compute exponent2 = d mod (q-1) */
+    CHECK_MPI_OK( mp_mod(d, &qsub1, &tmp) );
+    MPINT_TO_SECITEM(&tmp, &key->exponent2, key->arena);
+    /* 6.  Compute coefficient = q**-1 mod p */
+    CHECK_MPI_OK( mp_invmod(q, p, &tmp) );
+    MPINT_TO_SECITEM(&tmp, &key->coefficient, key->arena);
+
+    /* copy our calculated results, overwrite what is there */
+    key->modulus.data = NULL;
+    MPINT_TO_SECITEM(&n, &key->modulus, key->arena);
+    key->privateExponent.data = NULL;
+    MPINT_TO_SECITEM(d, &key->privateExponent, key->arena);
+    key->publicExponent.data = NULL;
+    MPINT_TO_SECITEM(e, &key->publicExponent, key->arena);
+    key->prime1.data = NULL;
+    MPINT_TO_SECITEM(p, &key->prime1, key->arena);
+    key->prime2.data = NULL;
+    MPINT_TO_SECITEM(q, &key->prime2, key->arena);
+cleanup:
+    mp_clear(&n);
+    mp_clear(&phi);
+    mp_clear(&psub1);
+    mp_clear(&qsub1);
+    mp_clear(&tmp);
+    if (err) {
+	MP_TO_SEC_ERROR(err);
+	rv = SECFailure;
+    }
+    return rv;
+}
+static SECStatus
+generate_prime(mp_int *prime, int primeLen)
+{
+    mp_err   err = MP_OKAY;
+    SECStatus rv = SECSuccess;
+    unsigned long counter = 0;
+    int piter;
+    unsigned char *pb = NULL;
+    pb = PORT_Alloc(primeLen);
+    if (!pb) {
+	PORT_SetError(SEC_ERROR_NO_MEMORY);
+	goto cleanup;
+    }
+    for (piter = 0; piter < MAX_PRIME_GEN_ATTEMPTS; piter++) {
+	CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(pb, primeLen) );
+	pb[0]          |= 0xC0; /* set two high-order bits */
+	pb[primeLen-1] |= 0x01; /* set low-order bit       */
+	CHECK_MPI_OK( mp_read_unsigned_octets(prime, pb, primeLen) );
+	err = mpp_make_prime(prime, primeLen * 8, PR_FALSE, &counter);
+	if (err != MP_NO)
+	    goto cleanup;
+	/* keep going while err == MP_NO */
+    }
+cleanup:
+    if (pb)
+	PORT_ZFree(pb, primeLen);
+    if (err) {
+	MP_TO_SEC_ERROR(err);
+	rv = SECFailure;
+    }
+    return rv;
+}
+
+/*
+** Generate and return a new RSA public and private key.
+**	Both keys are encoded in a single RSAPrivateKey structure.
+**	"cx" is the random number generator context
+**	"keySizeInBits" is the size of the key to be generated, in bits.
+**	   512, 1024, etc.
+**	"publicExponent" when not NULL is a pointer to some data that
+**	   represents the public exponent to use. The data is a byte
+**	   encoded integer, in "big endian" order.
+*/
+RSAPrivateKey *
+RSA_NewKey(int keySizeInBits, SECItem *publicExponent)
+{
+    unsigned int primeLen;
+    mp_int p, q, e, d;
+    int kiter;
+    mp_err   err = MP_OKAY;
+    SECStatus rv = SECSuccess;
+    int prerr = 0;
+    RSAPrivateKey *key = NULL;
+    PLArenaPool *arena = NULL;
+    /* Require key size to be a multiple of 16 bits. */
+    if (!publicExponent || keySizeInBits % 16 != 0 ||
+	    BAD_RSA_KEY_SIZE(keySizeInBits/8, publicExponent->len)) {
+	PORT_SetError(SEC_ERROR_INVALID_ARGS);
+	return NULL;
+    }
+    /* 1. Allocate arena & key */
+    arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
+    if (!arena) {
+	PORT_SetError(SEC_ERROR_NO_MEMORY);
+	return NULL;
+    }
+    key = PORT_ArenaZNew(arena, RSAPrivateKey);
+    if (!key) {
+	PORT_SetError(SEC_ERROR_NO_MEMORY);
+	PORT_FreeArena(arena, PR_TRUE);
+	return NULL;
+    }
+    key->arena = arena;
+    /* length of primes p and q (in bytes) */
+    primeLen = keySizeInBits / (2 * PR_BITS_PER_BYTE);
+    MP_DIGITS(&p) = 0;
+    MP_DIGITS(&q) = 0;
+    MP_DIGITS(&e) = 0;
+    MP_DIGITS(&d) = 0;
+    CHECK_MPI_OK( mp_init(&p) );
+    CHECK_MPI_OK( mp_init(&q) );
+    CHECK_MPI_OK( mp_init(&e) );
+    CHECK_MPI_OK( mp_init(&d) );
+    /* 2.  Set the version number (PKCS1 v1.5 says it should be zero) */
+    SECITEM_AllocItem(arena, &key->version, 1);
+    key->version.data[0] = 0;
+    /* 3.  Set the public exponent */
+    SECITEM_TO_MPINT(*publicExponent, &e);
+    kiter = 0;
+    do {
+	prerr = 0;
+	PORT_SetError(0);
+	CHECK_SEC_OK( generate_prime(&p, primeLen) );
+	CHECK_SEC_OK( generate_prime(&q, primeLen) );
+	/* Assure q < p */
+	if (mp_cmp(&p, &q) < 0)
+	    mp_exch(&p, &q);
+	/* Attempt to use these primes to generate a key */
+	rv = rsa_build_from_primes(&p, &q, 
+			&e, PR_FALSE,  /* needPublicExponent=false */
+			&d, PR_TRUE,   /* needPrivateExponent=true */
+			key, keySizeInBits);
+	if (rv == SECSuccess)
+	    break; /* generated two good primes */
+	prerr = PORT_GetError();
+	kiter++;
+	/* loop until have primes */
+    } while (prerr == SEC_ERROR_NEED_RANDOM && kiter < MAX_KEY_GEN_ATTEMPTS);
+    if (prerr)
+	goto cleanup;
+cleanup:
+    mp_clear(&p);
+    mp_clear(&q);
+    mp_clear(&e);
+    mp_clear(&d);
+    if (err) {
+	MP_TO_SEC_ERROR(err);
+	rv = SECFailure;
+    }
+    if (rv && arena) {
+	PORT_FreeArena(arena, PR_TRUE);
+	key = NULL;
+    }
+    return key;
+}
+
+mp_err
+rsa_is_prime(mp_int *p) {
+    int res;
+
+    /* run a Fermat test */
+    res = mpp_fermat(p, 2);
+    if (res != MP_OKAY) {
+	return res;
+    }
+
+    /* If that passed, run some Miller-Rabin tests */
+    res = mpp_pprime(p, 2);
+    return res;
+}
+
+/*
+ * Try to find the two primes based on 2 exponents plus either a prime
+ *   or a modulus.
+ *
+ * In: e, d and either p or n (depending on the setting of hasModulus).
+ * Out: p,q.
+ * 
+ * Step 1, Since d = e**-1 mod phi, we know that d*e == 1 mod phi, or
+ *	d*e = 1+k*phi, or d*e-1 = k*phi. since d is less than phi and e is
+ *	usually less than d, then k must be an integer between e-1 and 1 
+ *	(probably on the order of e).
