Mercurial > trustbridge > nss-cmake-static
view nss/lib/freebl/ecl/ecp_521.c @ 1:247cffdc9b89
Add a pesodo config file for inlcude directories and library names
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Mon, 28 Jul 2014 13:00:06 +0200 |
parents | 1e5118fa0cb1 |
children |
line wrap: on
line source
/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "ecp.h" #include "mpi.h" #include "mplogic.h" #include "mpi-priv.h" #define ECP521_DIGITS ECL_CURVE_DIGITS(521) /* Fast modular reduction for p521 = 2^521 - 1. a can be r. Uses * algorithm 2.31 from Hankerson, Menezes, Vanstone. Guide to * Elliptic Curve Cryptography. */ static mp_err ec_GFp_nistp521_mod(const mp_int *a, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; int a_bits = mpl_significant_bits(a); int i; /* m1, m2 are statically-allocated mp_int of exactly the size we need */ mp_int m1; mp_digit s1[ECP521_DIGITS] = { 0 }; MP_SIGN(&m1) = MP_ZPOS; MP_ALLOC(&m1) = ECP521_DIGITS; MP_USED(&m1) = ECP521_DIGITS; MP_DIGITS(&m1) = s1; if (a_bits < 521) { if (a==r) return MP_OKAY; return mp_copy(a, r); } /* for polynomials larger than twice the field size or polynomials * not using all words, use regular reduction */ if (a_bits > (521*2)) { MP_CHECKOK(mp_mod(a, &meth->irr, r)); } else { #define FIRST_DIGIT (ECP521_DIGITS-1) for (i = FIRST_DIGIT; i < MP_USED(a)-1; i++) { s1[i-FIRST_DIGIT] = (MP_DIGIT(a, i) >> 9) | (MP_DIGIT(a, 1+i) << (MP_DIGIT_BIT-9)); } s1[i-FIRST_DIGIT] = MP_DIGIT(a, i) >> 9; if ( a != r ) { MP_CHECKOK(s_mp_pad(r,ECP521_DIGITS)); for (i = 0; i < ECP521_DIGITS; i++) { MP_DIGIT(r,i) = MP_DIGIT(a, i); } } MP_USED(r) = ECP521_DIGITS; MP_DIGIT(r,FIRST_DIGIT) &= 0x1FF; MP_CHECKOK(s_mp_add(r, &m1)); if (MP_DIGIT(r, FIRST_DIGIT) & 0x200) { MP_CHECKOK(s_mp_add_d(r,1)); MP_DIGIT(r,FIRST_DIGIT) &= 0x1FF; } else if (s_mp_cmp(r, &meth->irr) == 0) { mp_zero(r); } s_mp_clamp(r); } CLEANUP: return res; } /* Compute the square of polynomial a, reduce modulo p521. Store the * result in r. r could be a. Uses optimized modular reduction for p521. */ static mp_err ec_GFp_nistp521_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; MP_CHECKOK(mp_sqr(a, r)); MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth)); CLEANUP: return res; } /* Compute the product of two polynomials a and b, reduce modulo p521. * Store the result in r. r could be a or b; a could be b. Uses * optimized modular reduction for p521. */ static mp_err ec_GFp_nistp521_mul(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; MP_CHECKOK(mp_mul(a, b, r)); MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth)); CLEANUP: return res; } /* Divides two field elements. If a is NULL, then returns the inverse of * b. */ static mp_err ec_GFp_nistp521_div(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; mp_int t; /* If a is NULL, then return the inverse of b, otherwise return a/b. */ if (a == NULL) { return mp_invmod(b, &meth->irr, r); } else { /* MPI doesn't support divmod, so we implement it using invmod and * mulmod. */ MP_CHECKOK(mp_init(&t)); MP_CHECKOK(mp_invmod(b, &meth->irr, &t)); MP_CHECKOK(mp_mul(a, &t, r)); MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth)); CLEANUP: mp_clear(&t); return res; } } /* Wire in fast field arithmetic and precomputation of base point for * named curves. */ mp_err ec_group_set_gfp521(ECGroup *group, ECCurveName name) { if (name == ECCurve_NIST_P521) { group->meth->field_mod = &ec_GFp_nistp521_mod; group->meth->field_mul = &ec_GFp_nistp521_mul; group->meth->field_sqr = &ec_GFp_nistp521_sqr; group->meth->field_div = &ec_GFp_nistp521_div; } return MP_OKAY; }