Mercurial > trustbridge > nss-cmake-static
view nss/lib/freebl/mpi/mpi-priv.h @ 4:b513267f632f tip
Build DBM module
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Tue, 05 Aug 2014 18:58:03 +0200 |
parents | 1e5118fa0cb1 |
children |
line wrap: on
line source
/* * mpi-priv.h - Private header file for MPI * Arbitrary precision integer arithmetic library * * NOTE WELL: the content of this header file is NOT part of the "public" * API for the MPI library, and may change at any time. * Application programs that use libmpi should NOT include this header file. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef _MPI_PRIV_H_ #define _MPI_PRIV_H_ 1 #include "mpi.h" #include <stdlib.h> #include <string.h> #include <ctype.h> #if MP_DEBUG #include <stdio.h> #define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);} #else #define DIAG(T,V) #endif /* If we aren't using a wired-in logarithm table, we need to include the math library to get the log() function */ /* {{{ s_logv_2[] - log table for 2 in various bases */ #if MP_LOGTAB /* A table of the logs of 2 for various bases (the 0 and 1 entries of this table are meaningless and should not be referenced). This table is used to compute output lengths for the mp_toradix() function. Since a number n in radix r takes up about log_r(n) digits, we estimate the output size by taking the least integer greater than log_r(n), where: log_r(n) = log_2(n) * log_r(2) This table, therefore, is a table of log_r(2) for 2 <= r <= 36, which are the output bases supported. */ extern const float s_logv_2[]; #define LOG_V_2(R) s_logv_2[(R)] #else /* If MP_LOGTAB is not defined, use the math library to compute the logarithms on the fly. Otherwise, use the table. Pick which works best for your system. */ #include <math.h> #define LOG_V_2(R) (log(2.0)/log(R)) #endif /* if MP_LOGTAB */ /* }}} */ /* {{{ Digit arithmetic macros */ /* When adding and multiplying digits, the results can be larger than can be contained in an mp_digit. Thus, an mp_word is used. These macros mask off the upper and lower digits of the mp_word (the mp_word may be more than 2 mp_digits wide, but we only concern ourselves with the low-order 2 mp_digits) */ #define CARRYOUT(W) (mp_digit)((W)>>DIGIT_BIT) #define ACCUM(W) (mp_digit)(W) #define MP_MIN(a,b) (((a) < (b)) ? (a) : (b)) #define MP_MAX(a,b) (((a) > (b)) ? (a) : (b)) #define MP_HOWMANY(a,b) (((a) + (b) - 1)/(b)) #define MP_ROUNDUP(a,b) (MP_HOWMANY(a,b) * (b)) /* }}} */ /* {{{ Comparison constants */ #define MP_LT -1 #define MP_EQ 0 #define MP_GT 1 /* }}} */ /* {{{ private function declarations */ /* If MP_MACRO is false, these will be defined as actual functions; otherwise, suitable macro definitions will be used. This works around the fact that ANSI C89 doesn't support an 'inline' keyword (although I hear C9x will ... about bloody time). At present, the macro definitions are identical to the function bodies, but they'll expand in place, instead of generating a function call. I chose these particular functions to be made into macros because some profiling showed they are called a lot on a typical workload, and yet they are primarily housekeeping. */ #if MP_MACRO == 0 void s_mp_setz(mp_digit *dp, mp_size count); /* zero digits */ void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count); /* copy */ void *s_mp_alloc(size_t nb, size_t ni); /* general allocator */ void s_mp_free(void *ptr); /* general free function */ extern unsigned long mp_allocs; extern unsigned long mp_frees; extern unsigned long mp_copies; #else /* Even if these are defined as macros, we need to respect the settings of the MP_MEMSET and MP_MEMCPY configuration options... */ #if MP_MEMSET == 0 #define s_mp_setz(dp, count) \ {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;} #else #define s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit)) #endif /* MP_MEMSET */ #if MP_MEMCPY == 0 #define s_mp_copy(sp, dp, count) \ {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];} #else #define s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit)) #endif /* MP_MEMCPY */ #define s_mp_alloc(nb, ni) calloc(nb, ni) #define s_mp_free(ptr) {if(ptr) free(ptr);} #endif /* MP_MACRO */ mp_err s_mp_grow(mp_int *mp, mp_size min); /* increase allocated size */ mp_err s_mp_pad(mp_int *mp, mp_size min); /* left pad with zeroes */ #if MP_MACRO == 0 void s_mp_clamp(mp_int *mp); /* clip leading zeroes */ #else #define s_mp_clamp(mp)\ { mp_size used = MP_USED(mp); \ while (used > 1 && DIGIT(mp, used - 1) == 0) --used; \ MP_USED(mp) = used; \ } #endif /* MP_MACRO */ void s_mp_exch(mp_int *a, mp_int *b); /* swap a and b in place */ mp_err s_mp_lshd(mp_int *mp, mp_size p); /* left-shift by p digits */ void s_mp_rshd(mp_int *mp, mp_size p); /* right-shift by p digits */ mp_err s_mp_mul_2d(mp_int *mp, mp_digit d); /* multiply