+ * Step 1a, If we were passed just a prime, we can divide k*phi by that
+ *      prime-1 and get k*(q-1). This will reduce the size of our division
+ *      through the rest of the loop.
+ * Step 2, Loop through the values k=e-1 to 1 looking for k. k should be on
+ *	the order or e, and e is typically small. This may take a while for
+ *	a large random e. We are looking for a k that divides kphi
+ *	evenly. Once we find a k that divides kphi evenly, we assume it 
+ *	is the true k. It's possible this k is not the 'true' k but has 
+ *	swapped factors of p-1 and/or q-1. Because of this, we 
+ *	tentatively continue Steps 3-6 inside this loop, and may return looking
+ *	for another k on failure.
+ * Step 3, Calculate are tentative phi=kphi/k. Note: real phi is (p-1)*(q-1).
+ * Step 4a, if we have a prime, kphi is already k*(q-1), so phi is or tenative
+ *      q-1. q = phi+1. If k is correct, q should be the right length and 
+ *      prime.
+ * Step 4b, It's possible q-1 and k could have swapped factors. We now have a
+ * 	possible solution that meets our criteria. It may not be the only 
+ *      solution, however, so we keep looking. If we find more than one, 
+ *      we will fail since we cannot determine which is the correct
+ *      solution, and returning the wrong modulus will compromise both
+ *      moduli. If no other solution is found, we return the unique solution.
+ * Step 5a, If we have the modulus (n=pq), then use the following formula to 
+ * 	calculate  s=(p+q): , phi = (p-1)(q-1) = pq  -p-q +1 = n-s+1. so
+ *	s=n-phi+1.
+ * Step 5b, Use n=pq and s=p+q to solve for p and q as follows:
+ *	since q=s-p, then n=p*(s-p)= sp - p^2, rearranging p^2-s*p+n = 0.
+ *	from the quadratic equation we have p=1/2*(s+sqrt(s*s-4*n)) and
+ *	q=1/2*(s-sqrt(s*s-4*n)) if s*s-4*n is a perfect square, we are DONE.
+ *	If it is not, continue in our look looking for another k. NOTE: the
+ *	code actually distributes the 1/2 and results in the equations:
+ *	sqrt = sqrt(s/2*s/2-n), p=s/2+sqrt, q=s/2-sqrt. The algebra saves us
+ *	and extra divide by 2 and a multiply by 4.
+ * 
+ * This will return p & q. q may be larger than p in the case that p was given
+ * and it was the smaller prime.
+ */
+static mp_err
+rsa_get_primes_from_exponents(mp_int *e, mp_int *d, mp_int *p, mp_int *q,
+			      mp_int *n, PRBool hasModulus, 
+			      unsigned int keySizeInBits)
+{
+    mp_int kphi; /* k*phi */
+    mp_int k;    /* current guess at 'k' */
+    mp_int phi;  /* (p-1)(q-1) */
+    mp_int s;    /* p+q/2 (s/2 in the algebra) */
+    mp_int r;    /* remainder */
+    mp_int tmp; /* p-1 if p is given, n+1 is modulus is given */
+    mp_int sqrt; /* sqrt(s/2*s/2-n) */
+    mp_err err = MP_OKAY;
+    unsigned int order_k;
+
+    MP_DIGITS(&kphi) = 0;
+    MP_DIGITS(&phi) = 0;
+    MP_DIGITS(&s) = 0;
+    MP_DIGITS(&k) = 0;
+    MP_DIGITS(&r) = 0;
+    MP_DIGITS(&tmp) = 0;
+    MP_DIGITS(&sqrt) = 0;
+    CHECK_MPI_OK( mp_init(&kphi) );
+    CHECK_MPI_OK( mp_init(&phi) );
+    CHECK_MPI_OK( mp_init(&s) );
+    CHECK_MPI_OK( mp_init(&k) );
+    CHECK_MPI_OK( mp_init(&r) );
+    CHECK_MPI_OK( mp_init(&tmp) );
+    CHECK_MPI_OK( mp_init(&sqrt) );
+
+    /* our algorithm looks for a factor k whose maximum size is dependent
+     * on the size of our smallest exponent, which had better be the public
+     * exponent (if it's the private, the key is vulnerable to a brute force
+     * attack).
+     * 
+     * since our factor search is linear, we need to limit the maximum
+     * size of the public key. this should not be a problem normally, since 
+     * public keys are usually small. 
+     *
+     * if we want to handle larger public key sizes, we should have
+     * a version which tries to 'completely' factor k*phi (where completely
+     * means 'factor into primes, or composites with which are products of
+     * large primes). Once we have all the factors, we can sort them out and
+     * try different combinations to form our phi. The risk is if (p-1)/2,
+     * (q-1)/2, and k are all large primes. In any case if the public key
+     * is small (order of 20 some bits), then a linear search for k is 
+     * manageable.
+     */
+    if (mpl_significant_bits(e) > 23) {
+	err=MP_RANGE;
+	goto cleanup;
+    }
+
+    /* calculate k*phi = e*d - 1 */
+    CHECK_MPI_OK( mp_mul(e, d, &kphi) );
+    CHECK_MPI_OK( mp_sub_d(&kphi, 1, &kphi) );
+
+
+    /* kphi is (e*d)-1, which is the same as k*(p-1)(q-1)
+     * d < (p-1)(q-1), therefor k must be less than e-1
+     * We can narrow down k even more, though. Since p and q are odd and both 
+     * have their high bit set, then we know that phi must be on order of 
+     * keySizeBits.
+     */
+    order_k = (unsigned)mpl_significant_bits(&kphi) - keySizeInBits;
+
+    /* for (k=kinit; order(k) >= order_k; k--) { */
+    /* k=kinit: k can't be bigger than  kphi/2^(keySizeInBits -1) */
+    CHECK_MPI_OK( mp_2expt(&k,keySizeInBits-1) );
+    CHECK_MPI_OK( mp_div(&kphi, &k, &k, NULL));
+    if (mp_cmp(&k,e) >= 0) {
+	/* also can't be bigger then e-1 */
+        CHECK_MPI_OK( mp_sub_d(e, 1, &k) );
+    }
+
+    /* calculate our temp value */
+    /* This saves recalculating this value when the k guess is wrong, which
+     * is reasonably frequent. */
+    /* for the modulus case, tmp = n+1 (used to calculate p+q = tmp - phi) */
+    /* for the prime case, tmp = p-1 (used to calculate q-1= phi/tmp) */
+    if (hasModulus) {
+	CHECK_MPI_OK( mp_add_d(n, 1, &tmp) );
+    } else {
+	CHECK_MPI_OK( mp_sub_d(p, 1, &tmp) );
+	CHECK_MPI_OK(mp_div(&kphi,&tmp,&kphi,&r));
+	if (mp_cmp_z(&r) != 0) {
+	    /* p-1 doesn't divide kphi, some parameter wasn't correct */
+	    err=MP_RANGE;
+	    goto cleanup;
+	}
+	mp_zero(q);
+	/* kphi is now k*(q-1) */
+    }
+
+    /* rest of the for loop */
+    for (; (err == MP_OKAY) && (mpl_significant_bits(&k) >= order_k); 
+						err = mp_sub_d(&k, 1, &k)) {
+	/* looking for k as a factor of kphi */
+	CHECK_MPI_OK(mp_div(&kphi,&k,&phi,&r));
+	if (mp_cmp_z(&r) != 0) {
+	    /* not a factor, try the next one */
+	    continue;
+	}
+	/* we have a possible phi, see if it works */
+	if (!hasModulus) {
+	    if ((unsigned)mpl_significant_bits(&phi) != keySizeInBits/2) {
+		/* phi is not the right size */
+		continue;
+	    }
+	    /* phi should be divisible by 2, since
+	     * q is odd and phi=(q-1). */
+	    if (mpp_divis_d(&phi,2) == MP_NO) {
+		/* phi is not divisible by 4 */
+		continue;
+	    }
+	    /* we now have a candidate for the second prime */
+	    CHECK_MPI_OK(mp_add_d(&phi, 1, &tmp));
+	    
+	    /* check to make sure it is prime */
+	    err = rsa_is_prime(&tmp);
+	    if (err != MP_OKAY) {
+		if (err == MP_NO) {
+		    /* No, then we still have the wrong phi */
+		    err = MP_OKAY;
+        	    continue;
+		}
+		goto cleanup;
+	    }
+	    /*
+	     * It is possible that we have the wrong phi if 
+	     * k_guess*(q_guess-1) = k*(q-1) (k and q-1 have swapped factors).
