Mercurial > trustbridge > nss-cmake-static
view nss/lib/pkcs7/p7local.c @ 4:b513267f632f tip
Build DBM module
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Tue, 05 Aug 2014 18:58:03 +0200 |
parents | 1e5118fa0cb1 |
children |
line wrap: on
line source
/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* * Support routines for PKCS7 implementation, none of which are exported. * This file should only contain things that are needed by both the * encoding/creation side *and* the decoding/decryption side. Anything * else should be static routines in the appropriate file. */ #include "p7local.h" #include "cryptohi.h" #include "secasn1.h" #include "secoid.h" #include "secitem.h" #include "pk11func.h" #include "secpkcs5.h" #include "secerr.h" /* * ------------------------------------------------------------------- * Cipher stuff. */ typedef SECStatus (*sec_pkcs7_cipher_function) (void *, unsigned char *, unsigned *, unsigned int, const unsigned char *, unsigned int); typedef SECStatus (*sec_pkcs7_cipher_destroy) (void *, PRBool); #define BLOCK_SIZE 4096 struct sec_pkcs7_cipher_object { void *cx; sec_pkcs7_cipher_function doit; sec_pkcs7_cipher_destroy destroy; PRBool encrypt; int block_size; int pad_size; int pending_count; unsigned char pending_buf[BLOCK_SIZE]; }; SEC_ASN1_MKSUB(CERT_IssuerAndSNTemplate) SEC_ASN1_MKSUB(CERT_SetOfSignedCrlTemplate) SEC_ASN1_MKSUB(SECOID_AlgorithmIDTemplate) SEC_ASN1_MKSUB(SEC_OctetStringTemplate) SEC_ASN1_MKSUB(SEC_SetOfAnyTemplate) /* * Create a cipher object to do decryption, based on the given bulk * encryption key and algorithm identifier (which may include an iv). * * XXX This interface, or one similar, would be really nice available * in general... I tried to keep the pkcs7-specific stuff (mostly * having to do with padding) out of here. * * XXX Once both are working, it might be nice to combine this and the * function below (for starting up encryption) into one routine, and just * have two simple cover functions which call it. */ sec_PKCS7CipherObject * sec_PKCS7CreateDecryptObject (PK11SymKey *key, SECAlgorithmID *algid) { sec_PKCS7CipherObject *result; SECOidTag algtag; void *ciphercx; CK_MECHANISM_TYPE cryptoMechType; PK11SlotInfo *slot; SECItem *param = NULL; result = (struct sec_pkcs7_cipher_object*) PORT_ZAlloc (sizeof(struct sec_pkcs7_cipher_object)); if (result == NULL) return NULL; ciphercx = NULL; algtag = SECOID_GetAlgorithmTag (algid); if (SEC_PKCS5IsAlgorithmPBEAlg(algid)) { SECItem *pwitem; pwitem = (SECItem *)PK11_GetSymKeyUserData(key); if (!pwitem) { PORT_Free(result); return NULL; } cryptoMechType = PK11_GetPBECryptoMechanism(algid, ¶m, pwitem); if (cryptoMechType == CKM_INVALID_MECHANISM) { PORT_Free(result); SECITEM_FreeItem(param,PR_TRUE); return NULL; } } else { cryptoMechType = PK11_AlgtagToMechanism(algtag); param = PK11_ParamFromAlgid(algid); if (param == NULL) { PORT_Free(result); return NULL; } } result->pad_size = PK11_GetBlockSize(cryptoMechType, param); slot = PK11_GetSlotFromKey(key); result->block_size = PK11_IsHW(slot) ? BLOCK_SIZE : result->pad_size; PK11_FreeSlot(slot); ciphercx = PK11_CreateContextBySymKey(cryptoMechType, CKA_DECRYPT, key, param); SECITEM_FreeItem(param,PR_TRUE); if (ciphercx == NULL) { PORT_Free (result); return NULL; } result->cx = ciphercx; result->doit = (sec_pkcs7_cipher_function) PK11_CipherOp; result->destroy = (sec_pkcs7_cipher_destroy) PK11_DestroyContext; result->encrypt = PR_FALSE; result->pending_count = 0; return result; } /* * Create a cipher object to do encryption, based on the given bulk * encryption key and algorithm tag. Fill in the algorithm identifier * (which may include an iv) appropriately. * * XXX This interface, or one similar, would be really nice available * in general... I tried to keep the pkcs7-specific stuff (mostly * having to do with padding) out of here. * * XXX Once both are working, it might be nice to combine this and the * function above (for starting up decryption) into one routine, and just * have two simple cover functions which call it. */ sec_PKCS7CipherObject * sec_PKCS7CreateEncryptObject (PLArenaPool *poolp, PK11SymKey *key, SECOidTag algtag, SECAlgorithmID *algid) { sec_PKCS7CipherObject *result; void *ciphercx; SECStatus rv; CK_MECHANISM_TYPE cryptoMechType; PK11SlotInfo *slot; SECItem *param = NULL; PRBool needToEncodeAlgid = PR_FALSE; result = (struct sec_pkcs7_cipher_object*) PORT_ZAlloc (sizeof(struct sec_pkcs7_cipher_object)); if (result == NULL) return NULL; ciphercx = NULL; if (SEC_PKCS5IsAlgorithmPBEAlg(algid)) { SECItem *pwitem; pwitem = (SECItem *)PK11_GetSymKeyUserData(key); if (!pwitem) { PORT_Free(result); return NULL; } cryptoMechType = PK11_GetPBECryptoMechanism(algid, ¶m, pwitem); if (cryptoMechType == CKM_INVALID_MECHANISM) { PORT_Free(result); SECITEM_FreeItem(param,PR_TRUE); return NULL; } } else { cryptoMechType = PK11_AlgtagToMechanism(algtag); param = PK11_GenerateNewParam(cryptoMechType, key); if (param == NULL) { PORT_Free(result); return NULL; } needToEncodeAlgid = PR_TRUE; } result->pad_size = PK11_GetBlockSize(cryptoMechType,param); slot = PK11_GetSlotFromKey(key); result->block_size = PK11_IsHW(slot) ? BLOCK_SIZE : result->pad_size; PK11_FreeSlot(slot); ciphercx = PK11_CreateContextBySymKey(cryptoMechType, CKA_ENCRYPT, key, param); if (ciphercx == NULL) { PORT_Free (result); SECITEM_FreeItem(param,PR_TRUE); return NULL; } /* * These are placed after the CreateContextBySymKey() because some * mechanisms have to generate their IVs from their card (i.e. FORTEZZA). * Don't move it from here. */ if (needToEncodeAlgid) { rv = PK11_ParamToAlgid(algtag,param,poolp,algid); if(rv != SECSuccess) { PORT_Free (result); SECITEM_FreeItem(param,PR_TRUE); return NULL; } } SECITEM_FreeItem(param,PR_TRUE); result->cx = ciphercx; result->doit = (sec_pkcs7_cipher_function) PK11_CipherOp; result->destroy = (sec_pkcs7_cipher_destroy) PK11_DestroyContext; result->encrypt = PR_TRUE; result->pending_count = 0; return result; } /* * Destroy the cipher object. */ static void sec_pkcs7_destroy_cipher (sec_PKCS7CipherObject *obj) { (* obj->destroy) (obj->cx, PR_TRUE); PORT_Free (obj); } void sec_PKCS7DestroyDecryptObject (sec_PKCS7CipherObject *obj) { PORT_Assert (obj != NULL); if (obj == NULL) return; PORT_Assert (! obj->encrypt); sec_pkcs7_destroy_cipher (obj); } void sec_PKCS7DestroyEncryptObject (sec_PKCS7CipherObject *obj) { PORT_Assert (obj != NULL); if (obj == NULL) return; PORT_Assert (obj->encrypt); sec_pkcs7_destroy_cipher (obj); } /* * XXX I think all of the following lengths should be longs instead * of ints, but our current crypto interface uses ints, so I did too. */ /* * What will be the output length of the next call to decrypt? * Result can be used to perform memory allocations. Note that the amount * is exactly accurate only when not doing a block cipher or when final * is false, otherwise it is an upper bound on the amount because until * we see the data we do not know how many padding bytes there are * (always between 1 and bsize). * * Note that this can return zero, which does not mean that the decrypt * operation can be skipped! (It simply means that there are not enough * bytes to make up an entire block; the bytes will be reserved until * there are enough to encrypt/decrypt at least one block.) However, * if zero is returned it *does* mean that no output buffer need be * passed in to the subsequent decrypt operation, as no output bytes * will be stored. */ unsigned int sec_PKCS7DecryptLength (sec_PKCS7CipherObject *obj, unsigned int input_len, PRBool final) { int blocks, block_size; PORT_Assert (! obj->encrypt); block_size = obj->block_size; /* * If this is not a block cipher, then we always have the same * number of output bytes as we had input bytes. */ if (block_size == 0) return input_len; /* * On the final call, we will always use up all of the pending * bytes plus all of the input bytes, *but*, there will be padding * at the end and we cannot predict how many bytes of padding we * will end up removing. The amount given here is actually known * to be at least 1 byte too long (because we know we will have * at least 1 byte of padding), but seemed clearer/better to me. */ if (final) return obj->pending_count + input_len; /* * Okay, this amount is exactly what we will output on the * next cipher operation. We will always hang onto the last * 1 - block_size bytes for non-final operations. That is, * we will do as many complete blocks as we can *except* the * last block (complete or partial). (This is because until * we know we are at the end, we cannot know when to interpret * and removing the padding byte(s), which are guaranteed to * be there.) */ blocks = (obj->pending_count + input_len - 1) / block_size; return blocks * block_size; } /* * What will be the output length of the next call to encrypt? * Result can be used to perform memory allocations. * * Note that this can return zero, which does not mean that the encrypt * operation can be skipped! (It simply means that there are not enough * bytes to make up an entire block; the bytes will be reserved until * there are enough to encrypt/decrypt at least one block.) However, * if zero is returned it *does* mean that no output buffer need be * passed in to the subsequent encrypt operation, as no output bytes * will be stored. */ unsigned int sec_PKCS7EncryptLength (sec_PKCS7CipherObject *obj, unsigned int