Mercurial > trustbridge > nss-cmake-static
view nss/lib/freebl/sha_fast.c @ 3:150b72113545
Add DBM and legacydb support
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Tue, 05 Aug 2014 18:32:02 +0200 |
parents | 1e5118fa0cb1 |
children |
line wrap: on
line source
/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifdef FREEBL_NO_DEPEND #include "stubs.h" #endif #include <memory.h> #include "blapi.h" #include "sha_fast.h" #include "prerror.h" #ifdef TRACING_SSL #include "ssl.h" #include "ssltrace.h" #endif static void shaCompress(volatile SHA_HW_t *X, const PRUint32 * datain); #define W u.w #define B u.b #define SHA_F1(X,Y,Z) ((((Y)^(Z))&(X))^(Z)) #define SHA_F2(X,Y,Z) ((X)^(Y)^(Z)) #define SHA_F3(X,Y,Z) (((X)&(Y))|((Z)&((X)|(Y)))) #define SHA_F4(X,Y,Z) ((X)^(Y)^(Z)) #define SHA_MIX(n,a,b,c) XW(n) = SHA_ROTL(XW(a)^XW(b)^XW(c)^XW(n), 1) /* * SHA: initialize context */ void SHA1_Begin(SHA1Context *ctx) { ctx->size = 0; /* * Initialize H with constants from FIPS180-1. */ ctx->H[0] = 0x67452301L; ctx->H[1] = 0xefcdab89L; ctx->H[2] = 0x98badcfeL; ctx->H[3] = 0x10325476L; ctx->H[4] = 0xc3d2e1f0L; } /* Explanation of H array and index values: * The context's H array is actually the concatenation of two arrays * defined by SHA1, the H array of state variables (5 elements), * and the W array of intermediate values, of which there are 16 elements. * The W array starts at H[5], that is W[0] is H[5]. * Although these values are defined as 32-bit values, we use 64-bit * variables to hold them because the AMD64 stores 64 bit values in * memory MUCH faster than it stores any smaller values. * * Rather than passing the context structure to shaCompress, we pass * this combined array of H and W values. We do not pass the address * of the first element of this array, but rather pass the address of an * element in the middle of the array, element X. Presently X[0] is H[11]. * So we pass the address of H[11] as the address of array X to shaCompress. * Then shaCompress accesses the members of the array using positive AND * negative indexes. * * Pictorially: (each element is 8 bytes) * H | H0 H1 H2 H3 H4 W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 Wa Wb Wc Wd We Wf | * X |-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 | * * The byte offset from X[0] to any member of H and W is always * representable in a signed 8-bit value, which will be encoded * as a single byte offset in the X86-64 instruction set. * If we didn't pass the address of H[11], and instead passed the * address of H[0], the offsets to elements H[16] and above would be * greater than 127, not representable in a signed 8-bit value, and the * x86-64 instruction set would encode every such offset as a 32-bit * signed number in each instruction that accessed element H[16] or * higher. This results in much bigger and slower code. */ #if !defined(SHA_PUT_W_IN_STACK) #define H2X 11 /* X[0] is H[11], and H[0] is X[-11] */ #define W2X 6 /* X[0] is W[6], and W[0] is X[-6] */ #else #define H2X 0 #endif /* * SHA: Add data to context. */ void SHA1_Update(SHA1Context *ctx, const unsigned char *dataIn, unsigned int len) { register unsigned int lenB; register unsigned int togo; if (!len) return; /* accumulate the byte count. */ lenB = (unsigned int)(ctx->size) & 63U; ctx->size += len; /* * Read the data into W and process blocks as they get full */ if (lenB > 0) { togo = 64U - lenB; if (len < togo) togo = len; memcpy(ctx->B + lenB, dataIn, togo); len -= togo; dataIn += togo; lenB = (lenB + togo) & 63U; if (!lenB) { shaCompress(&ctx->H[H2X], ctx->W); } } #if !defined(SHA_ALLOW_UNALIGNED_ACCESS) if ((ptrdiff_t)dataIn % sizeof(PRUint32)) { while (len >= 64U) { memcpy(ctx->B, dataIn, 64); len -= 64U; shaCompress(&ctx->H[H2X], ctx->W); dataIn += 64U; } } else #endif { while (len >= 64U) { len -= 64U; shaCompress(&ctx->H[H2X], (PRUint32 *)dataIn); dataIn += 64U; } } if (len) { memcpy(ctx->B, dataIn, len); } } /* * SHA: Generate hash value from context */ void SHA1_End(SHA1Context *ctx, unsigned char *hashout, unsigned int *pDigestLen, unsigned int maxDigestLen) { register PRUint64 size; register PRUint32 lenB; PRUint32 tmpbuf[5]; static const unsigned char bulk_pad[64] = { 0x80,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; #define tmp lenB PORT_Assert (maxDigestLen >= SHA1_LENGTH); /* * Pad with a binary 1 (e.g. 0x80), then zeroes, then length in bits */ size = ctx->size; lenB = (PRUint32)size & 63; SHA1_Update(ctx, bulk_pad, (((55+64) - lenB) & 63) + 1); PORT_Assert(((PRUint32)ctx->size & 63) == 56); /* Convert size from bytes to bits. */ size <<= 3; ctx->W[14] = SHA_HTONL((PRUint32)(size >> 32)); ctx->W[15] = SHA_HTONL((PRUint32)size); shaCompress(&ctx->H[H2X], ctx->W); /* * Output hash */ SHA_STORE_RESULT; if (pDigestLen) { *pDigestLen = SHA1_LENGTH; } #undef tmp } void SHA1_EndRaw(SHA1Context *ctx, unsigned char *hashout, unsigned int *pDigestLen, unsigned int maxDigestLen) { #if defined(SHA_NEED_TMP_VARIABLE) register PRUint32 tmp; #endif PRUint32 tmpbuf[5]; PORT_Assert (maxDigestLen >= SHA1_LENGTH); SHA_STORE_RESULT; if (pDigestLen) *pDigestLen = SHA1_LENGTH; } #undef B /* * SHA: Compression function, unrolled. * * Some operations in shaCompress are done as 5 groups of 16 operations. * Others are done as 4 groups of 20 operations. * The code below shows that structure. * * The functions that compute the new values of the 5 state variables * A-E are done in 4 groups of 20 operations (or you may also think * of them as being done in 16 groups of 5 operations). They are * done by the SHA_RNDx macros below, in the right column. * * The functions that set the 16 values of the W array are done in * 5 groups of 16 operations. The first group is done by the * LOAD macros below, the latter 4 groups are done by SHA_MIX below, * in the left column. * * gcc's optimizer observes that each member of the W array is assigned * a value 5 times in this code. It reduces the number of store * operations done to the W array in the context (that is, in the X array) * by creating a W array on the stack, and storing the W values there for * the first 4 groups of operations on W, and storing the values in the * context's W array only in the fifth group. This is undesirable. * It is MUCH bigger code than simply using the context's W array, because * all the offsets to the W array in the stack are 32-bit signed offsets, * and it is no faster than storing the values in the context's W array. * * The original code for sha_fast.c prevented this creation of a separate * W array in the stack by creating a W array of 80 members, each of * whose elements is assigned only once. It also separated the computations * of the W array values and the computations of the values for the 5 * state variables into two separate passes, W's, then A-E's so that the * second pass could be done all in registers (except for accessing the W * array) on machines