Mercurial > trustbridge > nss-cmake-static
view nss/lib/freebl/ecl/ecp_aff.c @ 3:150b72113545
Add DBM and legacydb support
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Tue, 05 Aug 2014 18:32:02 +0200 |
parents | 1e5118fa0cb1 |
children |
line wrap: on
line source
/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "ecp.h" #include "mplogic.h" #include <stdlib.h> /* Checks if point P(px, py) is at infinity. Uses affine coordinates. */ mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py) { if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) { return MP_YES; } else { return MP_NO; } } /* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */ mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py) { mp_zero(px); mp_zero(py); return MP_OKAY; } /* Computes R = P + Q based on IEEE P1363 A.10.1. Elliptic curve points P, * Q, and R can all be identical. Uses affine coordinates. Assumes input * is already field-encoded using field_enc, and returns output that is * still field-encoded. */ mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group) { mp_err res = MP_OKAY; mp_int lambda, temp, tempx, tempy; MP_DIGITS(&lambda) = 0; MP_DIGITS(&temp) = 0; MP_DIGITS(&tempx) = 0; MP_DIGITS(&tempy) = 0; MP_CHECKOK(mp_init(&lambda)); MP_CHECKOK(mp_init(&temp)); MP_CHECKOK(mp_init(&tempx)); MP_CHECKOK(mp_init(&tempy)); /* if P = inf, then R = Q */ if (ec_GFp_pt_is_inf_aff(px, py) == 0) { MP_CHECKOK(mp_copy(qx, rx)); MP_CHECKOK(mp_copy(qy, ry)); res = MP_OKAY; goto CLEANUP; } /* if Q = inf, then R = P */ if (ec_GFp_pt_is_inf_aff(qx, qy) == 0) { MP_CHECKOK(mp_copy(px, rx)); MP_CHECKOK(mp_copy(py, ry)); res = MP_OKAY; goto CLEANUP; } /* if px != qx, then lambda = (py-qy) / (px-qx) */ if (mp_cmp(px, qx) != 0) { MP_CHECKOK(group->meth->field_sub(py, qy, &tempy, group->meth)); MP_CHECKOK(group->meth->field_sub(px, qx, &tempx, group->meth)); MP_CHECKOK(group->meth-> field_div(&tempy, &tempx, &lambda, group->meth)); } else { /* if py != qy or qy = 0, then R = inf */ if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qy) == 0)) { mp_zero(rx); mp_zero(ry); res = MP_OKAY; goto CLEANUP; } /* lambda = (3qx^2+a) / (2qy) */ MP_CHECKOK(group->meth->field_sqr(qx, &tempx, group->meth)); MP_CHECKOK(mp_set_int(&temp, 3)); if (group->meth->field_enc) { MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth)); } MP_CHECKOK(group->meth-> field_mul(&tempx, &temp, &tempx, group->meth)); MP_CHECKOK(group->meth-> field_add(&tempx, &group->curvea, &tempx, group->meth)); MP_CHECKOK(mp_set_int(&temp, 2)); if (group->meth->field_enc) { MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth)); } MP_CHECKOK(group->meth->field_mul(qy, &temp, &tempy, group->meth)); MP_CHECKOK(group->meth-> field_div(&tempx, &tempy, &lambda, group->meth)); } /* rx = lambda^2 - px - qx */ MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth)); MP_CHECKOK(group->meth->field_sub(&tempx, px, &tempx, group->meth)); MP_CHECKOK(group->meth->field_sub(&tempx, qx, &tempx, group->meth)); /* ry = (x1-x2) * lambda - y1 */ MP_CHECKOK(group->meth->field_sub(qx, &tempx, &tempy, group->meth)); MP_CHECKOK(group->meth-> field_mul(&tempy, &lambda, &tempy, group->meth)); MP_CHECKOK(group->meth->field_sub(&tempy, qy, &tempy, group->meth)); MP_CHECKOK(mp_copy(&tempx, rx)); MP_CHECKOK(mp_copy(&tempy, ry)); CLEANUP: mp_clear(&lambda); mp_clear(&temp); mp_clear(&tempx); mp_clear(&tempy); return res; } /* Computes R = P - Q. Elliptic curve points P, Q, and R can all be * identical. Uses affine coordinates. Assumes input is already * field-encoded using field_enc, and returns output that is still * field-encoded. */ mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group) { mp_err res = MP_OKAY; mp_int nqy; MP_DIGITS(&nqy) = 0; MP_CHECKOK(mp_init(&nqy)); /* nqy = -qy */ MP_CHECKOK(group->meth->field_neg(qy, &nqy, group->meth)); res = group->point_add(px, py, qx, &nqy, rx, ry, group); CLEANUP: mp_clear(&nqy); return res; } /* Computes R = 2P. Elliptic curve points P and R can be identical. Uses * affine coordinates. Assumes input is already field-encoded using * field_enc, and returns output that is still field-encoded. */ mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group) { return ec_GFp_pt_add_aff(px, py, px, py, rx, ry, group); } /* by default, this routine is unused and thus doesn't need to be compiled */ #ifdef ECL_ENABLE_GFP_PT_MUL_AFF /* Computes