diff nss/lib/freebl/sha_fast.c @ 0:1e5118fa0cb1

This is NSS with a Cmake Buildsyste To compile a static NSS library for Windows we've used the Chromium-NSS fork and added a Cmake buildsystem to compile it statically for Windows. See README.chromium for chromium changes and README.trustbridge for our modifications.
author Andre Heinecke <andre.heinecke@intevation.de>
date Mon, 28 Jul 2014 10:47:06 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/nss/lib/freebl/sha_fast.c	Mon Jul 28 10:47:06 2014 +0200
@@ -0,0 +1,463 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#ifdef FREEBL_NO_DEPEND
+#include "stubs.h"
+#endif
+
+#include <memory.h>
+#include "blapi.h"
+#include "sha_fast.h"
+#include "prerror.h"
+
+#ifdef TRACING_SSL
+#include "ssl.h"
+#include "ssltrace.h"
+#endif
+
+static void shaCompress(volatile SHA_HW_t *X, const PRUint32 * datain);
+
+#define W u.w
+#define B u.b
+
+
+#define SHA_F1(X,Y,Z) ((((Y)^(Z))&(X))^(Z))
+#define SHA_F2(X,Y,Z) ((X)^(Y)^(Z))
+#define SHA_F3(X,Y,Z) (((X)&(Y))|((Z)&((X)|(Y))))
+#define SHA_F4(X,Y,Z) ((X)^(Y)^(Z))
+
+#define SHA_MIX(n,a,b,c)    XW(n) = SHA_ROTL(XW(a)^XW(b)^XW(c)^XW(n), 1)
+
+/*
+ *  SHA: initialize context
+ */
+void 
+SHA1_Begin(SHA1Context *ctx)
+{
+  ctx->size = 0;
+  /*
+   *  Initialize H with constants from FIPS180-1.
+   */
+  ctx->H[0] = 0x67452301L;
+  ctx->H[1] = 0xefcdab89L;
+  ctx->H[2] = 0x98badcfeL;
+  ctx->H[3] = 0x10325476L;
+  ctx->H[4] = 0xc3d2e1f0L;
+}
+
+/* Explanation of H array and index values:
+ * The context's H array is actually the concatenation of two arrays 
+ * defined by SHA1, the H array of state variables (5 elements),
+ * and the W array of intermediate values, of which there are 16 elements.
+ * The W array starts at H[5], that is W[0] is H[5].
+ * Although these values are defined as 32-bit values, we use 64-bit
+ * variables to hold them because the AMD64 stores 64 bit values in
+ * memory MUCH faster than it stores any smaller values.
+ *
+ * Rather than passing the context structure to shaCompress, we pass
+ * this combined array of H and W values.  We do not pass the address
+ * of the first element of this array, but rather pass the address of an
+ * element in the middle of the array, element X.  Presently X[0] is H[11].
+ * So we pass the address of H[11] as the address of array X to shaCompress.
+ * Then shaCompress accesses the members of the array using positive AND 
+ * negative indexes.  
+ *
+ * Pictorially: (each element is 8 bytes)
+ * H | H0 H1 H2 H3 H4 W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 Wa Wb Wc Wd We Wf |
+ * X |-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 |
+ * 
+ * The byte offset from X[0] to any member of H and W is always 
+ * representable in a signed 8-bit value, which will be encoded 
+ * as a single byte offset in the X86-64 instruction set.  
+ * If we didn't pass the address of H[11], and instead passed the 
+ * address of H[0], the offsets to elements H[16] and above would be
+ * greater than 127, not representable in a signed 8-bit value, and the 
+ * x86-64 instruction set would encode every such offset as a 32-bit 
+ * signed number in each instruction that accessed element H[16] or 
+ * higher.  This results in much bigger and slower code. 
+ */
+#if !defined(SHA_PUT_W_IN_STACK)
+#define H2X 11 /* X[0] is H[11], and H[0] is X[-11] */
+#define W2X  6 /* X[0] is W[6],  and W[0] is X[-6]  */
+#else
+#define H2X 0
+#endif
+
+/*
+ *  SHA: Add data to context.