+	     * since our q_quess is prime, however. We have found a valid
+	     * rsa key because:
+	     *   q is the correct order of magnitude.
+	     *   phi = (p-1)(q-1) where p and q are both primes.
+	     *   e*d mod phi = 1.
+	     * There is no way to know from the info given if this is the 
+	     * original key. We never want to return the wrong key because if
+	     * two moduli with the same factor is known, then euclid's gcd
+	     * algorithm can be used to find that factor. Even though the 
+	     * caller didn't pass the original modulus, it doesn't mean the
+	     * modulus wasn't known or isn't available somewhere. So to be safe
+	     * if we can't be sure we have the right q, we don't return any.
+	     * 
+	     * So to make sure we continue looking for other valid q's. If none
+	     * are found, then we can safely return this one, otherwise we just
+	     * fail */
+	    if (mp_cmp_z(q) != 0) {
+		/* this is the second valid q, don't return either, 
+		 * just fail */
+		err = MP_RANGE;
+		break;
+	    }
+	    /* we only have one q so far, save it and if no others are found,
+	     * it's safe to return it */
+	    CHECK_MPI_OK(mp_copy(&tmp, q));
+	    continue;
+	}
+	/* test our tentative phi */
+	/* phi should be the correct order */
+	if ((unsigned)mpl_significant_bits(&phi) != keySizeInBits) {
+	    /* phi is not the right size */
+	    continue;
+	}
+	/* phi should be divisible by 4, since
+	 * p and q are odd and phi=(p-1)(q-1). */
+	if (mpp_divis_d(&phi,4) == MP_NO) {
+	    /* phi is not divisible by 4 */
+	    continue;
+	}
+	/* n was given, calculate s/2=(p+q)/2 */
+	CHECK_MPI_OK( mp_sub(&tmp, &phi, &s) );
+	CHECK_MPI_OK( mp_div_2(&s, &s) );
+
+	/* calculate sqrt(s/2*s/2-n) */
+	CHECK_MPI_OK(mp_sqr(&s,&sqrt));
+	CHECK_MPI_OK(mp_sub(&sqrt,n,&r));  /* r as a tmp */
+	CHECK_MPI_OK(mp_sqrt(&r,&sqrt));
+	/* make sure it's a perfect square */
+	/* r is our original value we took the square root of */
+	/* q is the square of our tentative square root. They should be equal*/
+	CHECK_MPI_OK(mp_sqr(&sqrt,q)); /* q as a tmp */
+	if (mp_cmp(&r,q) != 0) {
+	    /* sigh according to the doc, mp_sqrt could return sqrt-1 */
+	   CHECK_MPI_OK(mp_add_d(&sqrt,1,&sqrt));
+	   CHECK_MPI_OK(mp_sqr(&sqrt,q));
+	   if (mp_cmp(&r,q) != 0) {
+		/* s*s-n not a perfect square, this phi isn't valid, find 			 * another.*/
+		continue;
+	    }
+	}
+
+	/* NOTE: In this case we know we have the one and only answer.
+	 * "Why?", you ask. Because:
+	 *    1) n is a composite of two large primes (or it wasn't a
+	 *       valid RSA modulus).
+	 *    2) If we know any number such that x^2-n is a perfect square 
+	 *       and x is not (n+1)/2, then we can calculate 2 non-trivial
+	 *       factors of n.
+	 *    3) Since we know that n has only 2 non-trivial prime factors, 
+	 *       we know the two factors we have are the only possible factors.
+	 */
+
+	/* Now we are home free to calculate p and q */
+	/* p = s/2 + sqrt, q= s/2 - sqrt */
+	CHECK_MPI_OK(mp_add(&s,&sqrt,p));
+	CHECK_MPI_OK(mp_sub(&s,&sqrt,q));
+	break;
+    }
+    if ((unsigned)mpl_significant_bits(&k) < order_k) {
+	if (hasModulus || (mp_cmp_z(q) == 0)) {
+	    /* If we get here, something was wrong with the parameters we 
+	     * were given */
+	    err = MP_RANGE; 
+	}
+    }
+cleanup:
+    mp_clear(&kphi);
+    mp_clear(&phi);
+    mp_clear(&s);
+    mp_clear(&k);
+    mp_clear(&r);
+    mp_clear(&tmp);
+    mp_clear(&sqrt);
+    return err;
+}
+     
+/*
+ * take a private key with only a few elements and fill out the missing pieces.
+ *
+ * All the entries will be overwritten with data allocated out of the arena
+ * If no arena is supplied, one will be created.
+ *
+ * The following fields must be supplied in order for this function
+ * to succeed:
+ *   one of either publicExponent or privateExponent
+ *   two more of the following 5 parameters.
+ *      modulus (n)
+ *      prime1  (p)
+ *      prime2  (q)
+ *      publicExponent (e)
+ *      privateExponent (d)
+ *
+ * NOTE: if only the publicExponent, privateExponent, and one prime is given,
+ * then there may be more than one RSA key that matches that combination.
+ *
+ * All parameters will be replaced in the key structure with new parameters
+ * Allocated out of the arena. There is no attempt to free the old structures.
+ * Prime1 will always be greater than prime2 (even if the caller supplies the
+ * smaller prime as prime1 or the larger prime as prime2). The parameters are
+ * not overwritten on failure.
+ *
+ *  How it works:
+ *     We can generate all the parameters from:
+ *        one of the exponents, plus the two primes. (rsa_build_key_from_primes) *
+ *     If we are given one of the exponents and both primes, we are done.
+ *     If we are given one of the exponents, the modulus and one prime, we 
+ *        caclulate the second prime by dividing the modulus by the given 
+ *        prime, giving us and exponent and 2 primes.
+ *     If we are given 2 exponents and either the modulus or one of the primes
+ *        we calculate k*phi = d*e-1, where k is an integer less than d which 
+ *        divides d*e-1. We find factor k so we can isolate phi.
+ *            phi = (p-1)(q-1)
+ *       If one of the primes are given, we can use phi to find the other prime
+ *        as follows: q = (phi/(p-1)) + 1. We now have 2 primes and an 
+ *        exponent. (NOTE: if more then one prime meets this condition, the
+ *        operation will fail. See comments elsewhere in this file about this).
