Mercurial > trustbridge > nss-cmake-static
view nss/lib/freebl/gcm.c @ 3:150b72113545
Add DBM and legacydb support
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Tue, 05 Aug 2014 18:32:02 +0200 |
parents | 1e5118fa0cb1 |
children |
line wrap: on
line source
/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifdef FREEBL_NO_DEPEND #include "stubs.h" #endif #include "blapii.h" #include "blapit.h" #include "gcm.h" #include "ctr.h" #include "secerr.h" #include "prtypes.h" #include "pkcs11t.h" #include <limits.h> /************************************************************************** * First implement the Galois hash function of GCM (gcmHash) * **************************************************************************/ #define GCM_HASH_LEN_LEN 8 /* gcm hash defines lengths to be 64 bits */ typedef struct gcmHashContextStr gcmHashContext; static SECStatus gcmHash_InitContext(gcmHashContext *hash, const unsigned char *H, unsigned int blocksize); static void gcmHash_DestroyContext(gcmHashContext *ghash, PRBool freeit); static SECStatus gcmHash_Update(gcmHashContext *ghash, const unsigned char *buf, unsigned int len, unsigned int blocksize); static SECStatus gcmHash_Sync(gcmHashContext *ghash, unsigned int blocksize); static SECStatus gcmHash_Final(gcmHashContext *gcm, unsigned char *outbuf, unsigned int *outlen, unsigned int maxout, unsigned int blocksize); static SECStatus gcmHash_Reset(gcmHashContext *ghash, const unsigned char *inbuf, unsigned int inbufLen, unsigned int blocksize); /* compile time defines to select how the GF2 multiply is calculated. * There are currently 2 algorithms implemented here: MPI and ALGORITHM_1. * * MPI uses the GF2m implemented in mpi to support GF2 ECC. * ALGORITHM_1 is the Algorithm 1 in both NIST SP 800-38D and * "The Galois/Counter Mode of Operation (GCM)", McGrew & Viega. */ #if !defined(GCM_USE_ALGORITHM_1) && !defined(GCM_USE_MPI) #define GCM_USE_MPI 1 /* MPI is about 5x faster with the * same or less complexity. It's possible to use * tables to speed things up even more */ #endif /* GCM defines the bit string to be LSB first, which is exactly * opposite everyone else, including hardware. build array * to reverse everything. */ static const unsigned char gcm_byte_rev[256] = { 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0, 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8, 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd, 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3, 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb, 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7, 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff }; #ifdef GCM_TRACE #include <stdio.h> #define GCM_TRACE_X(ghash,label) { \ unsigned char _X[MAX_BLOCK_SIZE]; int i; \ gcm_getX(ghash, _X, blocksize); \ printf(label,(ghash)->m); \ for (i=0; i < blocksize; i++) printf("%02x",_X[i]); \ printf("\n"); } #define GCM_TRACE_BLOCK(label,buf,blocksize) {\ printf(label); \ for (i=0; i < blocksize; i++) printf("%02x",buf[i]); \ printf("\n"); } #else #define GCM_TRACE_X(ghash,label) #define GCM_TRACE_BLOCK(label,buf,blocksize) #endif #ifdef GCM_USE_MPI #ifdef GCM_USE_ALGORITHM_1 #error "Only define one of GCM_USE_MPI, GCM_USE_ALGORITHM_1" #endif /* use the MPI functions to calculate Xn = (Xn-1^C_i)*H mod poly */ #include "mpi.h" #include "secmpi.h" #include "mplogic.h" #include "mp_gf2m.h" /* state needed to handle GCM Hash function */ struct gcmHashContextStr { mp_int H; mp_int X; mp_int C_i; const unsigned int *poly; unsigned char buffer[MAX_BLOCK_SIZE]; unsigned int bufLen; int m; /* XXX