+ */
+void 
+SHA1_Update(SHA1Context *ctx, const unsigned char *dataIn, unsigned int len) 
+{
+  register unsigned int lenB;
+  register unsigned int togo;
+
+  if (!len)
+    return;
+
+  /* accumulate the byte count. */
+  lenB = (unsigned int)(ctx->size) & 63U;
+
+  ctx->size += len;
+
+  /*
+   *  Read the data into W and process blocks as they get full
+   */
+  if (lenB > 0) {
+    togo = 64U - lenB;
+    if (len < togo)
+      togo = len;
+    memcpy(ctx->B + lenB, dataIn, togo);
+    len    -= togo;
+    dataIn += togo;
+    lenB    = (lenB + togo) & 63U;
+    if (!lenB) {
+      shaCompress(&ctx->H[H2X], ctx->W);
+    }
+  }
+#if !defined(SHA_ALLOW_UNALIGNED_ACCESS)
+  if ((ptrdiff_t)dataIn % sizeof(PRUint32)) {
+    while (len >= 64U) {
+      memcpy(ctx->B, dataIn, 64);
+      len    -= 64U;
+      shaCompress(&ctx->H[H2X], ctx->W);
+      dataIn += 64U;
+    }
+  } else 
+#endif
+  {
+    while (len >= 64U) {
+      len    -= 64U;
+      shaCompress(&ctx->H[H2X], (PRUint32 *)dataIn);
+      dataIn += 64U;
+    }
+  }
+  if (len) {
+    memcpy(ctx->B, dataIn, len);
+  }
+}
+
+
+/*
+ *  SHA: Generate hash value from context
+ */
+void 
+SHA1_End(SHA1Context *ctx, unsigned char *hashout,
+         unsigned int *pDigestLen, unsigned int maxDigestLen)
+{
+  register PRUint64 size;
+  register PRUint32 lenB;
+  PRUint32 tmpbuf[5];
+
+  static const unsigned char bulk_pad[64] = { 0x80,0,0,0,0,0,0,0,0,0,
+          0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
+          0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0  };
+#define tmp lenB
+
+  PORT_Assert (maxDigestLen >= SHA1_LENGTH);
+
+  /*
+   *  Pad with a binary 1 (e.g. 0x80), then zeroes, then length in bits
+   */
+  size = ctx->size;
+
+  lenB = (PRUint32)size & 63;
+  SHA1_Update(ctx, bulk_pad, (((55+64) - lenB) & 63) + 1);
+  PORT_Assert(((PRUint32)ctx->size & 63) == 56);
+  /* Convert size from bytes to bits. */
+  size <<= 3;
+  ctx->W[14] = SHA_HTONL((PRUint32)(size >> 32));
+  ctx->W[15] = SHA_HTONL((PRUint32)size);
+  shaCompress(&ctx->H[H2X], ctx->W);
+
+  /*
+   *  Output hash
+   */
+  SHA_STORE_RESULT;
+  if (pDigestLen) {
+    *pDigestLen = SHA1_LENGTH;
+  }
+#undef tmp
+}
+
+void
+SHA1_EndRaw(SHA1Context *ctx, unsigned char *hashout,
+            unsigned int *pDigestLen, unsigned int maxDigestLen)
+{
+#if defined(SHA_NEED_TMP_VARIABLE)
+  register PRUint32 tmp;
+#endif
+  PRUint32 tmpbuf[5];
+  PORT_Assert (maxDigestLen >= SHA1_LENGTH);
+
+  SHA_STORE_RESULT;
+  if (pDigestLen)
+    *pDigestLen = SHA1_LENGTH;
+}
+
+#undef B
+/*
+ *  SHA: Compression function, unrolled.
+ *
+ * Some operations in shaCompress are done as 5 groups of 16 operations.
+ * Others are done as 4 groups of 20 operations.
+ * The code below shows that structure.
+ *
+ * The functions that compute the new values of the 5 state variables
+ * A-E are done in 4 groups of 20 operations (or you may also think
+ * of them as being done in 16 groups of 5 operations).  They are
+ * done by the SHA_RNDx macros below, in the right column.
+ *
+ * The functions that set the 16 values of the W array are done in 
+ * 5 groups of 16 operations.  The first group is done by the 
+ * LOAD macros below, the latter 4 groups are done by SHA_MIX below,
+ * in the left column.
+ *
+ * gcc's optimizer observes that each member of the W array is assigned
+ * a value 5 times in this code.  It reduces the number of store 
+ * operations done to the W array in the context (that is, in the X array)
+ * by creating a W array on the stack, and storing the W values there for 
+ * the first 4 groups of operations on W, and storing the values in the 
+ * context's W array only in the fifth group.  This is undesirable.
+ * It is MUCH bigger code than simply using the context's W array, because 
+ * all the offsets to the W array in the stack are 32-bit signed offsets, 
+ * and it is no faster than storing the values in the context's W array. 