+ *       If the modulus is given, then we can calculate the sum of the primes
+ *        as follows: s := (p+q), phi = (p-1)(q-1) = pq -p - q +1, pq = n ->
+ *        phi = n - s + 1, s = n - phi +1.  Now that we have s = p+q and n=pq,
+ *	  we can solve our 2 equations and 2 unknowns as follows: q=s-p ->
+ *        n=p*(s-p)= sp -p^2 -> p^2-sp+n = 0. Using the quadratic to solve for
+ *        p, p=1/2*(s+ sqrt(s*s-4*n)) [q=1/2*(s-sqrt(s*s-4*n)]. We again have
+ *        2 primes and an exponent.
+ *
+ */
+SECStatus
+RSA_PopulatePrivateKey(RSAPrivateKey *key)
+{
+    PLArenaPool *arena = NULL;
+    PRBool needPublicExponent = PR_TRUE;
+    PRBool needPrivateExponent = PR_TRUE;
+    PRBool hasModulus = PR_FALSE;
+    unsigned int keySizeInBits = 0;
+    int prime_count = 0;
+    /* standard RSA nominclature */
+    mp_int p, q, e, d, n;
+    /* remainder */
+    mp_int r;
+    mp_err err = 0;
+    SECStatus rv = SECFailure;
+
+    MP_DIGITS(&p) = 0;
+    MP_DIGITS(&q) = 0;
+    MP_DIGITS(&e) = 0;
+    MP_DIGITS(&d) = 0;
+    MP_DIGITS(&n) = 0;
+    MP_DIGITS(&r) = 0;
+    CHECK_MPI_OK( mp_init(&p) );
+    CHECK_MPI_OK( mp_init(&q) );
+    CHECK_MPI_OK( mp_init(&e) );
+    CHECK_MPI_OK( mp_init(&d) );
+    CHECK_MPI_OK( mp_init(&n) );
+    CHECK_MPI_OK( mp_init(&r) );
+ 
+    /* if the key didn't already have an arena, create one. */
+    if (key->arena == NULL) {
+	arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
+	if (!arena) {
+	    goto cleanup;
+	}
+	key->arena = arena;
+    }
+
+    /* load up the known exponents */
+    if (key->publicExponent.data) {
+        SECITEM_TO_MPINT(key->publicExponent, &e);
+	needPublicExponent = PR_FALSE;
+    } 
+    if (key->privateExponent.data) {
+        SECITEM_TO_MPINT(key->privateExponent, &d);
+	needPrivateExponent = PR_FALSE;
+    }
+    if (needPrivateExponent && needPublicExponent) {
+	/* Not enough information, we need at least one exponent */
+	err = MP_BADARG;
+	goto cleanup;
+    }
+
+    /* load up the known primes. If only one prime is given, it will be
+     * assigned 'p'. Once we have both primes, well make sure p is the larger.
+     * The value prime_count tells us howe many we have acquired.
+     */
+    if (key->prime1.data) {
+	int primeLen = key->prime1.len;
+	if (key->prime1.data[0] == 0) {
+	   primeLen--;
+	}
+	keySizeInBits = primeLen * 2 * PR_BITS_PER_BYTE;
+        SECITEM_TO_MPINT(key->prime1, &p);
+	prime_count++;
+    }
+    if (key->prime2.data) {
+	int primeLen = key->prime2.len;
+	if (key->prime2.data[0] == 0) {
+	   primeLen--;
+	}
+	keySizeInBits = primeLen * 2 * PR_BITS_PER_BYTE;
+        SECITEM_TO_MPINT(key->prime2, prime_count ? &q : &p);
+	prime_count++;
+    }
+    /* load up the modulus */
+    if (key->modulus.data) {
+	int modLen = key->modulus.len;
+	if (key->modulus.data[0] == 0) {
+	   modLen--;
+	}
+	keySizeInBits = modLen * PR_BITS_PER_BYTE;
+	SECITEM_TO_MPINT(key->modulus, &n);
+	hasModulus = PR_TRUE;
+    }
+    /* if we have the modulus and one prime, calculate the second. */
+    if ((prime_count == 1) && (hasModulus)) {
+	mp_div(&n,&p,&q,&r);
+	if (mp_cmp_z(&r) != 0) {
+	   /* p is not a factor or n, fail */
+	   err = MP_BADARG;
+	   goto cleanup;
+	}
+	prime_count++;
+    }
+
+    /* If we didn't have enough primes try to calculate the primes from
+     * the exponents */
+    if (prime_count < 2) {
+	/* if we don't have at least 2 primes at this point, then we need both
+	 * exponents and one prime or a modulus*/
+	if (!needPublicExponent && !needPrivateExponent &&
+		((prime_count > 0) || hasModulus)) {
+	    CHECK_MPI_OK(rsa_get_primes_from_exponents(&e,&d,&p,&q,
+			&n,hasModulus,keySizeInBits));
+	} else {
+	    /* not enough given parameters to get both primes */
+	    err = MP_BADARG;
+	    goto cleanup;
+	}
+     }
+
+     /* force p to the the larger prime */
+     if (mp_cmp(&p, &q) < 0)
+	mp_exch(&p, &q);
+
+     /* we now have our 2 primes and at least one exponent, we can fill
+      * in the key */
+     rv = rsa_build_from_primes(&p, &q, 
+			&e, needPublicExponent,
+			&d, needPrivateExponent,
+			key, keySizeInBits);
+cleanup:
+    mp_clear(&p);
+    mp_clear(&q);
+    mp_clear(&e);
+    mp_clear(&d);
+    mp_clear(&n);
+    mp_clear(&r);
+    if (err) {
+	MP_TO_SEC_ERROR(err);
+	rv = SECFailure;
+    }
+    if (rv && arena) {
+	PORT_FreeArena(arena, PR_TRUE);
+	key->arena = NULL;
+    }
+    return rv;
+}
+
+static unsigned int
+rsa_modulusLen(SECItem *modulus)
+{
+    unsigned char byteZero = modulus->data[0];
+    unsigned int modLen = modulus->len - !byteZero;
+    return modLen;
+}
+
+/*
+** Perform a raw public-key operation 
+**	Length of input and output buffers are equal to key's modulus len.