by 2^d in place */ void s_mp_div_2d(mp_int *mp, mp_digit d); /* divide by 2^d in place */ void s_mp_mod_2d(mp_int *mp, mp_digit d); /* modulo 2^d in place */ void s_mp_div_2(mp_int *mp); /* divide by 2 in place */ mp_err s_mp_mul_2(mp_int *mp); /* multiply by 2 in place */ mp_err s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd); /* normalize for division */ mp_err s_mp_add_d(mp_int *mp, mp_digit d); /* unsigned digit addition */ mp_err s_mp_sub_d(mp_int *mp, mp_digit d); /* unsigned digit subtract */ mp_err s_mp_mul_d(mp_int *mp, mp_digit d); /* unsigned digit multiply */ mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r); /* unsigned digit divide */ mp_err s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu); /* Barrett reduction */ mp_err s_mp_add(mp_int *a, const mp_int *b); /* magnitude addition */ mp_err s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c); mp_err s_mp_sub(mp_int *a, const mp_int *b); /* magnitude subtract */ mp_err s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c); mp_err s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset); /* a += b * RADIX^offset */ mp_err s_mp_mul(mp_int *a, const mp_int *b); /* magnitude multiply */ #if MP_SQUARE mp_err s_mp_sqr(mp_int *a); /* magnitude square */ #else #define s_mp_sqr(a) s_mp_mul(a, a) #endif mp_err s_mp_div(mp_int *rem, mp_int *div, mp_int *quot); /* magnitude div */ mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c); mp_err s_mp_2expt(mp_int *a, mp_digit k); /* a = 2^k */ int s_mp_cmp(const mp_int *a, const mp_int *b); /* magnitude comparison */ int s_mp_cmp_d(const mp_int *a, mp_digit d); /* magnitude digit compare */ int s_mp_ispow2(const mp_int *v); /* is v a power of 2? */ int s_mp_ispow2d(mp_digit d); /* is d a power of 2? */ int s_mp_tovalue(char ch, int r); /* convert ch to value */ char s_mp_todigit(mp_digit val, int r, int low); /* convert val to digit */ int s_mp_outlen(int bits, int r); /* output length in bytes */ mp_digit s_mp_invmod_radix(mp_digit P); /* returns (P ** -1) mod RADIX */ mp_err s_mp_invmod_odd_m( const mp_int *a, const mp_int *m, mp_int *c); mp_err s_mp_invmod_2d( const mp_int *a, mp_size k, mp_int *c); mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c); #ifdef NSS_USE_COMBA #define IS_POWER_OF_2(a) ((a) && !((a) & ((a)-1))) void s_mp_mul_comba_4(const mp_int *A, const mp_int *B, mp_int *C); void s_mp_mul_comba_8(const mp_int *A, const mp_int *B, mp_int *C); void s_mp_mul_comba_16(const mp_int *A, const mp_int *B, mp_int *C); void s_mp_mul_comba_32(const mp_int *A, const mp_int *B, mp_int *C); void s_mp_sqr_comba_4(const mp_int *A, mp_int *B); void s_mp_sqr_comba_8(const mp_int *A, mp_int *B); void s_mp_sqr_comba_16(const mp_int *A, mp_int *B); void s_mp_sqr_comba_32(const mp_int *A, mp_int *B); #endif /* end NSS_USE_COMBA */ /* ------ mpv functions, operate on arrays of digits, not on mp_int's ------ */ #if defined (__OS2__) && defined (__IBMC__) #define MPI_ASM_DECL __cdecl #else #define MPI_ASM_DECL #endif #ifdef MPI_AMD64 mp_digit MPI_ASM_DECL s_mpv_mul_set_vec64(mp_digit*, mp_digit *, mp_size, mp_digit); mp_digit MPI_ASM_DECL s_mpv_mul_add_vec64(mp_digit*, const mp_digit*, mp_size, mp_digit); /* c = a * b */ #define s_mpv_mul_d(a, a_len, b, c) \ ((mp_digit *)c)[a_len] = s_mpv_mul_set_vec64(c, a, a_len, b) /* c += a * b */ #define s_mpv_mul_d_add(a, a_len, b, c) \ ((mp_digit *)c)[a_len] = s_mpv_mul_add_vec64(c, a, a_len, b) #else void MPI_ASM_DECL s_mpv_mul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c); void MPI_ASM_DECL s_mpv_mul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c); #endif void MPI_ASM_DECL s_mpv_mul_d_add_prop(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c); void MPI_ASM_DECL s_mpv_sqr_add_prop(const mp_digit *a, mp_size a_len, mp_digit *sqrs); mp_err MPI_ASM_DECL s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo, mp_digit divisor, mp_digit *quot, mp_digit *rem); /* c += a * b * (MP_RADIX ** offset); */ #define s_mp_mul_d_add_offset(a, b, c, off) \ (s_mpv_mul_d_add_prop(MP_DIGITS(a), MP_USED(a), b, MP_DIGITS(c) + off), MP_OKAY) typedef struct { mp_int N; /* modulus N */ mp_digit n0prime; /* n0' = - (n0 ** -1) mod MP_RADIX */ } mp_mont_modulus; mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c, mp_mont_modulus *mmm); mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm); /* * s_mpi_getProcessorLineSize() returns the size in bytes of the cache line * if a cache exists, or zero if there is no cache. If more than one * cache line exists, it should return the smallest line size (which is * usually the L1 cache). * * mp_modexp uses this information to make sure that private key information * isn't being leaked through the cache. * * see mpcpucache.c for the implementation. */ unsigned long s_mpi_getProcessorLineSize(); /* }}} */ #endif