Mercurial > trustbridge > nss-cmake-static
view nss/lib/freebl/ecl/ecl-priv.h @ 3:150b72113545
Add DBM and legacydb support
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Tue, 05 Aug 2014 18:32:02 +0200 |
parents | 1e5118fa0cb1 |
children |
line wrap: on
line source
/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef __ecl_priv_h_ #define __ecl_priv_h_ #include "ecl.h" #include "mpi.h" #include "mplogic.h" /* MAX_FIELD_SIZE_DIGITS is the maximum size of field element supported */ /* the following needs to go away... */ #if defined(MP_USE_LONG_LONG_DIGIT) || defined(MP_USE_LONG_DIGIT) #define ECL_SIXTY_FOUR_BIT #else #define ECL_THIRTY_TWO_BIT #endif #define ECL_CURVE_DIGITS(curve_size_in_bits) \ (((curve_size_in_bits)+(sizeof(mp_digit)*8-1))/(sizeof(mp_digit)*8)) #define ECL_BITS (sizeof(mp_digit)*8) #define ECL_MAX_FIELD_SIZE_DIGITS (80/sizeof(mp_digit)) /* Gets the i'th bit in the binary representation of a. If i >= length(a), * then return 0. (The above behaviour differs from mpl_get_bit, which * causes an error if i >= length(a).) */ #define MP_GET_BIT(a, i) \ ((i) >= mpl_significant_bits((a))) ? 0 : mpl_get_bit((a), (i)) #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) #define MP_ADD_CARRY(a1, a2, s, cin, cout) \ { mp_word w; \ w = ((mp_word)(cin)) + (a1) + (a2); \ s = ACCUM(w); \ cout = CARRYOUT(w); } #define MP_SUB_BORROW(a1, a2, s, bin, bout) \ { mp_word w; \ w = ((mp_word)(a1)) - (a2) - (bin); \ s = ACCUM(w); \ bout = (w >> MP_DIGIT_BIT) & 1; } #else /* NOTE, * cin and cout could be the same variable. * bin and bout could be the same variable. * a1 or a2 and s could be the same variable. * don't trash those outputs until their respective inputs have * been read. */ #define MP_ADD_CARRY(a1, a2, s, cin, cout) \ { mp_digit tmp,sum; \ tmp = (a1); \ sum = tmp + (a2); \ tmp = (sum < tmp); /* detect overflow */ \ s = sum += (cin); \ cout = tmp + (sum < (cin)); } #define MP_SUB_BORROW(a1, a2, s, bin, bout) \ { mp_digit tmp; \ tmp = (a1); \ s = tmp - (a2); \ tmp = (s > tmp); /* detect borrow */ \ if ((bin) && !s--) tmp++; \ bout = tmp; } #endif struct GFMethodStr; typedef struct GFMethodStr GFMethod; struct GFMethodStr { /* Indicates whether the structure was constructed from dynamic memory * or statically created. */ int constructed; /* Irreducible that defines the field. For prime fields, this is the * prime p. For binary polynomial fields, this is the bitstring * representation of the irreducible polynomial. */ mp_int irr; /* For prime fields, the value irr_arr[0] is the number of bits in the * field. For binary polynomial fields, the irreducible polynomial * f(t) is represented as an array of unsigned int[], where f(t) is * of the form: f(t) = t^p[0] + t^p[1] + ... + t^p[4] where m = p[0] * > p[1] > ... > p[4] = 0. */ unsigned int irr_arr[5]; /* Field arithmetic methods. All methods (except field_enc and * field_dec) are assumed to take field-encoded parameters and return * field-encoded values. All methods (except field_enc and field_dec) * are required to be implemented. */ mp_err (*field_add) (const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth); mp_err (*field_neg) (const mp_int *a, mp_int *r, const GFMethod *meth); mp_err (*field_sub) (const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth); mp_err (*field_mod) (const mp_int *a, mp_int *r, const GFMethod *meth); mp_err (*field_mul) (const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth); mp_err (*field_sqr) (const mp_int *a, mp_int *r, const GFMethod *meth); mp_err (*field_div) (const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth); mp_err (*field_enc) (const mp_int *a, mp_int *r, const GFMethod *meth); mp_err (*field_dec) (const mp_int *a, mp_int *r, const GFMethod *meth); /* Extra storage for implementation-specific data. Any memory * allocated to these extra fields will be cleared by extra_free. */ void *extra1; void *extra2; void (*extra_free) (GFMethod *meth); }; /* Construct generic GFMethods. */ GFMethod *GFMethod_consGFp(const mp_int *irr); GFMethod *GFMethod_consGFp_mont(const mp_int *irr); GFMethod *GFMethod_consGF2m(const mp_int *irr, const unsigned int irr_arr[5]); /* Free the memory allocated (if any) to a GFMethod object. */ void GFMethod_free(GFMethod *meth); struct ECGroupStr { /* Indicates whether the structure was constructed from dynamic memory * or statically created. */ int constructed; /* Field definition and arithmetic. */ GFMethod *meth; /* Textual representation of curve name, if any. */ char *text; /* Curve parameters, field-encoded. */ mp_int curvea, curveb; /* x and y coordinates of the base point, field-encoded. */ mp_int genx, geny; /* Order and cofactor of the base point. */ mp_int order; int cofactor; /* Point arithmetic methods. All methods are assumed to take * field-encoded parameters and return field-encoded values. All * methods (except base_point_mul and points_mul) are required to be * implemented. */ mp_err (*point_add) (const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group); mp_err (*point_sub) (const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group); mp_err (*point_dbl) (const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group); mp_err (*point_mul) (const mp_int *n, const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group); mp_err (*base_point_mul) (const mp_int *n, mp_int *rx, mp_int *ry, const ECGroup *group); mp_err (*points_mul) (const mp_int *k1, const mp_int *k2, const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group); mp_err (*validate_point) (const mp_int *px, const mp_int *py, const ECGroup *group); /* Extra storage for implementation-specific data. Any memory * allocated to these extra fields will be cleared by extra_free. */ void *extra1; void *extra2; void (*extra_free) (ECGroup *group); }; /* Wrapper functions for generic prime field arithmetic. */ mp_err ec_GFp_add(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth); mp_err ec_GFp_neg(const mp_int *a, mp_int *r, const GFMethod *meth); mp_err ec_GFp_sub(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth); /* fixed length in-line adds. Count is in words */ mp_err ec_GFp_add_3(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth); mp_err ec_GFp_add_4(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth); mp_err ec_GFp_add_5(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth); mp_err ec_GFp_add_6(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth); mp_err ec_GFp_sub_3(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth); mp_err ec_GFp_sub_4(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth); mp_err ec_GFp_sub_5(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth); mp_err ec_GFp_sub_6(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth); mp_err ec_GFp_mod(const mp_int *a, mp_int *r, const GFMethod *meth); mp_err ec_GFp_mul(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth); mp_err ec_GFp_sqr(const mp_int *a, mp_int *r, const GFMethod *meth); mp_err ec_GFp_div(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth); /* Wrapper functions for generic binary polynomial field arithmetic. */ mp_err ec_GF2m_add(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth); mp_err ec_GF2m_neg(const mp_int *a, mp_int *r, const GFMethod *meth); mp_err ec_GF2m_mod(const mp_int *a, mp_int *r, const GFMethod *meth); mp_err ec_GF2m_mul(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth); mp_err ec_GF2m_sqr(const mp_int *a, mp_int *r, const GFMethod *meth); mp_err ec_GF2m_div(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth); /* Montgomery prime field arithmetic. */ mp_err ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth); mp_err ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth); mp_err ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth); mp_err ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth); mp_err ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth); void ec_GFp_extra_free_mont(GFMethod *meth); /* point multiplication */ mp_err ec_pts_mul_basic(const mp_int *k1, const mp_int *k2, const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group); mp_err ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2, const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group); /* Computes the windowed non-adjacent-form (NAF) of a scalar. Out should * be an array of signed char's to output to, bitsize should be the number * of bits of out, in is the original scalar, and w is the window size. * NAF is discussed in the paper: D. Hankerson, J. Hernandez and A. * Menezes, "Software implementation of elliptic curve cryptography over * binary fields", Proc. CHES 2000. */ mp_err ec_compute_wNAF(signed char *out, int bitsize, const mp_int *in, int w); /* Optimized field arithmetic */ mp_err ec_group_set_gfp192(ECGroup *group, ECCurveName); mp_err ec_group_set_gfp224(ECGroup *group, ECCurveName); mp_err ec_group_set_gfp256(ECGroup *group, ECCurveName); mp_err ec_group_set_gfp384(ECGroup *group, ECCurveName); mp_err ec_group_set_gfp521(ECGroup *group, ECCurveName); mp_err ec_group_set_gf2m163(ECGroup *group, ECCurveName name); mp_err ec_group_set_gf2m193(ECGroup *group, ECCurveName name); mp_err ec_group_set_gf2m233(ECGroup *group, ECCurveName name); /* Optimized point multiplication */ mp_err ec_group_set_gfp256_32(ECGroup *group, ECCurveName name); /* Optimized floating-point arithmetic */ #ifdef ECL_USE_FP mp_err ec_group_set_secp160r1_fp(ECGroup *group); mp_err ec_group_set_nistp192_fp(ECGroup *group); mp_err ec_group_set_nistp224_fp(ECGroup *group); #endif #endif /* __ecl_priv_h_ */