+*/
+SECStatus 
+RSA_PublicKeyOp(RSAPublicKey  *key, 
+                unsigned char *output, 
+                const unsigned char *input)
+{
+    unsigned int modLen, expLen, offset;
+    mp_int n, e, m, c;
+    mp_err err   = MP_OKAY;
+    SECStatus rv = SECSuccess;
+    if (!key || !output || !input) {
+	PORT_SetError(SEC_ERROR_INVALID_ARGS);
+	return SECFailure;
+    }
+    MP_DIGITS(&n) = 0;
+    MP_DIGITS(&e) = 0;
+    MP_DIGITS(&m) = 0;
+    MP_DIGITS(&c) = 0;
+    CHECK_MPI_OK( mp_init(&n) );
+    CHECK_MPI_OK( mp_init(&e) );
+    CHECK_MPI_OK( mp_init(&m) );
+    CHECK_MPI_OK( mp_init(&c) );
+    modLen = rsa_modulusLen(&key->modulus);
+    expLen = rsa_modulusLen(&key->publicExponent);
+    /* 1.  Obtain public key (n, e) */
+    if (BAD_RSA_KEY_SIZE(modLen, expLen)) {
+    	PORT_SetError(SEC_ERROR_INVALID_KEY);
+	rv = SECFailure;
+	goto cleanup;
+    }
+    SECITEM_TO_MPINT(key->modulus, &n);
+    SECITEM_TO_MPINT(key->publicExponent, &e);
+    if (e.used > n.used) {
+	/* exponent should not be greater than modulus */
+    	PORT_SetError(SEC_ERROR_INVALID_KEY);
+	rv = SECFailure;
+	goto cleanup;
+    }
+    /* 2. check input out of range (needs to be in range [0..n-1]) */
+    offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */
+    if (memcmp(input, key->modulus.data + offset, modLen) >= 0) {
+        PORT_SetError(SEC_ERROR_INPUT_LEN);
+        rv = SECFailure;
+        goto cleanup;
+    }
+    /* 2 bis.  Represent message as integer in range [0..n-1] */
+    CHECK_MPI_OK( mp_read_unsigned_octets(&m, input, modLen) );
+    /* 3.  Compute c = m**e mod n */
+#ifdef USE_MPI_EXPT_D
+    /* XXX see which is faster */
+    if (MP_USED(&e) == 1) {
+	CHECK_MPI_OK( mp_exptmod_d(&m, MP_DIGIT(&e, 0), &n, &c) );
+    } else
+#endif
+    CHECK_MPI_OK( mp_exptmod(&m, &e, &n, &c) );
+    /* 4.  result c is ciphertext */
+    err = mp_to_fixlen_octets(&c, output, modLen);
+    if (err >= 0) err = MP_OKAY;
+cleanup:
+    mp_clear(&n);
+    mp_clear(&e);
+    mp_clear(&m);
+    mp_clear(&c);
+    if (err) {
+	MP_TO_SEC_ERROR(err);
+	rv = SECFailure;
+    }
+    return rv;
+}
+
+/*
+**  RSA Private key operation (no CRT).
+*/
+static SECStatus 
+rsa_PrivateKeyOpNoCRT(RSAPrivateKey *key, mp_int *m, mp_int *c, mp_int *n,
+                      unsigned int modLen)
+{
+    mp_int d;
+    mp_err   err = MP_OKAY;
+    SECStatus rv = SECSuccess;
+    MP_DIGITS(&d) = 0;
+    CHECK_MPI_OK( mp_init(&d) );
+    SECITEM_TO_MPINT(key->privateExponent, &d);
+    /* 1. m = c**d mod n */
+    CHECK_MPI_OK( mp_exptmod(c, &d, n, m) );
+cleanup:
+    mp_clear(&d);
+    if (err) {
+	MP_TO_SEC_ERROR(err);
+	rv = SECFailure;
+    }
+    return rv;
+}
+
+/*
+**  RSA Private key operation using CRT.
+*/
+static SECStatus 
+rsa_PrivateKeyOpCRTNoCheck(RSAPrivateKey *key, mp_int *m, mp_int *c)
+{
+    mp_int p, q, d_p, d_q, qInv;
+    mp_int m1, m2, h, ctmp;
+    mp_err   err = MP_OKAY;
+    SECStatus rv = SECSuccess;
+    MP_DIGITS(&p)    = 0;
+    MP_DIGITS(&q)    = 0;
+    MP_DIGITS(&d_p)  = 0;
+    MP_DIGITS(&d_q)  = 0;
+    MP_DIGITS(&qInv) = 0;
+    MP_DIGITS(&m1)   = 0;
+    MP_DIGITS(&m2)   = 0;
+    MP_DIGITS(&h)    = 0;
+    MP_DIGITS(&ctmp) = 0;
+    CHECK_MPI_OK( mp_init(&p)    );
+    CHECK_MPI_OK( mp_init(&q)    );
+    CHECK_MPI_OK( mp_init(&d_p)  );
+    CHECK_MPI_OK( mp_init(&d_q)  );
+    CHECK_MPI_OK( mp_init(&qInv) );
+    CHECK_MPI_OK( mp_init(&m1)   );
+    CHECK_MPI_OK( mp_init(&m2)   );
+    CHECK_MPI_OK( mp_init(&h)    );
+    CHECK_MPI_OK( mp_init(&ctmp) );
+    /* copy private key parameters into mp integers */
+    SECITEM_TO_MPINT(key->prime1,      &p);    /* p */
+    SECITEM_TO_MPINT(key->prime2,      &q);    /* q */
+    SECITEM_TO_MPINT(key->exponent1,   &d_p);  /* d_p  = d mod (p-1) */
+    SECITEM_TO_MPINT(key->exponent2,   &d_q);  /* d_q  = d mod (q-1) */
+    SECITEM_TO_MPINT(key->coefficient, &qInv); /* qInv = q**-1 mod p */
+    /* 1. m1 = c**d_p mod p */
+    CHECK_MPI_OK( mp_mod(c, &p, &ctmp) );
+    CHECK_MPI_OK( mp_exptmod(&ctmp, &d_p, &p, &m1) );
+    /* 2. m2 = c**d_q mod q */
+    CHECK_MPI_OK( mp_mod(c, &q, &ctmp) );
+    CHECK_MPI_OK( mp_exptmod(&ctmp, &d_q, &q, &m2) );
+    /* 3.  h = (m1 - m2) * qInv mod p */
+    CHECK_MPI_OK( mp_submod(&m1, &m2, &p, &h) );
+    CHECK_MPI_OK( mp_mulmod(&h, &qInv, &p, &h)  );
+    /* 4.  m = m2 + h * q */
+    CHECK_MPI_OK( mp_mul(&h, &q, m) );
+    CHECK_MPI_OK( mp_add(m, &m2, m) );
+cleanup:
+    mp_clear(&p);
+    mp_clear(&q);
+    mp_clear(&d_p);
+    mp_clear(&d_q);
+    mp_clear(&qInv);
+    mp_clear(&m1);
+    mp_clear(&m2);
+    mp_clear(&h);
+    mp_clear(&ctmp);
+    if (err) {
+	MP_TO_SEC_ERROR(err);
+	rv = SECFailure;
+    }
+    return rv;
+}
+
+/*
+** An attack against RSA CRT was described by Boneh, DeMillo, and Lipton in:
+** "On the Importance of Eliminating Errors in Cryptographic Computations",
+** http://theory.stanford.edu/~dabo/papers/faults.ps.gz
+**
+** As a defense against the attack, carry out the private key operation, 
+** followed up with a public key operation to invert the result.  
+** Verify that result against the input.
