Mercurial > trustbridge > nss-cmake-static
diff nss/lib/freebl/sha_fast.c @ 0:1e5118fa0cb1
This is NSS with a Cmake Buildsyste
To compile a static NSS library for Windows we've used the
Chromium-NSS fork and added a Cmake buildsystem to compile
it statically for Windows. See README.chromium for chromium
changes and README.trustbridge for our modifications.
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Mon, 28 Jul 2014 10:47:06 +0200 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/nss/lib/freebl/sha_fast.c Mon Jul 28 10:47:06 2014 +0200 @@ -0,0 +1,463 @@ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifdef FREEBL_NO_DEPEND +#include "stubs.h" +#endif + +#include <memory.h> +#include "blapi.h" +#include "sha_fast.h" +#include "prerror.h" + +#ifdef TRACING_SSL +#include "ssl.h" +#include "ssltrace.h" +#endif + +static void shaCompress(volatile SHA_HW_t *X, const PRUint32 * datain); + +#define W u.w +#define B u.b + + +#define SHA_F1(X,Y,Z) ((((Y)^(Z))&(X))^(Z)) +#define SHA_F2(X,Y,Z) ((X)^(Y)^(Z)) +#define SHA_F3(X,Y,Z) (((X)&(Y))|((Z)&((X)|(Y)))) +#define SHA_F4(X,Y,Z) ((X)^(Y)^(Z)) + +#define SHA_MIX(n,a,b,c) XW(n) = SHA_ROTL(XW(a)^XW(b)^XW(c)^XW(n), 1) + +/* + * SHA: initialize context + */ +void +SHA1_Begin(SHA1Context *ctx) +{ + ctx->size = 0; + /* + * Initialize H with constants from FIPS180-1. + */ + ctx->H[0] = 0x67452301L; + ctx->H[1] = 0xefcdab89L; + ctx->H[2] = 0x98badcfeL; + ctx->H[3] = 0x10325476L; + ctx->H[4] = 0xc3d2e1f0L; +} + +/* Explanation of H array and index values: + * The context's H array is actually the concatenation of two arrays + * defined by SHA1, the H array of state variables (5 elements), + * and the W array of intermediate values, of which there are 16 elements. + * The W array starts at H[5], that is W[0] is H[5]. + * Although these values are defined as 32-bit values, we use 64-bit + * variables to hold them because the AMD64 stores 64 bit values in + * memory MUCH faster than it stores any smaller values. + * + * Rather than passing the context structure to shaCompress, we pass + * this combined array of H and W values. We do not pass the address + * of the first element of this array, but rather pass the address of an + * element in the middle of the array, element X. Presently X[0] is H[11]. + * So we pass the address of H[11] as the address of array X to shaCompress. + * Then shaCompress accesses the members of the array using positive AND + * negative indexes. + * + * Pictorially: (each element is 8 bytes) + * H | H0 H1 H2 H3 H4 W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 Wa Wb Wc Wd We Wf | + * X |-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 | + * + * The byte offset from X[0] to any member of H and W is always + * representable in a signed 8-bit value, which will be encoded + * as a single byte offset in the X86-64 instruction set. + * If we didn't pass the address of H[11], and instead passed the + * address of H[0], the offsets to elements H[16] and above would