with fewer registers. The method is suboptimal * for machines with enough registers to do it all in one pass, and it * necessitates using many instructions with 32-bit offsets. * * This code eliminates the separate W array on the stack by a completely * different means: by declaring the X array volatile. This prevents * the optimizer from trying to reduce the use of the X array by the * creation of a MORE expensive W array on the stack. The result is * that all instructions use signed 8-bit offsets and not 32-bit offsets. * * The combination of this code and the -O3 optimizer flag on GCC 3.4.3 * results in code that is 3 times faster than the previous NSS sha_fast * code on AMD64. */ static void shaCompress(volatile SHA_HW_t *X, const PRUint32 *inbuf) { register SHA_HW_t A, B, C, D, E; #if defined(SHA_NEED_TMP_VARIABLE) register PRUint32 tmp; #endif #if !defined(SHA_PUT_W_IN_STACK) #define XH(n) X[n-H2X] #define XW(n) X[n-W2X] #else SHA_HW_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7, w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15; #define XW(n) w_ ## n #define XH(n) X[n] #endif #define K0 0x5a827999L #define K1 0x6ed9eba1L #define K2 0x8f1bbcdcL #define K3 0xca62c1d6L #define SHA_RND1(a,b,c,d,e,n) \ a = SHA_ROTL(b,5)+SHA_F1(c,d,e)+a+XW(n)+K0; c=SHA_ROTL(c,30) #define SHA_RND2(a,b,c,d,e,n) \ a = SHA_ROTL(b,5)+SHA_F2(c,d,e)+a+XW(n)+K1; c=SHA_ROTL(c,30) #define SHA_RND3(a,b,c,d,e,n) \ a = SHA_ROTL(b,5)+SHA_F3(c,d,e)+a+XW(n)+K2; c=SHA_ROTL(c,30) #define SHA_RND4(a,b,c,d,e,n) \ a = SHA_ROTL(b,5)+SHA_F4(c,d,e)+a+XW(n)+K3; c=SHA_ROTL(c,30) #define LOAD(n) XW(n) = SHA_HTONL(inbuf[n]) A = XH(0); B = XH(1); C = XH(2); D = XH(3); E = XH(4); LOAD(0); SHA_RND1(E,A,B,C,D, 0); LOAD(1); SHA_RND1(D,E,A,B,C, 1); LOAD(2); SHA_RND1(C,D,E,A,B, 2); LOAD(3); SHA_RND1(B,C,D,E,A, 3); LOAD(4); SHA_RND1(A,B,C,D,E, 4); LOAD(5); SHA_RND1(E,A,B,C,D, 5); LOAD(6); SHA_RND1(D,E,A,B,C, 6); LOAD(7); SHA_RND1(C,D,E,A,B, 7); LOAD(8); SHA_RND1(B,C,D,E,A, 8); LOAD(9); SHA_RND1(A,B,C,D,E, 9); LOAD(10); SHA_RND1(E,A,B,C,D,10); LOAD(11); SHA_RND1(D,E,A,B,C,11); LOAD(12); SHA_RND1(C,D,E,A,B,12); LOAD(13); SHA_RND1(B,C,D,E,A,13); LOAD(14); SHA_RND1(A,B,C,D,E,14); LOAD(15); SHA_RND1(E,A,B,C,D,15); SHA_MIX( 0, 13, 8, 2); SHA_RND1(D,E,A,B,C, 0); SHA_MIX( 1, 14, 9, 3); SHA_RND1(C,D,E,A,B, 1); SHA_MIX( 2, 15, 10, 4); SHA_RND1(B,C,D,E,A, 2); SHA_MIX( 3, 0, 11, 5); SHA_RND1(A,B,C,D,E, 3); SHA_MIX( 4, 1, 12, 6); SHA_RND2(E,A,B,C,D, 4); SHA_MIX( 5, 2, 13, 7); SHA_RND2(D,E,A,B,C, 5); SHA_MIX( 6, 3, 14, 8); SHA_RND2(C,D,E,A,B, 6); SHA_MIX( 7, 4, 15, 9); SHA_RND2(B,C,D,E,A, 7); SHA_MIX( 8, 5, 0, 10); SHA_RND2(A,B,C,D,E, 8); SHA_MIX( 9, 6, 1, 11); SHA_RND2(E,A,B,C,D, 9); SHA_MIX(10, 7, 2, 12); SHA_RND2(D,E,A,B,C,10); SHA_MIX(11, 8, 3, 13); SHA_RND2(C,D,E,A,B,11); SHA_MIX(12, 9, 4, 14); SHA_RND2(B,C,D,E,A,12); SHA_MIX(13, 10, 5, 15); SHA_RND2(A,B,C,D,E,13); SHA_MIX(14, 11, 6, 0); SHA_RND2(E,A,B,C,D,14); SHA_MIX(15, 12, 7, 1); SHA_RND2(D,E,A,B,C,15); SHA_MIX( 0, 13, 8, 2); SHA_RND2(C,D,E,A,B, 0); SHA_MIX( 1, 14, 9, 3); SHA_RND2(B,C,D,E,A, 1); SHA_MIX( 2, 15, 10, 4); SHA_RND2(A,B,C,D,E, 2); SHA_MIX( 3, 0, 11, 5); SHA_RND2(E,A,B,C,D, 3); SHA_MIX( 4, 1, 12, 6); SHA_RND2(D,E,A,B,C, 4); SHA_MIX( 5, 2, 13, 7); SHA_RND2(C,D,E,A,B, 5); SHA_MIX( 6, 3, 14, 8); SHA_RND2(B,C,D,E,A, 6); SHA_MIX( 7, 4, 15, 9); SHA_RND2(A,B,C,D,E, 7); SHA_MIX( 8, 5, 0, 10); SHA_RND3(E,A,B,C,D, 8); SHA_MIX( 9, 6, 1, 11); SHA_RND3(D,E,A,B,C, 9); SHA_MIX(10, 7, 