+*/
+static SECStatus 
+rsa_PrivateKeyOpCRTCheckedPubKey(RSAPrivateKey *key, mp_int *m, mp_int *c)
+{
+    mp_int n, e, v;
+    mp_err   err = MP_OKAY;
+    SECStatus rv = SECSuccess;
+    MP_DIGITS(&n) = 0;
+    MP_DIGITS(&e) = 0;
+    MP_DIGITS(&v) = 0;
+    CHECK_MPI_OK( mp_init(&n) );
+    CHECK_MPI_OK( mp_init(&e) );
+    CHECK_MPI_OK( mp_init(&v) );
+    CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, m, c) );
+    SECITEM_TO_MPINT(key->modulus,        &n);
+    SECITEM_TO_MPINT(key->publicExponent, &e);
+    /* Perform a public key operation v = m ** e mod n */
+    CHECK_MPI_OK( mp_exptmod(m, &e, &n, &v) );
+    if (mp_cmp(&v, c) != 0) {
+	rv = SECFailure;
+    }
+cleanup:
+    mp_clear(&n);
+    mp_clear(&e);
+    mp_clear(&v);
+    if (err) {
+	MP_TO_SEC_ERROR(err);
+	rv = SECFailure;
+    }
+    return rv;
+}
+
+static PRCallOnceType coBPInit = { 0, 0, 0 };
+static PRStatus 
+init_blinding_params_list(void)
+{
+    blindingParamsList.lock = PZ_NewLock(nssILockOther);
+    if (!blindingParamsList.lock) {
+	PORT_SetError(SEC_ERROR_NO_MEMORY);
+	return PR_FAILURE;
+    }
+    blindingParamsList.cVar = PR_NewCondVar( blindingParamsList.lock );
+    if (!blindingParamsList.cVar) {
+	PORT_SetError(SEC_ERROR_NO_MEMORY);
+	return PR_FAILURE;
+    }
+    blindingParamsList.waitCount = 0;
+    PR_INIT_CLIST(&blindingParamsList.head);
+    return PR_SUCCESS;
+}
+
+static SECStatus
+generate_blinding_params(RSAPrivateKey *key, mp_int* f, mp_int* g, mp_int *n, 
+                         unsigned int modLen)
+{
+    SECStatus rv = SECSuccess;
+    mp_int e, k;
+    mp_err err = MP_OKAY;
+    unsigned char *kb = NULL;
+
+    MP_DIGITS(&e) = 0;
+    MP_DIGITS(&k) = 0;
+    CHECK_MPI_OK( mp_init(&e) );
+    CHECK_MPI_OK( mp_init(&k) );
+    SECITEM_TO_MPINT(key->publicExponent, &e);
+    /* generate random k < n */
+    kb = PORT_Alloc(modLen);
+    if (!kb) {
+	PORT_SetError(SEC_ERROR_NO_MEMORY);
+	goto cleanup;
+    }
+    CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(kb, modLen) );
+    CHECK_MPI_OK( mp_read_unsigned_octets(&k, kb, modLen) );
+    /* k < n */
+    CHECK_MPI_OK( mp_mod(&k, n, &k) );
+    /* f = k**e mod n */
+    CHECK_MPI_OK( mp_exptmod(&k, &e, n, f) );
+    /* g = k**-1 mod n */
+    CHECK_MPI_OK( mp_invmod(&k, n, g) );
+cleanup:
+    if (kb)
+	PORT_ZFree(kb, modLen);
+    mp_clear(&k);
+    mp_clear(&e);
+    if (err) {
+	MP_TO_SEC_ERROR(err);
+	rv = SECFailure;
+    }
+    return rv;
+}
+
+static SECStatus
+init_blinding_params(RSABlindingParams *rsabp, RSAPrivateKey *key,
+                     mp_int *n, unsigned int modLen)
+{
+    blindingParams * bp = rsabp->array;
+    int i = 0;
+
+    /* Initialize the list pointer for the element */
+    PR_INIT_CLIST(&rsabp->link);
+    for (i = 0; i < RSA_BLINDING_PARAMS_MAX_CACHE_SIZE; ++i, ++bp) {
+    	bp->next = bp + 1;
+	MP_DIGITS(&bp->f) = 0;
+	MP_DIGITS(&bp->g) = 0;
+	bp->counter = 0;
+    }
+    /* The last bp->next value was initialized with out
+     * of rsabp->array pointer and must be set to NULL 
+     */ 
+    rsabp->array[RSA_BLINDING_PARAMS_MAX_CACHE_SIZE - 1].next = NULL;
+    
+    bp          = rsabp->array;
+    rsabp->bp   = NULL;
+    rsabp->free = bp;
+
+    /* List elements are keyed using the modulus */
+    SECITEM_CopyItem(NULL, &rsabp->modulus, &key->modulus);
+
+    return SECSuccess;
+}
+
+static SECStatus
+get_blinding_params(RSAPrivateKey *key, mp_int *n, unsigned int modLen,
+                    mp_int *f, mp_int *g)
+{
+    RSABlindingParams *rsabp           = NULL;
+    blindingParams    *bpUnlinked      = NULL;
+    blindingParams    *bp, *prevbp     = NULL;
+    PRCList           *el;
+    SECStatus          rv              = SECSuccess;
+    mp_err             err             = MP_OKAY;
+    int                cmp             = -1;
+    PRBool             holdingLock     = PR_FALSE;
+
+    do {
+	if (blindingParamsList.lock == NULL) {
+	    PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
+	    return SECFailure;
+	}
+	/* Acquire the list lock */
+	PZ_Lock(blindingParamsList.lock);
+	holdingLock = PR_TRUE;
+
+	/* Walk the list looking for the private key */
+	for (el = PR_NEXT_LINK(&blindingParamsList.head);
+	     el != &blindingParamsList.head;
+	     el = PR_NEXT_LINK(el)) {
+	    rsabp = (RSABlindingParams *)el;
+	    cmp = SECITEM_CompareItem(&rsabp->modulus, &key->modulus);
+	    if (cmp >= 0) {
+		/* The key is found or not in the list. */
+		break;
+	    }
+	}
+
+	if (cmp) {
+	    /* At this point, the key is not in the list.  el should point to 
+	    ** the list element before which this key should be inserted. 
+	    */
+	    rsabp = PORT_ZNew(RSABlindingParams);
+	    if (!rsabp) {
+		PORT_SetError(SEC_ERROR_NO_MEMORY);
+		goto cleanup;
+	    }
+
+	    rv = init_blinding_params(rsabp, key, n, modLen);
+	    if (rv != SECSuccess) {
+		PORT_ZFree(rsabp, sizeof(RSABlindingParams));
+		goto cleanup;
+	    }
+
+	    /* Insert the new element into the list
+	    ** If inserting in the middle of the list, el points to the link
+	    ** to insert before.  Otherwise, the link needs to be appended to
+	    ** the end of the list, which is the same as inserting before the
+	    ** head (since el would have looped back to the head).
+	    */
+	    PR_INSERT_BEFORE(&rsabp->link, el);
+	}
+
+	/* We've found (or created) the RSAblindingParams struct for this key.
+	 * Now, search its list of ready blinding params for a usable one.
+	 */
+	while (0 != (bp = rsabp->bp)) {
+	    if (--(bp->counter) > 0) {
+		/* Found a match and there are still remaining uses left */
+		/* Return the parameters */
+		CHECK_MPI_OK( mp_copy(&bp->f, f) );
+		CHECK_MPI_OK( mp_copy(&bp->g, g) );
+
+		PZ_Unlock(blindingParamsList.lock); 
+		return SECSuccess;
+	    }
+	    /* exhausted this one, give its values to caller, and
+	     * then retire it.