+ *
+ * The original code for sha_fast.c prevented this creation of a separate 
+ * W array in the stack by creating a W array of 80 members, each of
+ * whose elements is assigned only once. It also separated the computations
+ * of the W array values and the computations of the values for the 5
+ * state variables into two separate passes, W's, then A-E's so that the 
+ * second pass could be done all in registers (except for accessing the W
+ * array) on machines with fewer registers.  The method is suboptimal
+ * for machines with enough registers to do it all in one pass, and it
+ * necessitates using many instructions with 32-bit offsets.
+ *
+ * This code eliminates the separate W array on the stack by a completely
+ * different means: by declaring the X array volatile.  This prevents
+ * the optimizer from trying to reduce the use of the X array by the
+ * creation of a MORE expensive W array on the stack. The result is
+ * that all instructions use signed 8-bit offsets and not 32-bit offsets.
+ *
+ * The combination of this code and the -O3 optimizer flag on GCC 3.4.3
+ * results in code that is 3 times faster than the previous NSS sha_fast
+ * code on AMD64.
+ */
+static void 
+shaCompress(volatile SHA_HW_t *X, const PRUint32 *inbuf) 
+{
+  register SHA_HW_t A, B, C, D, E;
+
+#if defined(SHA_NEED_TMP_VARIABLE)
+  register PRUint32 tmp;
+#endif
+
+#if !defined(SHA_PUT_W_IN_STACK)
+#define XH(n) X[n-H2X]
+#define XW(n) X[n-W2X]
+#else
+  SHA_HW_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7,
+           w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
+#define XW(n) w_ ## n
+#define XH(n) X[n]
+#endif
+
+#define K0 0x5a827999L
+#define K1 0x6ed9eba1L
+#define K2 0x8f1bbcdcL
+#define K3 0xca62c1d6L
+
+#define SHA_RND1(a,b,c,d,e,n) \
+  a = SHA_ROTL(b,5)+SHA_F1(c,d,e)+a+XW(n)+K0; c=SHA_ROTL(c,30) 
+#define SHA_RND2(a,b,c,d,e,n) \
+  a = SHA_ROTL(b,5)+SHA_F2(c,d,e)+a+XW(n)+K1; c=SHA_ROTL(c,30) 
+#define SHA_RND3(a,b,c,d,e,n) \
+  a = SHA_ROTL(b,5)+SHA_F3(c,d,e)+a+XW(n)+K2; c=SHA_ROTL(c,30) 
+#define SHA_RND4(a,b,c,d,e,n) \
+  a = SHA_ROTL(b,5)+SHA_F4(c,d,e)+a+XW(n)+K3; c=SHA_ROTL(c,30) 
+
+#define LOAD(n) XW(n) = SHA_HTONL(inbuf[n])
+
+  A = XH(0);
+  B = XH(1);
+  C = XH(2);
+  D = XH(3);
+  E = XH(4);
+
+  LOAD(0);		   SHA_RND1(E,A,B,C,D, 0);
+  LOAD(1);		   SHA_RND1(D,E,A,B,C, 1);
+  LOAD(2);		   SHA_RND1(C,D,E,A,B, 2);
+  LOAD(3);		   SHA_RND1(B,C,D,E,A, 3);
+  LOAD(4);		   SHA_RND1(A,B,C,D,E, 4);
+  LOAD(5);		   SHA_RND1(E,A,B,C,D, 5);
+  LOAD(6);		   SHA_RND1(D,E,A,B,C, 6);
+  LOAD(7);		   SHA_RND1(C,D,E,A,B, 7);
+  LOAD(8);		   SHA_RND1(B,C,D,E,A, 8);
+  LOAD(9);		   SHA_RND1(A,B,C,D,E, 9);
+  LOAD(10);		   SHA_RND1(E,A,B,C,D,10);
+  LOAD(11);		   SHA_RND1(D,E,A,B,C,11);
