Mercurial > trustbridge > nss-cmake-static
view nss/lib/freebl/mpi/mpprime.c @ 3:150b72113545
Add DBM and legacydb support
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Tue, 05 Aug 2014 18:32:02 +0200 |
parents | 1e5118fa0cb1 |
children |
line wrap: on
line source
/* * mpprime.c * * Utilities for finding and working with prime and pseudo-prime * integers * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "mpi-priv.h" #include "mpprime.h" #include "mplogic.h" #include <stdlib.h> #include <string.h> #define SMALL_TABLE 0 /* determines size of hard-wired prime table */ #define RANDOM() rand() #include "primes.c" /* pull in the prime digit table */ /* Test if any of a given vector of digits divides a. If not, MP_NO is returned; otherwise, MP_YES is returned and 'which' is set to the index of the integer in the vector which divided a. */ mp_err s_mpp_divp(mp_int *a, const mp_digit *vec, int size, int *which); /* {{{ mpp_divis(a, b) */ /* mpp_divis(a, b) Returns MP_YES if a is divisible by b, or MP_NO if it is not. */ mp_err mpp_divis(mp_int *a, mp_int *b) { mp_err res; mp_int rem; if((res = mp_init(&rem)) != MP_OKAY) return res; if((res = mp_mod(a, b, &rem)) != MP_OKAY) goto CLEANUP; if(mp_cmp_z(&rem) == 0) res = MP_YES; else res = MP_NO; CLEANUP: mp_clear(&rem); return res; } /* end mpp_divis() */ /* }}} */ /* {{{ mpp_divis_d(a, d) */ /* mpp_divis_d(a, d) Return MP_YES if a is divisible by d, or MP_NO if it is not. */ mp_err mpp_divis_d(mp_int *a, mp_digit d) { mp_err res; mp_digit rem; ARGCHK(a != NULL, MP_BADARG); if(d == 0) return MP_NO; if((res = mp_mod_d(a, d, &rem)) != MP_OKAY) return res; if(rem == 0) return MP_YES; else return MP_NO; } /* end mpp_divis_d() */ /* }}} */ /* {{{ mpp_random(a) */ /* mpp_random(a) Assigns a random value to a. This value is generated using the standard C library's rand() function, so it should not be used for cryptographic purposes, but it should be fine for primality testing, since all we really care about there is good statistical properties. As many digits as a currently has are filled with random digits. */ mp_err mpp_random(mp_int *a) { mp_digit next = 0; unsigned int ix, jx; ARGCHK(a != NULL, MP_BADARG); for(ix = 0; ix < USED(a); ix++) { for(jx = 0; jx < sizeof(mp_digit); jx++) { next = (next << CHAR_BIT) | (RANDOM() & UCHAR_MAX); } DIGIT(a, ix) = next; } return MP_OKAY; } /* end mpp_random() */ /* }}} */ /* {{{ mpp_random_size(a, prec) */ mp_err mpp_random_size(mp_int *a, mp_size prec) { mp_err res; ARGCHK(a != NULL && prec > 0, MP_BADARG); if((res = s_mp_pad(a, prec)) != MP_OKAY) return res; return mpp_random(a); } /* end mpp_random_size() */ /* }}} */ /* {{{ mpp_divis_vector(a, vec, size, which) */ /* mpp_divis_vector(a, vec, size, which) Determines if a is divisible by any of the 'size' digits in vec. Returns MP_YES and sets 'which' to the index of the offending digit, if it is; returns MP_NO if it is not. */ mp_err mpp_divis_vector(mp_int *a, const mp_digit *vec, int size, int *which) { ARGCHK(a != NULL && vec != NULL && size > 0, MP_BADARG); return s_mpp_divp(a, vec, size, which); } /* end mpp_divis_vector() */ /* }}} */ /* {{{ mpp_divis_primes(a, np) */ /* mpp_divis_primes(a, np) Test whether a is divisible by any of the first 'np' primes. If it is, returns MP_YES and sets *np to the value of the digit that did it. If not, returns MP_NO. */ mp_err mpp_divis_primes(mp_int *a, mp_digit *np) { int size, which; mp_err res; ARGCHK(a != NULL && np != NULL, MP_BADARG); size = (int)*np; if(size > prime_tab_size) size = prime_tab_size; res = mpp_divis_vector(a, prime_tab, size, &which); if(res == MP_YES) *np = prime_tab[which]; return res; } /* end mpp_divis_primes() */ /* }}} */ /* {{{ mpp_fermat(a, w) */ /* Using w as a witness, try pseudo-primality testing based on Fermat's little theorem. If a is prime, and (w, a) = 1, then w^a == w (mod a). So, we compute z = w^a (mod a) and compare z to w; if they are equal, the test passes and we return MP_YES. Otherwise, we return MP_NO. */ mp_err mpp_fermat(mp_int *a, mp_digit w) { mp_int