R = nP based on IEEE P1363 A.10.3. Elliptic curve points P and * R can be identical. Uses affine coordinates. Assumes input is already * field-encoded using field_enc, and returns output that is still * field-encoded. */ mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group) { mp_err res = MP_OKAY; mp_int k, k3, qx, qy, sx, sy; int b1, b3, i, l; MP_DIGITS(&k) = 0; MP_DIGITS(&k3) = 0; MP_DIGITS(&qx) = 0; MP_DIGITS(&qy) = 0; MP_DIGITS(&sx) = 0; MP_DIGITS(&sy) = 0; MP_CHECKOK(mp_init(&k)); MP_CHECKOK(mp_init(&k3)); MP_CHECKOK(mp_init(&qx)); MP_CHECKOK(mp_init(&qy)); MP_CHECKOK(mp_init(&sx)); MP_CHECKOK(mp_init(&sy)); /* if n = 0 then r = inf */ if (mp_cmp_z(n) == 0) { mp_zero(rx); mp_zero(ry); res = MP_OKAY; goto CLEANUP; } /* Q = P, k = n */ MP_CHECKOK(mp_copy(px, &qx)); MP_CHECKOK(mp_copy(py, &qy)); MP_CHECKOK(mp_copy(n, &k)); /* if n < 0 then Q = -Q, k = -k */ if (mp_cmp_z(n) < 0) { MP_CHECKOK(group->meth->field_neg(&qy, &qy, group->meth)); MP_CHECKOK(mp_neg(&k, &k)); } #ifdef ECL_DEBUG /* basic double and add method */ l = mpl_significant_bits(&k) - 1; MP_CHECKOK(mp_copy(&qx, &sx)); MP_CHECKOK(mp_copy(&qy, &sy)); for (i = l - 1; i >= 0; i--) { /* S = 2S */ MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group)); /* if k_i = 1, then S = S + Q */ if (mpl_get_bit(&k, i) != 0) { MP_CHECKOK(group-> point_add(&sx, &sy, &qx, &qy, &sx, &sy, group)); } } #else /* double and add/subtract method from * standard */ /* k3 = 3 * k */ MP_CHECKOK(mp_set_int(&k3, 3)); MP_CHECKOK(mp_mul(&k, &k3, &k3)); /* S = Q */ MP_CHECKOK(mp_copy(&qx, &sx)); MP_CHECKOK(mp_copy(&qy, &sy)); /* l = index of high order bit in binary representation of 3*k */ l = mpl_significant_bits(&k3) - 1; /* for i = l-1 downto 1 */ for (i = l - 1; i >= 1; i--) { /* S = 2S */ MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group)); b3 = MP_GET_BIT(&k3, i); b1 = MP_GET_BIT(&k, i); /* if k3_i = 1 and k_i = 0, then S = S + Q */ if ((b3 == 1) && (b1 == 0)) { MP_CHECKOK(group-> point_add(&sx, &sy, &qx, &qy, &sx, &sy, group)); /* if k3_i = 0 and k_i = 1, then S = S - Q */ } else if ((b3 == 0) && (b1 == 1)) { MP_CHECKOK(group-> point_sub(&sx, &sy, &qx, &qy, &sx, &sy, group)); } } #endif /* output S */ MP_CHECKOK(mp_copy(&sx, rx)); MP_CHECKOK(mp_copy(&sy, ry)); CLEANUP: mp_clear(&k); mp_clear(&k3); mp_clear(&qx); mp_clear(&qy); mp_clear(&sx); mp_clear(&sy); return res; } #endif /* Validates a point on a GFp curve. */ mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group) { mp_err res = MP_NO; mp_int accl, accr, tmp, pxt, pyt; MP_DIGITS(&accl) = 0; MP_DIGITS(&accr) = 0; MP_DIGITS(&tmp) = 0; MP_DIGITS(&pxt) = 0; MP_DIGITS(&pyt) = 0; MP_CHECKOK(mp_init(&accl)); MP_CHECKOK(mp_init(&accr)); MP_CHECKOK(mp_init(&tmp)); MP_CHECKOK(mp_init(&pxt)); MP_CHECKOK(mp_init(&pyt)); /* 1: Verify that publicValue is not the point at infinity */ if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) { res = MP_NO; goto CLEANUP; } /* 2: Verify that the coordinates of publicValue are elements * of the field. */ if ((MP_SIGN(px) == MP_NEG) || (mp_cmp(px, &group->meth->irr) >= 0) || (MP_SIGN(py) == MP_NEG) || (mp_cmp(py, &group->meth->irr) >= 0)) { res = MP_NO; goto CLEANUP; } /* 3: Verify that publicValue is on the curve. */ if (group->meth->field_enc) { group->meth->field_enc(px, &pxt, group->meth); group->meth->field_enc(py, &pyt, group->meth); } else { mp_copy(px, &pxt); mp_copy(py, &pyt); } /* left-hand side: y^2 */ MP_CHECKOK( group->meth->field_sqr(&pyt, &accl, group->meth) ); /* right-hand side: x^3 + a*x + b = (x^2 + a)*x + b by Horner's rule */ MP_CHECKOK( group->meth->field_sqr(&pxt, &tmp, group->meth) ); MP_CHECKOK( group->meth->field_add(&tmp, &group->curvea, &tmp, group->meth) ); MP_CHECKOK( group->meth->field_mul(&tmp, &pxt, &accr, group->meth) ); MP_CHECKOK( group->meth->field_add(&accr, &group->curveb, &accr, group->meth) ); /* check LHS - RHS == 0 */ MP_CHECKOK( group->meth->field_sub(&accl, &accr, &accr, group->meth) ); if (mp_cmp_z(&accr) != 0) { res = MP_NO; goto CLEANUP; } /* 4: Verify that the order of the curve times the publicValue * is the point at infinity. */ MP_CHECKOK( ECPoint_mul(group, &group->order, px, py, &pxt, &pyt) ); if (ec_GFp_pt_is_inf_aff(&pxt, &pyt) != MP_YES) { res = MP_NO; goto CLEANUP; } res = MP_YES; CLEANUP: mp_clear(&accl); mp_clear(&accr); mp_clear(&tmp); mp_clear(&pxt); mp_clear(&pyt); return res; }