+  LOAD(12);		   SHA_RND1(C,D,E,A,B,12);
+  LOAD(13);		   SHA_RND1(B,C,D,E,A,13);
+  LOAD(14);		   SHA_RND1(A,B,C,D,E,14);
+  LOAD(15);		   SHA_RND1(E,A,B,C,D,15);
+
+  SHA_MIX( 0, 13,  8,  2); SHA_RND1(D,E,A,B,C, 0);
+  SHA_MIX( 1, 14,  9,  3); SHA_RND1(C,D,E,A,B, 1);
+  SHA_MIX( 2, 15, 10,  4); SHA_RND1(B,C,D,E,A, 2);
+  SHA_MIX( 3,  0, 11,  5); SHA_RND1(A,B,C,D,E, 3);
+
+  SHA_MIX( 4,  1, 12,  6); SHA_RND2(E,A,B,C,D, 4);
+  SHA_MIX( 5,  2, 13,  7); SHA_RND2(D,E,A,B,C, 5);
+  SHA_MIX( 6,  3, 14,  8); SHA_RND2(C,D,E,A,B, 6);
+  SHA_MIX( 7,  4, 15,  9); SHA_RND2(B,C,D,E,A, 7);
+  SHA_MIX( 8,  5,  0, 10); SHA_RND2(A,B,C,D,E, 8);
+  SHA_MIX( 9,  6,  1, 11); SHA_RND2(E,A,B,C,D, 9);
+  SHA_MIX(10,  7,  2, 12); SHA_RND2(D,E,A,B,C,10);
+  SHA_MIX(11,  8,  3, 13); SHA_RND2(C,D,E,A,B,11);
+  SHA_MIX(12,  9,  4, 14); SHA_RND2(B,C,D,E,A,12);
+  SHA_MIX(13, 10,  5, 15); SHA_RND2(A,B,C,D,E,13);
+  SHA_MIX(14, 11,  6,  0); SHA_RND2(E,A,B,C,D,14);
+  SHA_MIX(15, 12,  7,  1); SHA_RND2(D,E,A,B,C,15);
+
+  SHA_MIX( 0, 13,  8,  2); SHA_RND2(C,D,E,A,B, 0);
+  SHA_MIX( 1, 14,  9,  3); SHA_RND2(B,C,D,E,A, 1);
+  SHA_MIX( 2, 15, 10,  4); SHA_RND2(A,B,C,D,E, 2);
+  SHA_MIX( 3,  0, 11,  5); SHA_RND2(E,A,B,C,D, 3);
+  SHA_MIX( 4,  1, 12,  6); SHA_RND2(D,E,A,B,C, 4);
+  SHA_MIX( 5,  2, 13,  7); SHA_RND2(C,D,E,A,B, 5);
+  SHA_MIX( 6,  3, 14,  8); SHA_RND2(B,C,D,E,A, 6);
+  SHA_MIX( 7,  4, 15,  9); SHA_RND2(A,B,C,D,E, 7);
+
+  SHA_MIX( 8,  5,  0, 10); SHA_RND3(E,A,B,C,D, 8);
+  SHA_MIX( 9,  6,  1, 11); SHA_RND3(D,E,A,B,C, 9);
+  SHA_MIX(10,  7,  2, 12); SHA_RND3(C,D,E,A,B,10);
+  SHA_MIX(11,  8,  3, 13); SHA_RND3(B,C,D,E,A,11);
+  SHA_MIX(12,  9,  4, 14); SHA_RND3(A,B,C,D,E,12);
+  SHA_MIX(13, 10,  5, 15); SHA_RND3(E,A,B,C,D,13);
+  SHA_MIX(14, 11,  6,  0); SHA_RND3(D,E,A,B,C,14);
+  SHA_MIX(15, 12,  7,  1); SHA_RND3(C,D,E,A,B,15);
+
+  SHA_MIX( 0, 13,  8,  2); SHA_RND3(B,C,D,E,A, 0);
+  SHA_MIX( 1, 14,  9,  3); SHA_RND3(A,B,C,D,E, 1);
+  SHA_MIX( 2, 15, 10,  4); SHA_RND3(E,A,B,C,D, 2);
+  SHA_MIX( 3,  0, 11,  5); SHA_RND3(D,E,A,B,C, 3);
+  SHA_MIX( 4,  1, 12,  6); SHA_RND3(C,D,E,A,B, 4);
+  SHA_MIX( 5,  2, 13,  7); SHA_RND3(B,C,D,E,A, 5);
+  SHA_MIX( 6,  3, 14,  8); SHA_RND3(A,B,C,D,E, 6);
+  SHA_MIX( 7,  4, 15,  9); SHA_RND3(E,A,B,C,D, 7);
+  SHA_MIX( 8,  5,  0, 10); SHA_RND3(D,E,A,B,C, 8);
+  SHA_MIX( 9,  6,  1, 11); SHA_RND3(C,D,E,A,B, 9);
+  SHA_MIX(10,  7,  2, 12); SHA_RND3(B,C,D,E,A,10);
+  SHA_MIX(11,  8,  3, 13); SHA_RND3(A,B,C,D,E,11);
+
+  SHA_MIX(12,  9,  4, 14); SHA_RND4(E,A,B,C,D,12);
+  SHA_MIX(13, 10,  5, 15); SHA_RND4(D,E,A,B,C,13);
+  SHA_MIX(14, 11,  6,  0); SHA_RND4(C,D,E,A,B,14);
+  SHA_MIX(15, 12,  7,  1); SHA_RND4(B,C,D,E,A,15);
+
+  SHA_MIX( 0, 13,  8,  2); SHA_RND4(A,B,C,D,E, 0);
+  SHA_MIX( 1, 14,  9,  3); SHA_RND4(E,A,B,C,D, 1);