base, test; mp_err res; if((res = mp_init(&base)) != MP_OKAY) return res; mp_set(&base, w); if((res = mp_init(&test)) != MP_OKAY) goto TEST; /* Compute test = base^a (mod a) */ if((res = mp_exptmod(&base, a, a, &test)) != MP_OKAY) goto CLEANUP; if(mp_cmp(&base, &test) == 0) res = MP_YES; else res = MP_NO; CLEANUP: mp_clear(&test); TEST: mp_clear(&base); return res; } /* end mpp_fermat() */ /* }}} */ /* Perform the fermat test on each of the primes in a list until a) one of them shows a is not prime, or b) the list is exhausted. Returns: MP_YES if it passes tests. MP_NO if fermat test reveals it is composite Some MP error code if some other error occurs. */ mp_err mpp_fermat_list(mp_int *a, const mp_digit *primes, mp_size nPrimes) { mp_err rv = MP_YES; while (nPrimes-- > 0 && rv == MP_YES) { rv = mpp_fermat(a, *primes++); } return rv; } /* {{{ mpp_pprime(a, nt) */ /* mpp_pprime(a, nt) Performs nt iteration of the Miller-Rabin probabilistic primality test on a. Returns MP_YES if the tests pass, MP_NO if one fails. If MP_NO is returned, the number is definitely composite. If MP_YES is returned, it is probably prime (but that is not guaranteed). */ mp_err mpp_pprime(mp_int *a, int nt) { mp_err res; mp_int x, amo, m, z; /* "amo" = "a minus one" */ int iter; unsigned int jx; mp_size b; ARGCHK(a != NULL, MP_BADARG); MP_DIGITS(&x) = 0; MP_DIGITS(&amo) = 0; MP_DIGITS(&m) = 0; MP_DIGITS(&z) = 0; /* Initialize temporaries... */ MP_CHECKOK( mp_init(&amo)); /* Compute amo = a - 1 for what follows... */ MP_CHECKOK( mp_sub_d(a, 1, &amo) ); b = mp_trailing_zeros(&amo); if (!b) { /* a was even ? */ res = MP_NO; goto CLEANUP; } MP_CHECKOK( mp_init_size(&x, MP_USED(a)) ); MP_CHECKOK( mp_init(&z) ); MP_CHECKOK( mp_init(&m) ); MP_CHECKOK( mp_div_2d(&amo, b, &m, 0) ); /* Do the test nt times... */ for(iter = 0; iter < nt; iter++) { /* Choose a random value for 1 < x < a */ s_mp_pad(&x, USED(a)); mpp_random(&x); MP_CHECKOK( mp_mod(&x, a, &x) ); if(mp_cmp_d(&x, 1) <= 0) { iter--; /* don't count this iteration */ continue; /* choose a new x */ } /* Compute z = (x ** m) mod a */ MP_CHECKOK( mp_exptmod(&x, &m, a, &z) ); if(mp_cmp_d(&z, 1) == 0 || mp_cmp(&z, &amo) == 0) { res = MP_YES; continue; } res = MP_NO; /* just in case the following for loop never executes. */ for (jx = 1; jx < b; jx++) { /* z = z^2 (mod a) */ MP_CHECKOK( mp_sqrmod(&z, a, &z) ); res = MP_NO; /* previous line set res to MP_YES */ if(mp_cmp_d(&z, 1) == 0) { break; } if(mp_cmp(&z, &amo) == 0) { res = MP_YES; break; } } /* end testing loop */ /* If the test passes, we will continue iterating, but a failed test means the candidate is definitely NOT prime, so we will immediately break out of this loop */ if(res == MP_NO) break; } /* end iterations loop */ CLEANUP: mp_clear(&m); mp_clear(&z); mp_clear(&x); mp_clear(&amo); return res; } /* end mpp_pprime() */ /* }}} */ /* Produce table of composites from list of primes and trial value. ** trial must be odd. List of primes must not include 2. ** sieve should have dimension >= MAXPRIME/2, where MAXPRIME is largest ** prime in list of primes. After this function is finished, ** if sieve[i] is non-zero, then (trial + 2*i) is composite. ** Each prime used in the sieve costs one division of trial, and eliminates ** one or more values from the search space. (3 eliminates 1/3 of the values ** alone!) Each value left in the search space costs 1 or more modular ** exponentations. So, these divisions are a bargain! */ mp_err mpp_sieve(mp_int *trial, const mp_digit *primes, mp_size nPrimes, unsigned char *sieve, mp_size nSieve) { mp_err res; mp_digit rem; mp_size ix; unsigned long offset; memset(sieve, 0, nSieve); for(ix = 0; ix < nPrimes; ix++) { mp_digit prime = primes[ix]; mp_size i; if((res = mp_mod_d(trial, prime, &rem)) != MP_OKAY) return res; if (rem == 0) { offset = 0; } else { offset = prime - (rem / 2); } for (i = offset; i < nSieve ; i += prime) { sieve[i] = 1; } } return MP_OKAY; } #define SIEVE_SIZE 32*1024 mp_err mpp_make_prime(mp_int *start, mp_size nBits, mp_size strong, unsigned