Mercurial > trustbridge > nss-cmake-static
view nss/lib/freebl/ecl/ecp_mont.c @ 3:150b72113545
Add DBM and legacydb support
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Tue, 05 Aug 2014 18:32:02 +0200 |
parents | 1e5118fa0cb1 |
children |
line wrap: on
line source
/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* Uses Montgomery reduction for field arithmetic. See mpi/mpmontg.c for * code implementation. */ #include "mpi.h" #include "mplogic.h" #include "mpi-priv.h" #include "ecl-priv.h" #include "ecp.h" #include <stdlib.h> #include <stdio.h> /* Construct a generic GFMethod for arithmetic over prime fields with * irreducible irr. */ GFMethod * GFMethod_consGFp_mont(const mp_int *irr) { mp_err res = MP_OKAY; GFMethod *meth = NULL; mp_mont_modulus *mmm; meth = GFMethod_consGFp(irr); if (meth == NULL) return NULL; mmm = (mp_mont_modulus *) malloc(sizeof(mp_mont_modulus)); if (mmm == NULL) { res = MP_MEM; goto CLEANUP; } meth->field_mul = &ec_GFp_mul_mont; meth->field_sqr = &ec_GFp_sqr_mont; meth->field_div = &ec_GFp_div_mont; meth->field_enc = &ec_GFp_enc_mont; meth->field_dec = &ec_GFp_dec_mont; meth->extra1 = mmm; meth->extra2 = NULL; meth->extra_free = &ec_GFp_extra_free_mont; mmm->N = meth->irr; mmm->n0prime = 0 - s_mp_invmod_radix(MP_DIGIT(&meth->irr, 0)); CLEANUP: if (res != MP_OKAY) { GFMethod_free(meth); return NULL; } return meth; } /* Wrapper functions for generic prime field arithmetic. */ /* Field multiplication using Montgomery reduction. */ mp_err ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; #ifdef MP_MONT_USE_MP_MUL /* if MP_MONT_USE_MP_MUL is defined, then the function s_mp_mul_mont * is not implemented and we have to use mp_mul and s_mp_redc directly */ MP_CHECKOK(mp_mul(a, b, r)); MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1)); #else mp_int s; MP_DIGITS(&s) = 0; /* s_mp_mul_mont doesn't allow source and destination to be the same */ if ((a == r) || (b == r)) { MP_CHECKOK(mp_init(&s)); MP_CHECKOK(s_mp_mul_mont (a, b, &s, (mp_mont_modulus *) meth->extra1)); MP_CHECKOK(mp_copy(&s, r)); mp_clear(&s); } else { return s_mp_mul_mont(a, b, r, (mp_mont_modulus *) meth->extra1); } #endif CLEANUP: return res; } /* Field squaring using Montgomery reduction. */ mp_err ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth) { return ec_GFp_mul_mont(a, a, r, meth); } /* Field division using Montgomery reduction. */ mp_err ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; /* if A=aZ represents a encoded in montgomery coordinates with Z and # * and \ respectively represent multiplication and division in * montgomery coordinates, then A\B = (a/b)Z = (A/B)Z and Binv = * (1/b)Z = (1/B)(Z^2) where B # Binv = Z */ MP_CHECKOK(ec_GFp_div(a, b, r, meth)); MP_CHECKOK(ec_GFp_enc_mont(r, r, meth)); if (a == NULL) { MP_CHECKOK(ec_GFp_enc_mont(r, r, meth)); } CLEANUP: return res; } /* Encode a field element in Montgomery form. See s_mp_to_mont in * mpi/mpmontg.c */ mp_err ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth) { mp_mont_modulus *mmm; mp_err res = MP_OKAY; mmm = (mp_mont_modulus *) meth->extra1; MP_CHECKOK(mp_copy(a, r)); MP_CHECKOK(s_mp_lshd(r, MP_USED(&mmm->N))); MP_CHECKOK(mp_mod(r, &mmm->N, r)); CLEANUP: return res; } /* Decode a field element from Montgomery form. */ mp_err ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; if (a != r) { MP_CHECKOK(mp_copy(a, r)); } MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1)); CLEANUP: return res; } /* Free the memory allocated to the extra fields of Montgomery GFMethod * object. */ void ec_GFp_extra_free_mont(GFMethod *meth) { if (meth->extra1 != NULL) { free(meth->extra1); meth->extra1 = NULL; } }