Mercurial > trustbridge > nss-cmake-static
view nss/lib/freebl/ecl/ecl.c @ 0:1e5118fa0cb1
This is NSS with a Cmake Buildsyste
To compile a static NSS library for Windows we've used the
Chromium-NSS fork and added a Cmake buildsystem to compile
it statically for Windows. See README.chromium for chromium
changes and README.trustbridge for our modifications.
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Mon, 28 Jul 2014 10:47:06 +0200 |
parents | |
children |
line wrap: on
line source
/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "mpi.h" #include "mplogic.h" #include "ecl.h" #include "ecl-priv.h" #include "ec2.h" #include "ecp.h" #include <stdlib.h> #include <string.h> /* Allocate memory for a new ECGroup object. */ ECGroup * ECGroup_new() { mp_err res = MP_OKAY; ECGroup *group; group = (ECGroup *) malloc(sizeof(ECGroup)); if (group == NULL) return NULL; group->constructed = MP_YES; group->meth = NULL; group->text = NULL; MP_DIGITS(&group->curvea) = 0; MP_DIGITS(&group->curveb) = 0; MP_DIGITS(&group->genx) = 0; MP_DIGITS(&group->geny) = 0; MP_DIGITS(&group->order) = 0; group->base_point_mul = NULL; group->points_mul = NULL; group->validate_point = NULL; group->extra1 = NULL; group->extra2 = NULL; group->extra_free = NULL; MP_CHECKOK(mp_init(&group->curvea)); MP_CHECKOK(mp_init(&group->curveb)); MP_CHECKOK(mp_init(&group->genx)); MP_CHECKOK(mp_init(&group->geny)); MP_CHECKOK(mp_init(&group->order)); CLEANUP: if (res != MP_OKAY) { ECGroup_free(group); return NULL; } return group; } /* Construct a generic ECGroup for elliptic curves over prime fields. */ ECGroup * ECGroup_consGFp(const mp_int *irr, const mp_int *curvea, const mp_int *curveb, const mp_int *genx, const mp_int *geny, const mp_int *order, int cofactor) { mp_err res = MP_OKAY; ECGroup *group = NULL; group = ECGroup_new(); if (group == NULL) return NULL; group->meth = GFMethod_consGFp(irr); if (group->meth == NULL) { res = MP_MEM; goto CLEANUP; } MP_CHECKOK(mp_copy(curvea, &group->curvea)); MP_CHECKOK(mp_copy(curveb, &group->curveb)); MP_CHECKOK(mp_copy(genx, &group->genx)); MP_CHECKOK(mp_copy(geny, &group->geny)); MP_CHECKOK(mp_copy(order, &group->order)); group->cofactor = cofactor; group->point_add = &ec_GFp_pt_add_aff; group->point_sub = &ec_GFp_pt_sub_aff; group->point_dbl = &ec_GFp_pt_dbl_aff; group->point_mul = &ec_GFp_pt_mul_jm_wNAF; group->base_point_mul = NULL; group->points_mul = &ec_GFp_pts_mul_jac; group->validate_point = &ec_GFp_validate_point; CLEANUP: if (res != MP_OKAY) { ECGroup_free(group); return NULL; } return group; } /* Construct a generic ECGroup for elliptic curves over prime fields with * field arithmetic implemented in Montgomery coordinates. */ ECGroup * ECGroup_consGFp_mont(const mp_int *irr, const mp_int *curvea, const mp_int *curveb, const mp_int *genx, const mp_int *geny, const mp_int *order, int cofactor) { mp_err res = MP_OKAY; ECGroup *group = NULL; group = ECGroup_new(); if (group == NULL) return NULL; group->meth = GFMethod_consGFp_mont(irr); if (group->meth == NULL) { res = MP_MEM; goto CLEANUP; } MP_CHECKOK(group->meth-> field_enc(curvea, &group->curvea, group->meth)); MP_CHECKOK(group->meth-> field_enc(curveb, &group->curveb, group->meth)); MP_CHECKOK(group->meth->field_enc(genx, &group->genx, group->meth)); MP_CHECKOK(group->meth->field_enc(geny, &group->geny, group->meth)); MP_CHECKOK(mp_copy(order, &group->order)); group->cofactor = cofactor; group->point_add = &ec_GFp_pt_add_aff; group->point_sub = &ec_GFp_pt_sub_aff; group->point_dbl = &ec_GFp_pt_dbl_aff; group->point_mul = &ec_GFp_pt_mul_jm_wNAF; group->base_point_mul = NULL; group->points_mul = &ec_GFp_pts_mul_jac; group->validate_point = &ec_GFp_validate_point; CLEANUP: if (res != MP_OKAY) { ECGroup_free(group); return NULL; } return group; } #ifdef NSS_ECC_MORE_THAN_SUITE_B /* Construct a generic ECGroup for elliptic curves over binary polynomial * fields. */ ECGroup * ECGroup_consGF2m(const mp_int *irr, const unsigned int irr_arr[5], const mp_int *curvea, const mp_int *curveb, const mp_int *genx, const mp_int *geny, const mp_int *order, int cofactor) { mp_err res = MP_OKAY; ECGroup *group = NULL; group = ECGroup_new(); if (group == NULL) return NULL; group->meth = GFMethod_consGF2m(irr, irr_arr); if (group->meth == NULL) { res = MP_MEM; goto CLEANUP; } MP_CHECKOK(mp_copy(curvea, &group->curvea)); MP_CHECKOK(mp_copy(curveb, &group->curveb)); MP_CHECKOK(mp_copy(genx, &group->genx)); MP_CHECKOK(mp_copy(geny, &group->geny)); MP_CHECKOK(mp_copy(order, &group->order)); group->cofactor = cofactor; group->point_add = &ec_GF2m_pt_add_aff; group->point_sub = &ec_GF2m_pt_sub_aff; group->point_dbl = &ec_GF2m_pt_dbl_aff; group->point_mul = &ec_GF2m_pt_mul_mont; group->base_point_mul = NULL; group->points_mul = &ec_pts_mul_basic; group->validate_point = &ec_GF2m_validate_point; CLEANUP: if (res != MP_OKAY) { ECGroup_free(group); return NULL; } return group; } #endif /* Construct ECGroup from hex parameters and name, if any. Called by * ECGroup_fromHex and ECGroup_fromName. */ ECGroup * ecgroup_fromNameAndHex(const ECCurveName name, const ECCurveParams * params) { mp_int irr, curvea, curveb, genx, geny, order; int bits; ECGroup *group = NULL; mp_err res = MP_OKAY; /* initialize values */ MP_DIGITS(&irr) = 0; MP_DIGITS(&curvea) = 0; MP_DIGITS(&curveb) = 0; MP_DIGITS(&genx) = 0; MP_DIGITS(&geny) = 0; MP_DIGITS(&order) = 0; MP_CHECKOK(mp_init(&irr)); MP_CHECKOK(mp_init(&curvea)); MP_CHECKOK(mp_init(&curveb)); MP_CHECKOK(mp_init(&genx)); MP_CHECKOK(mp_init(&geny)); MP_CHECKOK(mp_init(&order)); MP_CHECKOK(mp_read_radix(&irr, params->irr, 16)); MP_CHECKOK(mp_read_radix(&curvea, params->curvea, 16)); MP_CHECKOK(mp_read_radix(&curveb, params->curveb, 16)); MP_CHECKOK(mp_read_radix(&genx, params->genx, 16)); MP_CHECKOK(mp_read_radix(&geny, params->geny, 16)); MP_CHECKOK(mp_read_radix(&order, params->order, 16)); /* determine number of bits */ bits = mpl_significant_bits(&irr) - 1; if (bits < MP_OKAY) { res = bits; goto CLEANUP; } /* determine which optimizations (if any) to use */ if (params->field == ECField_GFp) { switch (name) { #ifdef NSS_ECC_MORE_THAN_SUITE_B #ifdef ECL_USE_FP case ECCurve_SECG_PRIME_160R1: group = ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny, &order, params->cofactor); if (group == NULL) { res = MP_UNDEF; goto CLEANUP; } MP_CHECKOK(ec_group_set_secp160r1_fp(group)); break; #endif case ECCurve_SECG_PRIME_192R1: #ifdef ECL_USE_FP group = ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny, &order, params->cofactor); if (group == NULL) { res = MP_UNDEF; goto CLEANUP; } MP_CHECKOK(ec_group_set_nistp192_fp(group)); #else group = ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny, &order, params->cofactor); if (group == NULL) { res = MP_UNDEF; goto CLEANUP; } MP_CHECKOK(ec_group_set_gfp192(group, name)); #endif break; case ECCurve_SECG_PRIME_224R1: #ifdef ECL_USE_FP group = ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny, &order, params->cofactor); if (group == NULL) { res = MP_UNDEF; goto CLEANUP; } MP_CHECKOK(ec_group_set_nistp224_fp(group)); #else group = ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny, &order, params->cofactor); if (group == NULL) { res = MP_UNDEF; goto CLEANUP; } MP_CHECKOK(ec_group_set_gfp224(group, name)); #endif break; #endif /* NSS_ECC_MORE_THAN_SUITE_B */ case ECCurve_SECG_PRIME_256R1: group = ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny, &order, params->cofactor); if (group == NULL) { res = MP_UNDEF; goto CLEANUP; } MP_CHECKOK(ec_group_set_gfp256(group, name)); MP_CHECKOK(ec_group_set_gfp256_32(group, name)); break; case ECCurve_SECG_PRIME_521R1: group = ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny, &order, params->cofactor); if (group == NULL) { res = MP_UNDEF; goto CLEANUP; } MP_CHECKOK(ec_group_set_gfp521(group, name)); break; default: /* use generic arithmetic */ group = ECGroup_consGFp_mont(&irr, &curvea, &curveb, &genx, &geny, &order, params->cofactor); if (group == NULL) { res = MP_UNDEF; goto CLEANUP; } } #ifdef NSS_ECC_MORE_THAN_SUITE_B } else if (params->field == ECField_GF2m) { group = ECGroup_consGF2m(&irr, NULL, &curvea, &curveb, &genx, &geny, &order, params->cofactor); if (group == NULL) { res = MP_UNDEF; goto CLEANUP; } if ((name == ECCurve_NIST_K163) || (name == ECCurve_NIST_B163) || (name == ECCurve_SECG_CHAR2_163R1)) { MP_CHECKOK(ec_group_set_gf2m163(group, name)); } else if ((name == ECCurve_SECG_CHAR2_193R1) || (name == ECCurve_SECG_CHAR2_193R2)) { MP_CHECKOK(ec_group_set_gf2m193(group, name)); } else if ((name == ECCurve_NIST_K233) || (name == ECCurve_NIST_B233)) { MP_CHECKOK(ec_group_set_gf2m233(group, name)); } #endif } else { res = MP_UNDEF; goto CLEANUP; } /* set name, if any */ if ((group != NULL) && (params->text != NULL)) { group->text = strdup(params->text); if (group->text == NULL) { res = MP_MEM; } } CLEANUP: mp_clear(&irr); mp_clear(&curvea); mp_clear(&curveb); mp_clear(&genx); mp_clear(&geny); mp_clear(&order); if (res != MP_OKAY) { ECGroup_free(group); return NULL; } return group; } /* Construct ECGroup from hexadecimal representations of parameters. */ ECGroup * ECGroup_fromHex(const ECCurveParams * params) { return ecgroup_fromNameAndHex(ECCurve_noName, params); } /* Construct ECGroup from named parameters. */ ECGroup * ECGroup_fromName(const ECCurveName name) { ECGroup *group = NULL; ECCurveParams *params = NULL; mp_err res = MP_OKAY; params = EC_GetNamedCurveParams(name); if (params == NULL) { res = MP_UNDEF; goto CLEANUP; } /* construct actual group */ group = ecgroup_fromNameAndHex(name, params); if (group == NULL) { res = MP_UNDEF; goto CLEANUP; } CLEANUP: EC_FreeCurveParams(params); if (res != MP_OKAY) { ECGroup_free(group); return NULL; } return group; } /* Validates an EC public key as described in Section 5.2.2 of X9.62. */ mp_err ECPoint_validate(const ECGroup *group, const mp_int *px, const mp_int *py) { /* 1: Verify that publicValue is not the point at infinity */ /* 2: Verify that the coordinates of publicValue are elements * of the field. */ /* 3: Verify that publicValue is on the curve. */ /* 4: Verify that the order of the curve times the publicValue * is the point at infinity. */ return group->validate_point(px, py, group); } /* Free the memory allocated (if any) to an ECGroup object. */ void ECGroup_free(ECGroup *group) { if (group == NULL) return; GFMethod_free(group->meth); if (group->constructed == MP_NO) return; mp_clear(&group->curvea); mp_clear(&group->curveb); mp_clear(&group->genx); mp_clear(&group->geny); mp_clear(&group->order); if (group->text != NULL) free(group->text); if (group->extra_free != NULL) group->extra_free(group); free(group); }