+	     */
+	    mp_exch(&bp->f, f);
+	    mp_exch(&bp->g, g);
+	    mp_clear( &bp->f );
+	    mp_clear( &bp->g );
+	    bp->counter = 0;
+	    /* Move to free list */
+	    rsabp->bp   = bp->next;
+	    bp->next    = rsabp->free;
+	    rsabp->free = bp;
+	    /* In case there're threads waiting for new blinding
+	     * value - notify 1 thread the value is ready
+	     */
+	    if (blindingParamsList.waitCount > 0) {
+		PR_NotifyCondVar( blindingParamsList.cVar );
+		blindingParamsList.waitCount--;
+	    }
+	    PZ_Unlock(blindingParamsList.lock); 
+	    return SECSuccess;
+	}
+	/* We did not find a usable set of blinding params.  Can we make one? */
+	/* Find a free bp struct. */
+	prevbp = NULL;
+	if ((bp = rsabp->free) != NULL) {
+	    /* unlink this bp */
+	    rsabp->free  = bp->next;
+	    bp->next     = NULL;
+	    bpUnlinked   = bp;  /* In case we fail */
+
+	    PZ_Unlock(blindingParamsList.lock); 
+	    holdingLock = PR_FALSE;
+	    /* generate blinding parameter values for the current thread */
+	    CHECK_SEC_OK( generate_blinding_params(key, f, g, n, modLen ) );
+
+	    /* put the blinding parameter values into cache */
+	    CHECK_MPI_OK( mp_init( &bp->f) );
+	    CHECK_MPI_OK( mp_init( &bp->g) );
+	    CHECK_MPI_OK( mp_copy( f, &bp->f) );
+	    CHECK_MPI_OK( mp_copy( g, &bp->g) );
+
+	    /* Put this at head of queue of usable params. */
+	    PZ_Lock(blindingParamsList.lock);
+	    holdingLock = PR_TRUE;
+	    /* initialize RSABlindingParamsStr */
+	    bp->counter = RSA_BLINDING_PARAMS_MAX_REUSE;
+	    bp->next    = rsabp->bp;
+	    rsabp->bp   = bp;
+	    bpUnlinked  = NULL;
+	    /* In case there're threads waiting for new blinding value
+	     * just notify them the value is ready
+	     */
+	    if (blindingParamsList.waitCount > 0) {
+		PR_NotifyAllCondVar( blindingParamsList.cVar );
+		blindingParamsList.waitCount = 0;
+	    }
+	    PZ_Unlock(blindingParamsList.lock);
+	    return SECSuccess;
+	}
+	/* Here, there are no usable blinding parameters available,
+	 * and no free bp blocks, presumably because they're all 
+	 * actively having parameters generated for them.
+	 * So, we need to wait here and not eat up CPU until some 
+	 * change happens. 
+	 */
+	blindingParamsList.waitCount++;
+	PR_WaitCondVar( blindingParamsList.cVar, PR_INTERVAL_NO_TIMEOUT );
+	PZ_Unlock(blindingParamsList.lock); 
+	holdingLock = PR_FALSE;
+    } while (1);
+
+cleanup:
+    /* It is possible to reach this after the lock is already released.  */
+    if (bpUnlinked) {
+	if (!holdingLock) {
+	    PZ_Lock(blindingParamsList.lock);
+	    holdingLock = PR_TRUE;
+	}
+	bp = bpUnlinked;
+	mp_clear( &bp->f );
+	mp_clear( &bp->g );
+	bp->counter = 0;
+    	/* Must put the unlinked bp back on the free list */
+	bp->next    = rsabp->free;
+	rsabp->free = bp;
+    }
+    if (holdingLock) {
+	PZ_Unlock(blindingParamsList.lock);
+	holdingLock = PR_FALSE;
+    }
+    if (err) {
+	MP_TO_SEC_ERROR(err);
+    }
+    return SECFailure;
+}
+
+/*
+** Perform a raw private-key operation 
+**	Length of input and output buffers are equal to key's modulus len.
+*/
+static SECStatus 
+rsa_PrivateKeyOp(RSAPrivateKey *key, 
+                 unsigned char *output, 
+                 const unsigned char *input,
+                 PRBool check)
+{
+    unsigned int modLen;
+    unsigned int offset;
+    SECStatus rv = SECSuccess;
+    mp_err err;
+    mp_int n, c, m;
+    mp_int f, g;
+    if (!key || !output || !input) {
+	PORT_SetError(SEC_ERROR_INVALID_ARGS);
+	return SECFailure;
+    }
+    /* check input out of range (needs to be in range [0..n-1]) */
+    modLen = rsa_modulusLen(&key->modulus);
+    offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */
+    if (memcmp(input, key->modulus.data + offset, modLen) >= 0) {
+	PORT_SetError(SEC_ERROR_INVALID_ARGS);
+	return SECFailure;
+    }
+    MP_DIGITS(&n) = 0;
+    MP_DIGITS(&c) = 0;
+    MP_DIGITS(&m) = 0;
+    MP_DIGITS(&f) = 0;
+    MP_DIGITS(&g) = 0;
+    CHECK_MPI_OK( mp_init(&n) );
+    CHECK_MPI_OK( mp_init(&c) );
+    CHECK_MPI_OK( mp_init(&m) );
+    CHECK_MPI_OK( mp_init(&f) );
+    CHECK_MPI_OK( mp_init(&g) );
+    SECITEM_TO_MPINT(key->modulus, &n);
+    OCTETS_TO_MPINT(input, &c, modLen);
+    /* If blinding, compute pre-image of ciphertext by multiplying by
+    ** blinding factor
+    */
+    if (nssRSAUseBlinding) {
+	CHECK_SEC_OK( get_blinding_params(key, &n, modLen, &f, &g) );
+	/* c' = c*f mod n */
+	CHECK_MPI_OK( mp_mulmod(&c, &f, &n, &c) );
+    }
+    /* Do the private key operation m = c**d mod n */
+    if ( key->prime1.len      == 0 ||
+         key->prime2.len      == 0 ||
+         key->exponent1.len   == 0 ||
+         key->exponent2.len   == 0 ||
+         key->coefficient.len == 0) {
+	CHECK_SEC_OK( rsa_PrivateKeyOpNoCRT(key, &m, &c, &n, modLen) );
+    } else if (check) {
+	CHECK_SEC_OK( rsa_PrivateKeyOpCRTCheckedPubKey(key, &m, &c) );
+    } else {
+	CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, &m, &c) );
+    }
+    /* If blinding, compute post-image of plaintext by multiplying by
+    ** blinding factor
+    */
+    if (nssRSAUseBlinding) {
+	/* m = m'*g mod n */
+	CHECK_MPI_OK( mp_mulmod(&m, &g, &n, &m) );
+    }
+    err = mp_to_fixlen_octets(&m, output, modLen);
+    if (err >= 0) err = MP_OKAY;
+cleanup:
+    mp_clear(&n);
+    mp_clear(&c);
+    mp_clear(&m);
+    mp_clear(&f);
+    mp_clear(&g);
+    if (err) {
+	MP_TO_SEC_ERROR(err);
+	rv = SECFailure;
+    }
+    return rv;
+}
+
+SECStatus 
+RSA_PrivateKeyOp(RSAPrivateKey *key, 
+                 unsigned char *output, 
+                 const unsigned char *input)
+{
+    return rsa_PrivateKeyOp(key, output, input, PR_FALSE);
+}
+