what is m? */ unsigned char counterBuf[2*GCM_HASH_LEN_LEN]; PRUint64 cLen; }; /* f = x^128 + x^7 + x^2 + x + 1 */ static const unsigned int poly_128[] = { 128, 7, 2, 1, 0 }; /* sigh, GCM defines the bit strings exactly backwards from everything else */ static void gcm_reverse(unsigned char *target, const unsigned char *src, unsigned int blocksize) { unsigned int i; for (i=0; i < blocksize; i++) { target[blocksize-i-1] = gcm_byte_rev[src[i]]; } } /* Initialize a gcmHashContext */ static SECStatus gcmHash_InitContext(gcmHashContext *ghash, const unsigned char *H, unsigned int blocksize) { mp_err err = MP_OKAY; unsigned char H_rev[MAX_BLOCK_SIZE]; MP_DIGITS(&ghash->H) = 0; MP_DIGITS(&ghash->X) = 0; MP_DIGITS(&ghash->C_i) = 0; CHECK_MPI_OK( mp_init(&ghash->H) ); CHECK_MPI_OK( mp_init(&ghash->X) ); CHECK_MPI_OK( mp_init(&ghash->C_i) ); mp_zero(&ghash->X); gcm_reverse(H_rev, H, blocksize); CHECK_MPI_OK( mp_read_unsigned_octets(&ghash->H, H_rev, blocksize) ); /* set the irreducible polynomial. Each blocksize has its own polynomial. * for now only blocksize 16 (=128 bits) is defined */ switch (blocksize) { case 16: /* 128 bits */ ghash->poly = poly_128; break; default: PORT_SetError(SEC_ERROR_INVALID_ARGS); goto cleanup; } ghash->cLen = 0; ghash->bufLen = 0; ghash->m = 0; PORT_Memset(ghash->counterBuf, 0, sizeof(ghash->counterBuf)); return SECSuccess; cleanup: gcmHash_DestroyContext(ghash, PR_FALSE); return SECFailure; } /* Destroy a HashContext (Note we zero the digits so this function * is idempotent if called with freeit == PR_FALSE */ static void gcmHash_DestroyContext(gcmHashContext *ghash, PRBool freeit) { mp_clear(&ghash->H); mp_clear(&ghash->X); mp_clear(&ghash->C_i); MP_DIGITS(&ghash->H) = 0; MP_DIGITS(&ghash->X) = 0; MP_DIGITS(&ghash->C_i) = 0; if (freeit) { PORT_Free(ghash); } } static SECStatus gcm_getX(gcmHashContext *ghash, unsigned char *T, unsigned int blocksize) { int len; mp_err err; unsigned char tmp_buf[MAX_BLOCK_SIZE]; unsigned char *X; len = mp_unsigned_octet_size(&ghash->X); if (len <= 0) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } X = tmp_buf; PORT_Assert((unsigned int)len <= blocksize); if ((unsigned int)len > blocksize) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } /* zero pad the result */ if (len != blocksize) { PORT_Memset(X,0,blocksize-len); X += blocksize-len; } err = mp_to_unsigned_octets(&ghash->X, X, len); if (err < 0) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } gcm_reverse(T, tmp_buf, blocksize); return SECSuccess; } static SECStatus gcm_HashMult(gcmHashContext *ghash, const unsigned char *buf, unsigned int count, unsigned int blocksize) { SECStatus rv = SECFailure; mp_err err = MP_OKAY; unsigned char tmp_buf[MAX_BLOCK_SIZE]; unsigned int i; for (i=0; i < count; i++, buf += blocksize) { ghash->m++; gcm_reverse(tmp_buf, buf, blocksize); CHECK_MPI_OK(mp_read_unsigned_octets(&ghash->C_i, tmp_buf, blocksize)); CHECK_MPI_OK(mp_badd(&ghash->X, &ghash->C_i, &ghash->C_i)); /* * Looking to speed up GCM, this the the place to do it. * There are two areas that can be exploited to speed up this code. * * 1) H is a constant in this multiply. We can precompute H * (0 - 255) * at init time and this becomes an blockize xors of our table lookup. * * 2) poly is a constant for each blocksize. We can calculate the * modulo reduction by a series of adds and shifts. * * For now we are after functionality, so we will go ahead and use * the builtin bmulmod from mpi */ CHECK_MPI_OK(mp_bmulmod(&ghash->C_i, &ghash->H, ghash->poly, &ghash->X)); GCM_TRACE_X(ghash, "X%d = ") } rv = SECSuccess; cleanup: if (rv != SECSuccess) { MP_TO_SEC_ERROR(err); } return rv; } static void gcm_zeroX(gcmHashContext *ghash) { mp_zero(&ghash->X); ghash->m = 0; } #endif #ifdef GCM_USE_ALGORITHM_1 /* use algorithm 1 of McGrew & Viega "The Galois/Counter Mode of Operation" */ #define GCM_ARRAY_SIZE (MAX_BLOCK_SIZE/sizeof(unsigned long)) struct gcmHashContextStr { unsigned long H[GCM_ARRAY_SIZE]; unsigned long X[GCM_ARRAY_SIZE]; unsigned long R; unsigned char buffer[MAX_BLOCK_SIZE]; unsigned int bufLen; int m; unsigned char counterBuf[2*GCM_HASH_LEN_LEN]; PRUint64 cLen; }; static void gcm_bytes_to_longs(unsigned long *l, const unsigned char *c, unsigned int len) { int i,j; int array_size = len/sizeof(unsigned long); PORT_Assert(len % sizeof(unsigned long) == 0); for (i=0; i < array_size; i++) { unsigned long tmp = 0; int byte_offset = i * sizeof(unsigned long); for (j=sizeof(unsigned long)-1; j >= 0; j--) { tmp = (tmp << PR_BITS_PER_BYTE) | gcm_byte_rev[c[byte_offset+j]]; } l[i] = tmp; } } static void gcm_longs_to_bytes(const unsigned long *l, unsigned char *c, unsigned int len) { int i,j; int array_size = len/sizeof(unsigned long); PORT_Assert(len % sizeof(unsigned long) == 0); for (i=0; i < array_size; i++) { unsigned long tmp = l[i]; int byte_offset = i * sizeof(unsigned long); for (j=0; j < sizeof(unsigned long); j++) { c[byte_offset+j] = gcm_byte_rev[tmp & 0xff]; tmp = (tmp >> PR_BITS_PER_BYTE); } } } /* Initialize a gcmHashContext */ static SECStatus gcmHash_InitContext(gcmHashContext *ghash, const unsigned char *H, unsigned int blocksize) { PORT_Memset(ghash->X, 0, sizeof(ghash->X)); PORT_Memset(ghash->H, 0, sizeof(ghash->H)); gcm_bytes_to_longs(ghash->H, H, blocksize); /* set the irreducible polynomial. Each blocksize has its own polynommial * for now only blocksize 16 (=128 bits) is defined */ switch (blocksize) { case 16: /* 128 bits */ ghash->R = (unsigned long) 0x87; /* x^7 + x^2 + x +1 */ break; default: PORT_SetError(SEC_ERROR_INVALID_ARGS); goto cleanup; } ghash->cLen = 0; ghash->bufLen = 0; ghash->m = 0; PORT_Memset(ghash->counterBuf, 0, sizeof(ghash->counterBuf)); return SECSuccess; cleanup: return SECFailure; } /* Destroy a HashContext (Note we zero the digits so this function * is idempotent if called with freeit == PR_FALSE */ static void gcmHash_DestroyContext(gcmHashContext *ghash, PRBool freeit) { if (freeit) { PORT_Free(ghash); } } static unsigned long gcm_shift_one(unsigned long *t, unsigned int count) { unsigned long carry = 0; unsigned long nextcarry = 0; unsigned int i; for (i=0; i < count; i++) { nextcarry = t[i] >> ((sizeof(unsigned long)*PR_BITS_PER_BYTE)-1); t[i] = (t[i] << 1) | carry; carry = nextcarry; } return carry; } static SECStatus gcm_getX(gcmHashContext *ghash, unsigned char *T, unsigned int blocksize) { gcm_longs_to_bytes(ghash->X, T, blocksize); return SECSuccess; } #define GCM_XOR(t, s, len) \ for (l=0; l < len; l++) t[l] ^= s[l] static SECStatus gcm_HashMult(gcmHashContext *ghash, const unsigned char *buf, unsigned int count, unsigned int blocksize) { unsigned long C_i[GCM_ARRAY_SIZE]; unsigned int arraysize = blocksize/sizeof(unsigned long); unsigned int i, j, k, l; for (i=0; i < count; i++, buf += blocksize) { ghash->m++; gcm_bytes_to_longs(C_i, buf, blocksize); GCM_XOR(C_i, ghash->X, arraysize); /* multiply X = C_i * H */ PORT_Memset(ghash->X, 0, sizeof(ghash->X)); for (j=0; j < arraysize; j++) { unsigned long H = ghash->H[j]; for (k=0; k < sizeof(unsigned long)*PR_BITS_PER_BYTE; k++) { if (H & 1) { GCM_XOR(ghash->X, C_i, arraysize); } if (gcm_shift_one(C_i, arraysize)) { C_i[0] = C_i[0] ^ ghash->R; } H = H >> 1; } } GCM_TRACE_X(ghash, "X%d = ") } return SECSuccess; } static void gcm_zeroX(gcmHashContext *ghash) { PORT_Memset(ghash->X, 0, sizeof(ghash->X)); ghash->m = 0; } #endif /* * implement GCM GHASH using the freebl GHASH function. The gcm_HashMult * function always takes blocksize lengths of data. gcmHash_Update will * format the data properly. */ static SECStatus gcmHash_Update(gcmHashContext *ghash, const unsigned char *buf, unsigned int len, unsigned int blocksize) { unsigned int blocks; SECStatus rv; ghash->cLen += (len*PR_BITS_PER_BYTE); /* first deal with the current buffer of data. Try to fill it out so * we can hash it */ if (ghash->bufLen) { unsigned int needed = PR_MIN(len, blocksize - ghash->bufLen); if (needed != 0) { PORT_Memcpy(ghash->buffer+ghash->bufLen, buf, needed); } buf += needed; len -= needed; ghash->bufLen += needed; if (len == 0) { /* didn't add enough to hash the data, nothing more do do */ return SECSuccess; } PORT_Assert(ghash->bufLen == blocksize); /* hash the buffer and clear it */ rv = gcm_HashMult(ghash, ghash->buffer, 1, blocksize); PORT_Memset(ghash->buffer, 0, blocksize); ghash->bufLen = 0; if (rv != SECSuccess) { return SECFailure; } } /* now hash any full blocks remaining in the data stream */ blocks = len/blocksize; if (blocks) { rv = gcm_HashMult(ghash, buf, blocks, blocksize); if (rv != SECSuccess) { return SECFailure; } buf += blocks*blocksize; len -= blocks*blocksize; } /* save any remainder in the buffer to be hashed with the next call */ if (len != 0) { PORT_Memcpy(ghash->buffer, buf, len); ghash->bufLen = len; } return SECSuccess; } /* * write out any partial blocks zero padded through the GHASH engine, * save the lengths for the final completion of the hash */ static SECStatus gcmHash_Sync(gcmHashContext *ghash, unsigned int blocksize) { int i; SECStatus rv; /* copy the previous counter to the upper block */ PORT_Memcpy(ghash->counterBuf, &ghash->counterBuf[GCM_HASH_LEN_LEN], GCM_HASH_LEN_LEN); /* copy the current counter in the lower block */ for (i=0; i < GCM_HASH_LEN_LEN; i++) { ghash->counterBuf[GCM_HASH_LEN_LEN+i] = (ghash->cLen >> ((GCM_HASH_LEN_LEN-1-i)*PR_BITS_PER_BYTE)) & 0xff; } ghash->cLen = 0; /* now zero fill the buffer and hash the last block */ if (ghash->bufLen) { PORT_Memset(ghash->buffer+ghash->bufLen, 0, blocksize - ghash->bufLen); rv = gcm_HashMult(ghash, ghash->buffer, 1, blocksize); PORT_Memset(ghash->buffer, 0, blocksize); ghash->bufLen = 0; if (rv != SECSuccess) { return SECFailure; } } return SECSuccess; } /* * This does the final sync, hashes the lengths, then returns * "T", the hashed output. */ static SECStatus gcmHash_Final(gcmHashContext *ghash, unsigned char *outbuf, unsigned int *outlen, unsigned int maxout, unsigned int blocksize) { unsigned char T[MAX_BLOCK_SIZE]; SECStatus rv; rv = gcmHash_Sync(ghash, blocksize); if (rv != SECSuccess) { return SECFailure; } rv = gcm_HashMult(ghash, ghash->counterBuf, (GCM_HASH_LEN_LEN*2)/blocksize, blocksize); if (rv != SECSuccess) { return SECFailure; } GCM_TRACE_X(ghash, "GHASH(H,A,C) = ") rv = gcm_getX(ghash, T, blocksize); if (rv != SECSuccess) { return SECFailure; } if (maxout > blocksize) maxout = blocksize; PORT_Memcpy(outbuf, T, maxout); *outlen = maxout; return SECSuccess; } SECStatus gcmHash_Reset(gcmHashContext *ghash, const unsigned char *AAD, unsigned int AADLen, unsigned int blocksize) { SECStatus rv; ghash->cLen = 0; PORT_Memset(ghash->counterBuf, 0, GCM_HASH_LEN_LEN*2); ghash->bufLen = 0; gcm_zeroX(ghash); /* now kick things off by hashing the Additional Authenticated Data */ if (AADLen != 0) { rv = gcmHash_Update(ghash, AAD, AADLen, blocksize); if (rv != SECSuccess) { return SECFailure; } rv = gcmHash_Sync(ghash, blocksize); if (rv != SECSuccess) { return SECFailure; } } return SECSuccess; } /************************************************************************** * Now implement the GCM using gcmHash and CTR * **************************************************************************/ /* state to handle the full GCM operation (hash and counter) */ struct GCMContextStr { gcmHashContext ghash_context; CTRContext ctr_context; unsigned long tagBits; unsigned char tagKey[MAX_BLOCK_SIZE]; }; GCMContext * GCM_CreateContext(void *context, freeblCipherFunc cipher, const unsigned char *params, unsigned int blocksize) { GCMContext *gcm = NULL; gcmHashContext *ghash; unsigned char H[MAX_BLOCK_SIZE]; unsigned int tmp; PRBool freeCtr = PR_FALSE; PRBool freeHash = PR_FALSE; const CK_GCM_PARAMS *gcmParams = (const CK_GCM_PARAMS *)params; CK_AES_CTR_PARAMS ctrParams; SECStatus rv; if (blocksize > MAX_BLOCK_SIZE || blocksize > sizeof(ctrParams.cb)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return NULL; } gcm = PORT_ZNew(GCMContext); if (gcm == NULL) { return NULL; } /* first fill in the ghash context */ ghash = &gcm->ghash_context; PORT_Memset(H, 0, blocksize); rv = (*cipher)(context, H, &tmp, blocksize, H, blocksize, blocksize); if (rv != SECSuccess) { goto loser; } rv = gcmHash_InitContext(ghash, H, blocksize); if (rv != SECSuccess) { goto loser; } freeHash = PR_TRUE; /* fill in the Counter context */ ctrParams.ulCounterBits = 32; PORT_Memset(ctrParams.cb, 0, sizeof(ctrParams.cb)); if ((blocksize == 16) && (gcmParams->ulIvLen == 12)) { PORT_Memcpy(ctrParams.cb, gcmParams->pIv, gcmParams->ulIvLen); ctrParams.cb[blocksize-1] = 1; } else { rv = gcmHash_Update(ghash, gcmParams->pIv, gcmParams->ulIvLen, blocksize); if (rv != SECSuccess) { goto loser; } rv = gcmHash_Final(ghash, ctrParams.cb, &tmp, blocksize, blocksize); if (rv != SECSuccess) { goto loser; } } rv = CTR_InitContext(&gcm->ctr_context, context, cipher, (unsigned char *)&ctrParams, blocksize); if (rv != SECSuccess) { goto loser; } freeCtr = PR_TRUE; /* fill in the gcm structure */ gcm->tagBits = gcmParams->ulTagBits; /* save for final step */ /* calculate the final tag key. NOTE: gcm->tagKey is zero to start with. * if this assumption changes, we would need to explicitly clear it here */ rv = CTR_Update(&gcm->ctr_context, gcm->tagKey, &tmp, blocksize, gcm->tagKey, blocksize, blocksize); if (rv != SECSuccess) { goto loser; } /* finally mix in the AAD data */ rv = gcmHash_Reset(ghash, gcmParams->pAAD, gcmParams->ulAADLen, blocksize); if (rv != SECSuccess) { goto loser; } return gcm; loser: if (freeCtr) { CTR_DestroyContext(&gcm->ctr_context, PR_FALSE); } if (freeHash) { gcmHash_DestroyContext(&gcm->ghash_context, PR_FALSE); } if (gcm) { PORT_Free(gcm); } return NULL; } void GCM_DestroyContext(GCMContext *gcm, PRBool freeit) { /* these two are statically allocated and will be freed when we free * gcm. call their destroy functions to free up any locally * allocated data (like mp_int's) */ CTR_DestroyContext(&gcm->ctr_context, PR_FALSE); gcmHash_DestroyContext(&gcm->ghash_context, PR_FALSE); if (freeit) { PORT_Free(gcm); } } static SECStatus gcm_GetTag(GCMContext *gcm, unsigned char *outbuf, unsigned int *outlen, unsigned int maxout, unsigned int blocksize) { unsigned int tagBytes; unsigned int extra; unsigned int i; SECStatus rv; tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE-1)) / PR_BITS_PER_BYTE; extra = tagBytes*PR_BITS_PER_BYTE - gcm->tagBits; if (outbuf == NULL) { *outlen = tagBytes; PORT_SetError(SEC_ERROR_OUTPUT_LEN); return SECFailure; } if (maxout < tagBytes) { *outlen = tagBytes; PORT_SetError(SEC_ERROR_OUTPUT_LEN); return SECFailure; } maxout = tagBytes; rv = gcmHash_Final(&gcm->ghash_context, outbuf, outlen, maxout, blocksize); if (rv != SECSuccess) { return SECFailure; } GCM_TRACE_BLOCK("GHASH=", outbuf, blocksize); GCM_TRACE_BLOCK("Y0=", gcm->tagKey, blocksize); for (i=0; i < *outlen; i++) { outbuf[i] ^= gcm->tagKey[i]; } GCM_TRACE_BLOCK("Y0=", gcm->tagKey, blocksize); GCM_TRACE_BLOCK("T=", outbuf, blocksize); /* mask off any extra bits we got */ if (extra) { outbuf[tagBytes-1] &= ~((1 << extra)-1); } return SECSuccess; } /* * See The Galois/Counter Mode of Operation, McGrew and Viega. * GCM is basically counter mode with a specific initialization and * built in macing operation. */ SECStatus GCM_EncryptUpdate(GCMContext *gcm, unsigned char *outbuf, unsigned int *outlen, unsigned int maxout, const unsigned char *inbuf, unsigned int inlen, unsigned int blocksize) { SECStatus rv; unsigned int tagBytes; unsigned int len; tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE-1)) / PR_BITS_PER_BYTE; if (UINT_MAX - inlen < tagBytes) { PORT_SetError(SEC_ERROR_INPUT_LEN); return SECFailure; } if (maxout < inlen + tagBytes) { *outlen = inlen + tagBytes; PORT_SetError(SEC_ERROR_OUTPUT_LEN); return SECFailure; } rv = CTR_Update(&gcm->ctr_context, outbuf, outlen, maxout, inbuf, inlen, blocksize); if (rv != SECSuccess) { return SECFailure; } rv = gcmHash_Update(&gcm->ghash_context, outbuf, *outlen, blocksize); if (rv != SECSuccess) { PORT_Memset(outbuf, 0, *outlen); /* clear the output buffer */ *outlen = 0; return SECFailure; } rv = gcm_GetTag(gcm, outbuf + *outlen, &len, maxout - *outlen, blocksize); if (rv != SECSuccess) { PORT_Memset(outbuf, 0, *outlen); /* clear the output buffer */ *outlen = 0; return SECFailure; }; *outlen += len; return SECSuccess; } /* * See The Galois/Counter Mode of Operation, McGrew and Viega. * GCM is basically counter mode with a specific initialization and * built in macing operation. NOTE: the only difference between Encrypt * and Decrypt is when we calculate the mac. That is because the mac must * always be calculated on the cipher text, not the plain text, so for * encrypt, we do the CTR update first and for decrypt we do the mac first. */ SECStatus GCM_DecryptUpdate(GCMContext *gcm, unsigned char *outbuf, unsigned int *outlen, unsigned int maxout, const unsigned char *inbuf, unsigned int inlen, unsigned int blocksize) { SECStatus rv; unsigned int tagBytes; unsigned char tag[MAX_BLOCK_SIZE]; const unsigned char *intag; unsigned int len; tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE-1)) / PR_BITS_PER_BYTE; /* get the authentication block */ if (inlen < tagBytes) { PORT_SetError(SEC_ERROR_INPUT_LEN); return SECFailure; } inlen -= tagBytes; intag = inbuf + inlen; /* verify the block */ rv = gcmHash_Update(&gcm->ghash_context, inbuf, inlen, blocksize); if (rv != SECSuccess) { return SECFailure; } rv = gcm_GetTag(gcm, tag, &len, blocksize, blocksize); if (rv != SECSuccess) { return SECFailure; } /* Don't decrypt if we can't authenticate the encrypted data! * This assumes that if tagBits is not a multiple of 8, intag will * preserve the masked off missing bits. */ if (NSS_SecureMemcmp(tag, intag, tagBytes) != 0) { /* force a CKR_ENCRYPTED_DATA_INVALID error at in softoken */ PORT_SetError(SEC_ERROR_BAD_DATA); return SECFailure; } /* finish the decryption */ return CTR_Update(&gcm->ctr_context, outbuf, outlen, maxout, inbuf, inlen, blocksize); }