long * nTries) { mp_digit np; mp_err res; int i = 0; mp_int trial; mp_int q; mp_size num_tests; unsigned char *sieve; ARGCHK(start != 0, MP_BADARG); ARGCHK(nBits > 16, MP_RANGE); sieve = malloc(SIEVE_SIZE); ARGCHK(sieve != NULL, MP_MEM); MP_DIGITS(&trial) = 0; MP_DIGITS(&q) = 0; MP_CHECKOK( mp_init(&trial) ); MP_CHECKOK( mp_init(&q) ); /* values taken from table 4.4, HandBook of Applied Cryptography */ if (nBits >= 1300) { num_tests = 2; } else if (nBits >= 850) { num_tests = 3; } else if (nBits >= 650) { num_tests = 4; } else if (nBits >= 550) { num_tests = 5; } else if (nBits >= 450) { num_tests = 6; } else if (nBits >= 400) { num_tests = 7; } else if (nBits >= 350) { num_tests = 8; } else if (nBits >= 300) { num_tests = 9; } else if (nBits >= 250) { num_tests = 12; } else if (nBits >= 200) { num_tests = 15; } else if (nBits >= 150) { num_tests = 18; } else if (nBits >= 100) { num_tests = 27; } else num_tests = 50; if (strong) --nBits; MP_CHECKOK( mpl_set_bit(start, nBits - 1, 1) ); MP_CHECKOK( mpl_set_bit(start, 0, 1) ); for (i = mpl_significant_bits(start) - 1; i >= nBits; --i) { MP_CHECKOK( mpl_set_bit(start, i, 0) ); } /* start sieveing with prime value of 3. */ MP_CHECKOK(mpp_sieve(start, prime_tab + 1, prime_tab_size - 1, sieve, SIEVE_SIZE) ); #ifdef DEBUG_SIEVE res = 0; for (i = 0; i < SIEVE_SIZE; ++i) { if (!sieve[i]) ++res; } fprintf(stderr,"sieve found %d potential primes.\n", res); #define FPUTC(x,y) fputc(x,y) #else #define FPUTC(x,y) #endif res = MP_NO; for(i = 0; i < SIEVE_SIZE; ++i) { if (sieve[i]) /* this number is composite */ continue; MP_CHECKOK( mp_add_d(start, 2 * i, &trial) ); FPUTC('.', stderr); /* run a Fermat test */ res = mpp_fermat(&trial, 2); if (res != MP_OKAY) { if (res == MP_NO) continue; /* was composite */ goto CLEANUP; } FPUTC('+', stderr); /* If that passed, run some Miller-Rabin tests */ res = mpp_pprime(&trial, num_tests); if (res != MP_OKAY) { if (res == MP_NO) continue; /* was composite */ goto CLEANUP; } FPUTC('!', stderr); if (!strong) break; /* success !! */ /* At this point, we have strong evidence that our candidate is itself prime. If we want a strong prime, we need now to test q = 2p + 1 for primality... */ MP_CHECKOK( mp_mul_2(&trial, &q) ); MP_CHECKOK( mp_add_d(&q, 1, &q) ); /* Test q for small prime divisors ... */ np = prime_tab_size; res = mpp_divis_primes(&q, &np); if (res == MP_YES) { /* is composite */ mp_clear(&q); continue; } if (res != MP_NO) goto CLEANUP; /* And test with Fermat, as with its parent ... */ res = mpp_fermat(&q, 2); if (res != MP_YES) { mp_clear(&q); if (res == MP_NO) continue; /* was composite */ goto CLEANUP; } /* And test with Miller-Rabin, as with its parent ... */ res = mpp_pprime(&q, num_tests); if (res != MP_YES) { mp_clear(&q); if (res == MP_NO) continue; /* was composite */ goto CLEANUP; } /* If it passed, we've got a winner */ mp_exch(&q, &trial); mp_clear(&q); break; } /* end of loop through sieved values */ if (res == MP_YES) mp_exch(&trial, start); CLEANUP: mp_clear(&trial); mp_clear(&q); if (nTries) *nTries += i; if (sieve != NULL) { memset(sieve, 0, SIEVE_SIZE); free (sieve); } return res; } /*========================================================================*/ /*------------------------------------------------------------------------*/ /* Static functions visible only to the library internally */ /* {{{ s_mpp_divp(a, vec, size, which) */ /* Test for divisibility by members of a vector of digits. Returns MP_NO if a is not divisible by any of them; returns MP_YES and sets 'which' to the index of the offender, if it is. Will stop on the first digit against which a is divisible. */ mp_err s_mpp_divp(mp_int *a, const mp_digit *vec, int size, int *which) { mp_err res; mp_digit rem; int ix; for(ix = 0; ix < size; ix++) { if((res = mp_mod_d(a, vec[ix], &rem)) != MP_OKAY) return res; if(rem == 0) { if(which) *which = ix; return MP_YES; } } return MP_NO; } /* end s_mpp_divp() */ /* }}} */ /*------------------------------------------------------------------------*/ /* HERE THERE BE DRAGONS */