+SECStatus 
+RSA_PrivateKeyOpDoubleChecked(RSAPrivateKey *key, 
+                              unsigned char *output, 
+                              const unsigned char *input)
+{
+    return rsa_PrivateKeyOp(key, output, input, PR_TRUE);
+}
+
+SECStatus
+RSA_PrivateKeyCheck(const RSAPrivateKey *key)
+{
+    mp_int p, q, n, psub1, qsub1, e, d, d_p, d_q, qInv, res;
+    mp_err   err = MP_OKAY;
+    SECStatus rv = SECSuccess;
+    MP_DIGITS(&p)    = 0;
+    MP_DIGITS(&q)    = 0;
+    MP_DIGITS(&n)    = 0;
+    MP_DIGITS(&psub1)= 0;
+    MP_DIGITS(&qsub1)= 0;
+    MP_DIGITS(&e)    = 0;
+    MP_DIGITS(&d)    = 0;
+    MP_DIGITS(&d_p)  = 0;
+    MP_DIGITS(&d_q)  = 0;
+    MP_DIGITS(&qInv) = 0;
+    MP_DIGITS(&res)  = 0;
+    CHECK_MPI_OK( mp_init(&p)    );
+    CHECK_MPI_OK( mp_init(&q)    );
+    CHECK_MPI_OK( mp_init(&n)    );
+    CHECK_MPI_OK( mp_init(&psub1));
+    CHECK_MPI_OK( mp_init(&qsub1));
+    CHECK_MPI_OK( mp_init(&e)    );
+    CHECK_MPI_OK( mp_init(&d)    );
+    CHECK_MPI_OK( mp_init(&d_p)  );
+    CHECK_MPI_OK( mp_init(&d_q)  );
+    CHECK_MPI_OK( mp_init(&qInv) );
+    CHECK_MPI_OK( mp_init(&res)  );
+
+    if (!key->modulus.data || !key->prime1.data || !key->prime2.data ||
+        !key->publicExponent.data || !key->privateExponent.data ||
+        !key->exponent1.data || !key->exponent2.data ||
+        !key->coefficient.data) {
+        /*call RSA_PopulatePrivateKey first, if the application wishes to
+         * recover these parameters */
+        err = MP_BADARG;
+        goto cleanup;
+    }
+
+    SECITEM_TO_MPINT(key->modulus,         &n);
+    SECITEM_TO_MPINT(key->prime1,          &p);
+    SECITEM_TO_MPINT(key->prime2,          &q);
+    SECITEM_TO_MPINT(key->publicExponent,  &e);
+    SECITEM_TO_MPINT(key->privateExponent, &d);
+    SECITEM_TO_MPINT(key->exponent1,       &d_p);
+    SECITEM_TO_MPINT(key->exponent2,       &d_q);
+    SECITEM_TO_MPINT(key->coefficient,     &qInv);
+    /* p > q */
+    if (mp_cmp(&p, &q) <= 0) {
+	rv = SECFailure;
+	goto cleanup;
+    }
+#define VERIFY_MPI_EQUAL(m1, m2) \
+    if (mp_cmp(m1, m2) != 0) {   \
+	rv = SECFailure;         \
+	goto cleanup;            \
+    }
+#define VERIFY_MPI_EQUAL_1(m)    \
+    if (mp_cmp_d(m, 1) != 0) {   \
+	rv = SECFailure;         \
+	goto cleanup;            \
+    }
+    /*
+     * The following errors cannot be recovered from.
+     */
+    /* n == p * q */
+    CHECK_MPI_OK( mp_mul(&p, &q, &res) );
+    VERIFY_MPI_EQUAL(&res, &n);
+    /* gcd(e, p-1) == 1 */
+    CHECK_MPI_OK( mp_sub_d(&p, 1, &psub1) );
+    CHECK_MPI_OK( mp_gcd(&e, &psub1, &res) );
+    VERIFY_MPI_EQUAL_1(&res);
+    /* gcd(e, q-1) == 1 */
+    CHECK_MPI_OK( mp_sub_d(&q, 1, &qsub1) );
+    CHECK_MPI_OK( mp_gcd(&e, &qsub1, &res) );
+    VERIFY_MPI_EQUAL_1(&res);
+    /* d*e == 1 mod p-1 */
+    CHECK_MPI_OK( mp_mulmod(&d, &e, &psub1, &res) );
+    VERIFY_MPI_EQUAL_1(&res);
+    /* d*e == 1 mod q-1 */
+    CHECK_MPI_OK( mp_mulmod(&d, &e, &qsub1, &res) );
+    VERIFY_MPI_EQUAL_1(&res);
+    /*
+     * The following errors can be recovered from. However, the purpose of this
+     * function is to check consistency, so they are not.
+     */
+    /* d_p == d mod p-1 */
+    CHECK_MPI_OK( mp_mod(&d, &psub1, &res) );
+    VERIFY_MPI_EQUAL(&res, &d_p);
+    /* d_q == d mod q-1 */
+    CHECK_MPI_OK( mp_mod(&d, &qsub1, &res) );
+    VERIFY_MPI_EQUAL(&res, &d_q);
+    /* q * q**-1 == 1 mod p */
+    CHECK_MPI_OK( mp_mulmod(&q, &qInv, &p, &res) );
+    VERIFY_MPI_EQUAL_1(&res);
+
+cleanup:
+    mp_clear(&n);
+    mp_clear(&p);
+    mp_clear(&q);
+    mp_clear(&psub1);
+    mp_clear(&qsub1);
+    mp_clear(&e);
+    mp_clear(&d);
+    mp_clear(&d_p);
+    mp_clear(&d_q);
+    mp_clear(&qInv);
+    mp_clear(&res);
+    if (err) {
+	MP_TO_SEC_ERROR(err);
+	rv = SECFailure;
+    }
+    return rv;
+}
+
+static SECStatus RSA_Init(void)
+{
+    if (PR_CallOnce(&coBPInit, init_blinding_params_list) != PR_SUCCESS) {
+        PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
+        return SECFailure;
+    }
+    return SECSuccess;
+}
+
+SECStatus BL_Init(void)
+{
+    return RSA_Init();
+}
+
+/* cleanup at shutdown */
+void RSA_Cleanup(void)
+{
+    blindingParams * bp = NULL;
+    if (!coBPInit.initialized)
+	return;
+
+    while (!PR_CLIST_IS_EMPTY(&blindingParamsList.head)) {
+	RSABlindingParams *rsabp = 
+	    (RSABlindingParams *)PR_LIST_HEAD(&blindingParamsList.head);
+	PR_REMOVE_LINK(&rsabp->link);
+	/* clear parameters cache */
+	while (rsabp->bp != NULL) {
+	    bp = rsabp->bp;
+	    rsabp->bp = rsabp->bp->next;
+	    mp_clear( &bp->f );
+	    mp_clear( &bp->g );
+	}
+	SECITEM_FreeItem(&rsabp->modulus,PR_FALSE);
+	PORT_Free(rsabp);
+    }
+
+    if (blindingParamsList.cVar) {
+	PR_DestroyCondVar(blindingParamsList.cVar);
+	blindingParamsList.cVar = NULL;
+    }
+
+    if (blindingParamsList.lock) {
+	SKIP_AFTER_FORK(PZ_DestroyLock(blindingParamsList.lock));
+	blindingParamsList.lock = NULL;
+    }
+
+    coBPInit.initialized = 0;
+    coBPInit.inProgress = 0;
+    coBPInit.status = 0;
+}
+
+/*
+ * need a central place for this function to free up all the memory that
+ * free_bl may have allocated along the way. Currently only RSA does this,
+ * so I've put it here for now.
+ */
+void BL_Cleanup(void)
+{
+    RSA_Cleanup();
+}
+
+#ifdef NSS_STATIC
+void
+BL_Unload(void)
+{
+}
+#endif
+
+PRBool bl_parentForkedAfterC_Initialize;
+
+/*
+ * Set fork flag so it can be tested in SKIP_AFTER_FORK on relevant platforms.
+ */
+void BL_SetForkState(PRBool forked)
+{
+    bl_parentForkedAfterC_Initialize = forked;
+}
+
This site is hosted by Intevation GmbH (Datenschutzerklärung und Impressum | Privacy Policy and Imprint)