be + * greater than 127, not representable in a signed 8-bit value, and the + * x86-64 instruction set would encode every such offset as a 32-bit + * signed number in each instruction that accessed element H[16] or + * higher. This results in much bigger and slower code. + */ +#if !defined(SHA_PUT_W_IN_STACK) +#define H2X 11 /* X[0] is H[11], and H[0] is X[-11] */ +#define W2X 6 /* X[0] is W[6], and W[0] is X[-6] */ +#else +#define H2X 0 +#endif + +/* + * SHA: Add data to context. + */ +void +SHA1_Update(SHA1Context *ctx, const unsigned char *dataIn, unsigned int len) +{ + register unsigned int lenB; + register unsigned int togo; + + if (!len) + return; + + /* accumulate the byte count. */ + lenB = (unsigned int)(ctx->size) & 63U; + + ctx->size += len; + + /* + * Read the data into W and process blocks as they get full + */ + if (lenB > 0) { + togo = 64U - lenB; + if (len < togo) + togo = len; + memcpy(ctx->B + lenB, dataIn, togo); + len -= togo; + dataIn += togo; + lenB = (lenB + togo) & 63U; + if (!lenB) { + shaCompress(&ctx->H[H2X], ctx->W); + } + } +#if !defined(SHA_ALLOW_UNALIGNED_ACCESS) + if ((ptrdiff_t)dataIn % sizeof(PRUint32)) { + while (len >= 64U) { + memcpy(ctx->B, dataIn, 64); + len -= 64U; + shaCompress(&ctx->H[H2X], ctx->W); + dataIn += 64U; + } + } else +#endif + { + while (len >= 64U) { + len -= 64U; + shaCompress(&ctx->H[H2X], (PRUint32 *)dataIn); + dataIn += 64U; + } + } + if (len) { + memcpy(ctx->B, dataIn, len); + } +} + + +/* + * SHA: Generate hash value from context + */ +void +SHA1_End(SHA1Context *ctx, unsigned char *hashout, + unsigned int *pDigestLen, unsigned int maxDigestLen) +{ + register PRUint64 size; + register PRUint32 lenB; + PRUint32 tmpbuf[5]; + + static const unsigned char bulk_pad[64] = { 0x80,0,0,0,0,0,0,0,0,0, + 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, + 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; +#define tmp lenB + + PORT_Assert (maxDigestLen >= SHA1_LENGTH); + + /* + * Pad with a binary 1 (e.g. 0x80), then zeroes, then length in bits + */ + size = ctx->size; + + lenB = (PRUint32)size & 63; + SHA1_Update(ctx, bulk_pad, (((55+64) - lenB) & 63) + 1); + PORT_Assert(((PRUint32)ctx->size & 63) == 56); + /* Convert size from bytes to bits. */ + size <<= 3; + ctx->W[14] = SHA_HTONL((PRUint32)(size >> 32)); + ctx->W[15] = SHA_HTONL((PRUint32)size); + shaCompress(&ctx->H[H2X], ctx->W); + + /* + * Output hash + */ + SHA_STORE_RESULT; + if (pDigestLen) { + *pDigestLen = SHA1_LENGTH; + } +#undef tmp +} + +void +SHA1_EndRaw(SHA1Context *ctx, unsigned char *hashout, + unsigned int *pDigestLen, unsigned int maxDigestLen) +{ +#if defined(SHA_NEED_TMP_VARIABLE) + register PRUint32 tmp; +#endif + PRUint32 tmpbuf[5]; + PORT_Assert (maxDigestLen >= SHA1_LENGTH); + + SHA_STORE_RESULT; + if (pDigestLen) + *pDigestLen = SHA1_LENGTH; +} + +#undef B +/* + * SHA: Compression function, unrolled. + * + * Some operations in shaCompress are done as 5 groups of 16 operations. + * Others are done as 4 groups