+  SHA_MIX( 2, 15, 10,  4); SHA_RND4(D,E,A,B,C, 2);
+  SHA_MIX( 3,  0, 11,  5); SHA_RND4(C,D,E,A,B, 3);
+  SHA_MIX( 4,  1, 12,  6); SHA_RND4(B,C,D,E,A, 4);
+  SHA_MIX( 5,  2, 13,  7); SHA_RND4(A,B,C,D,E, 5);
+  SHA_MIX( 6,  3, 14,  8); SHA_RND4(E,A,B,C,D, 6);
+  SHA_MIX( 7,  4, 15,  9); SHA_RND4(D,E,A,B,C, 7);
+  SHA_MIX( 8,  5,  0, 10); SHA_RND4(C,D,E,A,B, 8);
+  SHA_MIX( 9,  6,  1, 11); SHA_RND4(B,C,D,E,A, 9);
+  SHA_MIX(10,  7,  2, 12); SHA_RND4(A,B,C,D,E,10);
+  SHA_MIX(11,  8,  3, 13); SHA_RND4(E,A,B,C,D,11);
+  SHA_MIX(12,  9,  4, 14); SHA_RND4(D,E,A,B,C,12);
+  SHA_MIX(13, 10,  5, 15); SHA_RND4(C,D,E,A,B,13);
+  SHA_MIX(14, 11,  6,  0); SHA_RND4(B,C,D,E,A,14);
+  SHA_MIX(15, 12,  7,  1); SHA_RND4(A,B,C,D,E,15);
+
+  XH(0) += A;
+  XH(1) += B;
+  XH(2) += C;
+  XH(3) += D;
+  XH(4) += E;
+}
+
+/*************************************************************************
+** Code below this line added to make SHA code support BLAPI interface
+*/
+
+SHA1Context *
+SHA1_NewContext(void)
+{
+    SHA1Context *cx;
+
+    /* no need to ZNew, SHA1_Begin will init the context */
+    cx = PORT_New(SHA1Context);
+    return cx;
+}
+
+/* Zero and free the context */
+void
+SHA1_DestroyContext(SHA1Context *cx, PRBool freeit)
+{
+    memset(cx, 0, sizeof *cx);
+    if (freeit) {
+        PORT_Free(cx);
+    }
+}
+
+SECStatus
+SHA1_HashBuf(unsigned char *dest, const unsigned char *src, PRUint32 src_length)
+{
+    SHA1Context ctx;
+    unsigned int outLen;
+
+    SHA1_Begin(&ctx);
+    SHA1_Update(&ctx, src, src_length);
+    SHA1_End(&ctx, dest, &outLen, SHA1_LENGTH);
+    memset(&ctx, 0, sizeof ctx);
+    return SECSuccess;
+}
+
+/* Hash a null-terminated character string. */
+SECStatus
+SHA1_Hash(unsigned char *dest, const char *src)
+{
+    return SHA1_HashBuf(dest, (const unsigned char *)src, PORT_Strlen (src));
+}
+
+/*
+ * need to support save/restore state in pkcs11. Stores all the info necessary
+ * for a structure into just a stream of bytes.
+ */
+unsigned int
+SHA1_FlattenSize(SHA1Context *cx)
+{
+    return sizeof(SHA1Context);
+}
+
+SECStatus
+SHA1_Flatten(SHA1Context *cx,unsigned char *space)
+{
+    PORT_Memcpy(space,cx, sizeof(SHA1Context));
+    return SECSuccess;
+}
+
+SHA1Context *
+SHA1_Resurrect(unsigned char *space,void *arg)
+{
+    SHA1Context *cx = SHA1_NewContext();
+    if (cx == NULL) return NULL;
+
+    PORT_Memcpy(cx,space, sizeof(SHA1Context));
+    return cx;
+}
+
+void SHA1_Clone(SHA1Context *dest, SHA1Context *src) 
+{
+    memcpy(dest, src, sizeof *dest);
+}
+
+void
+SHA1_TraceState(SHA1Context *ctx)
+{
+    PORT_SetError(PR_NOT_IMPLEMENTED_ERROR);
+}
This site is hosted by Intevation GmbH (Datenschutzerklärung und Impressum | Privacy Policy and Imprint)