2, 12); SHA_RND3(C,D,E,A,B,10); SHA_MIX(11, 8, 3, 13); SHA_RND3(B,C,D,E,A,11); SHA_MIX(12, 9, 4, 14); SHA_RND3(A,B,C,D,E,12); SHA_MIX(13, 10, 5, 15); SHA_RND3(E,A,B,C,D,13); SHA_MIX(14, 11, 6, 0); SHA_RND3(D,E,A,B,C,14); SHA_MIX(15, 12, 7, 1); SHA_RND3(C,D,E,A,B,15); SHA_MIX( 0, 13, 8, 2); SHA_RND3(B,C,D,E,A, 0); SHA_MIX( 1, 14, 9, 3); SHA_RND3(A,B,C,D,E, 1); SHA_MIX( 2, 15, 10, 4); SHA_RND3(E,A,B,C,D, 2); SHA_MIX( 3, 0, 11, 5); SHA_RND3(D,E,A,B,C, 3); SHA_MIX( 4, 1, 12, 6); SHA_RND3(C,D,E,A,B, 4); SHA_MIX( 5, 2, 13, 7); SHA_RND3(B,C,D,E,A, 5); SHA_MIX( 6, 3, 14, 8); SHA_RND3(A,B,C,D,E, 6); SHA_MIX( 7, 4, 15, 9); SHA_RND3(E,A,B,C,D, 7); SHA_MIX( 8, 5, 0, 10); SHA_RND3(D,E,A,B,C, 8); SHA_MIX( 9, 6, 1, 11); SHA_RND3(C,D,E,A,B, 9); SHA_MIX(10, 7, 2, 12); SHA_RND3(B,C,D,E,A,10); SHA_MIX(11, 8, 3, 13); SHA_RND3(A,B,C,D,E,11); SHA_MIX(12, 9, 4, 14); SHA_RND4(E,A,B,C,D,12); SHA_MIX(13, 10, 5, 15); SHA_RND4(D,E,A,B,C,13); SHA_MIX(14, 11, 6, 0); SHA_RND4(C,D,E,A,B,14); SHA_MIX(15, 12, 7, 1); SHA_RND4(B,C,D,E,A,15); SHA_MIX( 0, 13, 8, 2); SHA_RND4(A,B,C,D,E, 0); SHA_MIX( 1, 14, 9, 3); SHA_RND4(E,A,B,C,D, 1); SHA_MIX( 2, 15, 10, 4); SHA_RND4(D,E,A,B,C, 2); SHA_MIX( 3, 0, 11, 5); SHA_RND4(C,D,E,A,B, 3); SHA_MIX( 4, 1, 12, 6); SHA_RND4(B,C,D,E,A, 4); SHA_MIX( 5, 2, 13, 7); SHA_RND4(A,B,C,D,E, 5); SHA_MIX( 6, 3, 14, 8); SHA_RND4(E,A,B,C,D, 6); SHA_MIX( 7, 4, 15, 9); SHA_RND4(D,E,A,B,C, 7); SHA_MIX( 8, 5, 0, 10); SHA_RND4(C,D,E,A,B, 8); SHA_MIX( 9, 6, 1, 11); SHA_RND4(B,C,D,E,A, 9); SHA_MIX(10, 7, 2, 12); SHA_RND4(A,B,C,D,E,10); SHA_MIX(11, 8, 3, 13); SHA_RND4(E,A,B,C,D,11); SHA_MIX(12, 9, 4, 14); SHA_RND4(D,E,A,B,C,12); SHA_MIX(13, 10, 5, 15); SHA_RND4(C,D,E,A,B,13); SHA_MIX(14, 11, 6, 0); SHA_RND4(B,C,D,E,A,14); SHA_MIX(15, 12, 7, 1); SHA_RND4(A,B,C,D,E,15); XH(0) += A; XH(1) += B; XH(2) += C; XH(3) += D; XH(4) += E; } /************************************************************************* ** Code below this line added to make SHA code support BLAPI interface */ SHA1Context * SHA1_NewContext(void) { SHA1Context *cx; /* no need to ZNew, SHA1_Begin will init the context */ cx = PORT_New(SHA1Context); return cx; } /* Zero and free the context */ void SHA1_DestroyContext(SHA1Context *cx, PRBool freeit) { memset(cx, 0, sizeof *cx); if (freeit) { PORT_Free(cx); } } SECStatus SHA1_HashBuf(unsigned char *dest, const unsigned char *src, PRUint32 src_length) { SHA1Context ctx; unsigned int outLen; SHA1_Begin(&ctx); SHA1_Update(&ctx, src, src_length); SHA1_End(&ctx, dest, &outLen, SHA1_LENGTH); memset(&ctx, 0, sizeof ctx); return SECSuccess; } /* Hash a null-terminated character string. */ SECStatus SHA1_Hash(unsigned char *dest, const char *src) { return SHA1_HashBuf(dest, (const unsigned char *)src, PORT_Strlen (src)); } /* * need to support save/restore state in pkcs11. Stores all the info necessary * for a structure into just a stream of bytes. */ unsigned int SHA1_FlattenSize(SHA1Context *cx) { return sizeof(SHA1Context); } SECStatus SHA1_Flatten(SHA1Context *cx,unsigned char *space) { PORT_Memcpy(space,cx, sizeof(SHA1Context)); return SECSuccess; } SHA1Context * SHA1_Resurrect(unsigned char *space,void *arg) { SHA1Context *cx = SHA1_NewContext(); if (cx == NULL) return NULL; PORT_Memcpy(cx,space, sizeof(SHA1Context)); return cx; } void SHA1_Clone(SHA1Context *dest, SHA1Context *src) { memcpy(dest, src, sizeof *dest); } void SHA1_TraceState(SHA1Context *ctx) { PORT_SetError(PR_NOT_IMPLEMENTED_ERROR); }