of 20 operations. + * The code below shows that structure. + * + * The functions that compute the new values of the 5 state variables + * A-E are done in 4 groups of 20 operations (or you may also think + * of them as being done in 16 groups of 5 operations). They are + * done by the SHA_RNDx macros below, in the right column. + * + * The functions that set the 16 values of the W array are done in + * 5 groups of 16 operations. The first group is done by the + * LOAD macros below, the latter 4 groups are done by SHA_MIX below, + * in the left column. + * + * gcc's optimizer observes that each member of the W array is assigned + * a value 5 times in this code. It reduces the number of store + * operations done to the W array in the context (that is, in the X array) + * by creating a W array on the stack, and storing the W values there for + * the first 4 groups of operations on W, and storing the values in the + * context's W array only in the fifth group. This is undesirable. + * It is MUCH bigger code than simply using the context's W array, because + * all the offsets to the W array in the stack are 32-bit signed offsets, + * and it is no faster than storing the values in the context's W array. + * + * The original code for sha_fast.c prevented this creation of a separate + * W array in the stack by creating a W array of 80 members, each of + * whose elements is assigned only once. It also separated the computations + * of the W array values and the computations of the values for the 5 + * state variables into two separate passes, W's, then A-E's so that the + * second pass could be done all in registers (except for accessing the W + * array) on machines with fewer registers. The method is suboptimal + * for machines with enough registers to do it all in one pass, and it + * necessitates using many instructions with 32-bit offsets. + * + * This code eliminates the separate W array on the stack by a completely + * different means: by declaring the X array volatile. This prevents + * the optimizer from trying to reduce the use of the X array by the + * creation of a MORE expensive W array on the stack. The result is + * that all instructions use signed 8-bit offsets and not 32-bit offsets. + * + * The combination of this code and the -O3 optimizer flag on GCC 3.4.3 + * results in code that is 3 times faster than the previous NSS sha_fast + * code on AMD64. + */ +static void +shaCompress(volatile SHA_HW_t *X, const PRUint32 *inbuf) +{ + register SHA_HW_t A, B, C, D, E; + +#if defined(SHA_NEED_TMP_VARIABLE) + register PRUint32 tmp; +#endif + +#if !defined(SHA_PUT_W_IN_STACK) +#define XH(n) X[n-H2X] +#define XW(n) X[n-W2X] +#else + SHA_HW_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7, + w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15; +#define XW(n) w_ ## n +#define XH(n) X[n] +#endif + +#define K0 0x5a827999L +#define K1 0x6ed9eba1L +#define K2 0x8f1bbcdcL +#define K3 0xca62c1d6L + +#define SHA_RND1(a,b,c,d,e,n) \ + a = SHA_ROTL(b,5)+SHA_F1(c,d,e)+a+XW(n)+K0; c=SHA_ROTL(c,30) +#define SHA_RND2(a,b,c,d,e,n) \ + a = SHA_ROTL(b,5)+SHA_F2(c,d,e)+a+XW(n)+K1; c=SHA_ROTL(c,30) +#define SHA_RND3(a,b,c,d,e,n) \ + a = SHA_ROTL(b,5)+SHA_F3(c,d,e)+a+XW(n)+K2; c=SHA_ROTL(c,30) +#define SHA_RND4(a,b,c,d,e,n) \ + a = SHA_ROTL(b,5)+SHA_F4(c,d,e)+a+XW(n)+K3; c=SHA_ROTL(c,30) + +#define LOAD(n) XW(n) = SHA_HTONL(inbuf[n]) + + A = XH(0); + B = XH(1); + C = XH(2); + D = XH(3); + E = XH(4); + + LOAD(0); SHA_RND1(E,A,B,C,D, 0); + LOAD(1); SHA_RND1(D,E,A,B,C, 1); + LOAD(2); SHA_RND1(C,D,E,A,B, 2); + LOAD(3); SHA_RND1(B,C,D,E,A, 3); + LOAD(4); SHA_RND1(A,B,C,D,E, 4); + LOAD(5); SHA_RND1(E,A,B,C,D, 5); + LOAD(6); SHA_RND1(D,E,A,B,C, 6); + LOAD(7); SHA_RND1(C,D,E,A,B, 7); + LOAD(8); SHA_RND1(B,C,D,E,A, 8); + LOAD(9); SHA_RND1(A,B,C,D,E, 9); + LOAD(10); SHA_RND1(E,A,B,C,D,10); + LOAD(11); SHA_RND1(D,E,A,B,C,11); + LOAD(12); SHA_RND1(C,D,E,A,B,12); + LOAD(13); SHA_RND1(B,C,D,E,A,13); + LOAD(14); SHA_RND1(A,B,C,D,E,14); + LOAD(15); SHA_RND1(E,A,B,C,D,15); + + SHA_MIX( 0, 13, 8, 2); SHA_RND1(D,E,A,B,C, 0); + SHA_MIX( 1, 14, 9, 3); SHA_RND1(C,D,E,A,B, 1); + SHA_MIX( 2, 15, 10, 4); SHA_RND1(B,C,D,E,A, 2); + SHA_MIX( 3, 0, 11, 5); SHA_RND1(A,B,C,D,E, 3); + + SHA_MIX( 4, 1, 12, 6); SHA_RND2(E,A,B,C,D, 4); + SHA_MIX( 5, 2, 13, 7); SHA_RND2(D,E,A,B,C, 5); + SHA_MIX( 6, 3, 14, 8); SHA_RND2(C,D,E,A,B, 6); + SHA_MIX( 7, 4, 15, 9); SHA_RND2(B,C,D,E,A, 7); + SHA_MIX( 8, 5, 0, 10); SHA_RND2(A,B,C,D,E, 8); + SHA_MIX( 9, 6, 1, 11); SHA_RND2(E,A,B,C,D, 9); + SHA_MIX(10, 7, 2, 12); SHA_RND2(D,E,A,B,C,10); + SHA_MIX(11, 8, 3, 13); SHA_RND2(C,D,E,A,B,11); + SHA_MIX(12, 9, 4, 14); SHA_RND2(B,C,D,E,A,12); + SHA_MIX(13, 10, 5, 15); SHA_RND2(A,B,C,D,E,13); + SHA_MIX(14, 11, 6, 0); SHA_RND2(E,A,B,C,D,14); + SHA_MIX(15, 12, 7, 1); SHA_RND2(D,E,A,B,C,15); + + SHA_MIX( 0, 13, 8, 2); SHA_RND2(C,D,E,A,B, 0); + SHA_MIX( 1, 14, 9, 3); SHA_RND2(B,C,D,E,A, 1); + SHA_MIX( 2, 15, 10, 4); SHA_RND2(A,B,C,D,E, 2); + SHA_MIX( 3, 0, 11, 5); SHA_RND2(E,A,B,C,D, 3); + SHA_MIX( 4, 1, 12, 6); SHA_RND2(D,E,A,B,C, 4); + SHA_MIX( 5, 2, 13, 7); SHA_RND2(C,D,E,A,B, 5); + SHA_MIX( 6, 3, 14, 8); SHA_RND2(B,C,D,E,A, 6); + SHA_MIX( 7, 4, 15, 9); SHA_RND2(A,B,C,D,E, 7); + + SHA_MIX( 8, 5, 0, 10); SHA_RND3(E,A,B,C,D, 8); + SHA_MIX( 9, 6, 1, 11); SHA_RND3(D,E,A,B,C, 9); + SHA_MIX(10, 7, 2, 12); SHA_RND3(C,D,E,A,B,10); + SHA_MIX(11, 8, 3, 13); SHA_RND3(B,C,D,E,A,11); + SHA_MIX(12, 9, 4, 14); SHA_RND3(A,B,C,D,E,12); + SHA_MIX(13, 10, 5, 15); SHA_RND3(E,A,B,C,D,13); + SHA_MIX(14, 11, 6, 0); SHA_RND3(D,E,A,B,C,14); + SHA_MIX(15, 12, 7, 1); SHA_RND3(C,D,E,A,B,15); + + SHA_MIX( 0, 13, 8, 2); SHA_RND3(B,C,D,E,A, 0); + SHA_MIX( 1, 14, 9, 3); SHA_RND3(A,B,C,D,E, 1); + SHA_MIX( 2, 15, 10, 4); SHA_RND3(E,A,B,C,D, 2); + SHA_MIX( 3, 0, 11, 5); SHA_RND3(D,E,A,B,C, 3); + SHA_MIX( 4, 1, 12, 6); SHA_RND3(C,D,E,A,B, 4); + SHA_MIX( 5, 2, 13, 7); SHA_RND3(B,C,D,E,A, 5); + SHA_MIX( 6, 3, 14, 8); SHA_RND3(A,B,C,D,E, 6); + SHA_MIX( 7, 4, 15, 9); SHA_RND3(E,A,B,C,D, 