Mercurial > trustbridge > nss-cmake-static
view nss/lib/freebl/ecl/ecp.h @ 0:1e5118fa0cb1
This is NSS with a Cmake Buildsyste
To compile a static NSS library for Windows we've used the
Chromium-NSS fork and added a Cmake buildsystem to compile
it statically for Windows. See README.chromium for chromium
changes and README.trustbridge for our modifications.
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Mon, 28 Jul 2014 10:47:06 +0200 |
parents | |
children |
line wrap: on
line source
/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef __ecp_h_ #define __ecp_h_ #include "ecl-priv.h" /* Checks if point P(px, py) is at infinity. Uses affine coordinates. */ mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py); /* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */ mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py); /* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx, * qy). Uses affine coordinates. */ mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group); /* Computes R = P - Q. Uses affine coordinates. */ mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group); /* Computes R = 2P. Uses affine coordinates. */ mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group); /* Validates a point on a GFp curve. */ mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group); #ifdef ECL_ENABLE_GFP_PT_MUL_AFF /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters * a, b and p are the elliptic curve coefficients and the prime that * determines the field GFp. Uses affine coordinates. */ mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group); #endif /* Converts a point P(px, py) from affine coordinates to Jacobian * projective coordinates R(rx, ry, rz). */ mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group); /* Converts a point P(px, py, pz) from Jacobian projective coordinates to * affine coordinates R(rx, ry). */ mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, const mp_int *pz, mp_int *rx, mp_int *ry, const ECGroup *group); /* Checks if point P(px, py, pz) is at infinity. Uses Jacobian * coordinates. */ mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, const mp_int *pz); /* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian * coordinates. */ mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz); /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is * (qx, qy, qz). Uses Jacobian coordinates. */ mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, const mp_int *pz, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group); /* Computes R = 2P. Uses Jacobian coordinates. */ mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, const mp_int *pz, mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group); #ifdef ECL_ENABLE_GFP_PT_MUL_JAC /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters * a, b and p are the elliptic curve coefficients and the prime that * determines the field GFp. Uses Jacobian coordinates. */ mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group); #endif /* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator * (base point) of the group of points on the elliptic curve. Allows k1 = * NULL or { k2, P } = NULL. Implemented using mixed Jacobian-affine * coordinates. Input and output values are assumed to be NOT * field-encoded and are in affine form. */ mp_err ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group); /* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic * curve points P and R can be identical. Uses mixed Modified-Jacobian * co-ordinates for doubling and Chudnovsky Jacobian coordinates for * additions. Assumes input is already field-encoded using field_enc, and * returns output that is still field-encoded. Uses 5-bit window NAF * method (algorithm 11) for scalar-point multiplication from Brown, * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic * Curves Over Prime Fields. */ mp_err ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group); #endif /* __ecp_h_ */