7); + SHA_MIX( 8, 5, 0, 10); SHA_RND3(D,E,A,B,C, 8); + SHA_MIX( 9, 6, 1, 11); SHA_RND3(C,D,E,A,B, 9); + SHA_MIX(10, 7, 2, 12); SHA_RND3(B,C,D,E,A,10); + SHA_MIX(11, 8, 3, 13); SHA_RND3(A,B,C,D,E,11); + + SHA_MIX(12, 9, 4, 14); SHA_RND4(E,A,B,C,D,12); + SHA_MIX(13, 10, 5, 15); SHA_RND4(D,E,A,B,C,13); + SHA_MIX(14, 11, 6, 0); SHA_RND4(C,D,E,A,B,14); + SHA_MIX(15, 12, 7, 1); SHA_RND4(B,C,D,E,A,15); + + SHA_MIX( 0, 13, 8, 2); SHA_RND4(A,B,C,D,E, 0); + SHA_MIX( 1, 14, 9, 3); SHA_RND4(E,A,B,C,D, 1); + SHA_MIX( 2, 15, 10, 4); SHA_RND4(D,E,A,B,C, 2); + SHA_MIX( 3, 0, 11, 5); SHA_RND4(C,D,E,A,B, 3); + SHA_MIX( 4, 1, 12, 6); SHA_RND4(B,C,D,E,A, 4); + SHA_MIX( 5, 2, 13, 7); SHA_RND4(A,B,C,D,E, 5); + SHA_MIX( 6, 3, 14, 8); SHA_RND4(E,A,B,C,D, 6); + SHA_MIX( 7, 4, 15, 9); SHA_RND4(D,E,A,B,C, 7); + SHA_MIX( 8, 5, 0, 10); SHA_RND4(C,D,E,A,B, 8); + SHA_MIX( 9, 6, 1, 11); SHA_RND4(B,C,D,E,A, 9); + SHA_MIX(10, 7, 2, 12); SHA_RND4(A,B,C,D,E,10); + SHA_MIX(11, 8, 3, 13); SHA_RND4(E,A,B,C,D,11); + SHA_MIX(12, 9, 4, 14); SHA_RND4(D,E,A,B,C,12); + SHA_MIX(13, 10, 5, 15); SHA_RND4(C,D,E,A,B,13); + SHA_MIX(14, 11, 6, 0); SHA_RND4(B,C,D,E,A,14); + SHA_MIX(15, 12, 7, 1); SHA_RND4(A,B,C,D,E,15); + + XH(0) += A; + XH(1) += B; + XH(2) += C; + XH(3) += D; + XH(4) += E; +} + +/************************************************************************* +** Code below this line added to make SHA code support BLAPI interface +*/ + +SHA1Context * +SHA1_NewContext(void) +{ + SHA1Context *cx; + + /* no need to ZNew, SHA1_Begin will init the context */ + cx = PORT_New(SHA1Context); + return cx; +} + +/* Zero and free the context */ +void +SHA1_DestroyContext(SHA1Context *cx, PRBool freeit) +{ + memset(cx, 0, sizeof *cx); + if (freeit) { + PORT_Free(cx); + } +} + +SECStatus +SHA1_HashBuf(unsigned char *dest, const unsigned char *src, PRUint32 src_length) +{ + SHA1Context ctx; + unsigned int outLen; + + SHA1_Begin(&ctx); + SHA1_Update(&ctx, src, src_length); + SHA1_End(&ctx, dest, &outLen, SHA1_LENGTH); + memset(&ctx, 0, sizeof ctx); + return SECSuccess; +} + +/* Hash a null-terminated character string. */ +SECStatus +SHA1_Hash(unsigned char *dest, const char *src) +{ + return SHA1_HashBuf(dest, (const unsigned char *)src, PORT_Strlen (src)); +} + +/* + * need to support save/restore state in pkcs11. Stores all the info necessary + * for a structure into just a stream of bytes. + */ +unsigned int +SHA1_FlattenSize(SHA1Context *cx) +{ + return sizeof(SHA1Context); +} + +SECStatus +SHA1_Flatten(SHA1Context *cx,unsigned char *space) +{ + PORT_Memcpy(space,cx, sizeof(SHA1Context)); + return SECSuccess; +} + +SHA1Context * +SHA1_Resurrect(unsigned char *space,void *arg) +{ + SHA1Context *cx = SHA1_NewContext(); + if (cx == NULL) return NULL; + + PORT_Memcpy(cx,space, sizeof(SHA1Context)); + return cx; +} + +void SHA1_Clone(SHA1Context *dest, SHA1Context *src) +{ + memcpy(dest, src, sizeof *dest); +} + +void +SHA1_TraceState(SHA1Context *ctx) +{ + PORT_SetError(PR_NOT_IMPLEMENTED_ERROR); +}