input_len, PRBool final) { int blocks, block_size; int pad_size; PORT_Assert (obj->encrypt); block_size = obj->block_size; pad_size = obj->pad_size; /* * If this is not a block cipher, then we always have the same * number of output bytes as we had input bytes. */ if (block_size == 0) return input_len; /* * On the final call, we only send out what we need for * remaining bytes plus the padding. (There is always padding, * so even if we have an exact number of blocks as input, we * will add another full block that is just padding.) */ if (final) { if (pad_size == 0) { return obj->pending_count + input_len; } else { blocks = (obj->pending_count + input_len) / pad_size; blocks++; return blocks*pad_size; } } /* * Now, count the number of complete blocks of data we have. */ blocks = (obj->pending_count + input_len) / block_size; return blocks * block_size; } /* * Decrypt a given length of input buffer (starting at "input" and * containing "input_len" bytes), placing the decrypted bytes in * "output" and storing the output length in "*output_len_p". * "obj" is the return value from sec_PKCS7CreateDecryptObject. * When "final" is true, this is the last of the data to be decrypted. * * This is much more complicated than it sounds when the cipher is * a block-type, meaning that the decryption function will only * operate on whole blocks. But our caller is operating stream-wise, * and can pass in any number of bytes. So we need to keep track * of block boundaries. We save excess bytes between calls in "obj". * We also need to determine which bytes are padding, and remove * them from the output. We can only do this step when we know we * have the final block of data. PKCS #7 specifies that the padding * used for a block cipher is a string of bytes, each of whose value is * the same as the length of the padding, and that all data is padded. * (Even data that starts out with an exact multiple of blocks gets * added to it another block, all of which is padding.) */ SECStatus sec_PKCS7Decrypt (sec_PKCS7CipherObject *obj, unsigned char *output, unsigned int *output_len_p, unsigned int max_output_len, const unsigned char *input, unsigned int input_len, PRBool final) { int blocks, bsize, pcount, padsize; unsigned int max_needed, ifraglen, ofraglen, output_len; unsigned char *pbuf; SECStatus rv; PORT_Assert (! obj->encrypt); /* * Check that we have enough room for the output. Our caller should * already handle this; failure is really an internal error (i.e. bug). */ max_needed = sec_PKCS7DecryptLength (obj, input_len, final); PORT_Assert (max_output_len >= max_needed); if (max_output_len < max_needed) { /* PORT_SetError (XXX); */ return SECFailure; } /* * hardware encryption does not like small decryption sizes here, so we * allow both blocking and padding. */ bsize = obj->block_size; padsize = obj->pad_size; /* * When no blocking or padding work to do, we can simply call the * cipher function and we are done. */ if (bsize == 0) { return (* obj->doit) (obj->cx, output, output_len_p, max_output_len, input, input_len); } pcount = obj->pending_count; pbuf = obj->pending_buf; output_len = 0; if (pcount) { /* * Try to fill in an entire block, starting with the bytes * we already have saved away. */ while (input_len && pcount < bsize) { pbuf[pcount++] = *input++; input_len--; } /* * If we have at most a whole block and this is not our last call, * then we are done for now. (We do not try to decrypt a lone * single block because we cannot interpret the padding bytes * until we know we are handling the very last block of all input.) */ if (input_len == 0 && !final) { obj->pending_count = pcount; if (output_len_p) *output_len_p = 0; return SECSuccess; } /* * Given the logic above, we expect to have a full block by now. * If we do not, there is something wrong, either with our own * logic or with (length of) the data given to us. */ PORT_Assert ((padsize == 0) || (pcount % padsize) == 0); if ((padsize != 0) && (pcount % padsize) != 0) { PORT_Assert (final); PORT_SetError (SEC_ERROR_BAD_DATA); return SECFailure; } /* * Decrypt the block. */ rv = (* obj->doit) (obj->cx, output, &ofraglen, max_output_len, pbuf, pcount); if (rv != SECSuccess) return rv; /* * For now anyway, all of our ciphers have the same number of * bytes of output as they do input. If this ever becomes untrue, * then sec_PKCS7DecryptLength needs to be made smarter! */ PORT_Assert (ofraglen == pcount); /* * Account for the bytes now in output. */ max_output_len -= ofraglen; output_len += ofraglen; output += ofraglen; } /* * If this is our last call, we expect to have an exact number of * blocks left to be decrypted; we will decrypt them all. * * If not our last call, we always save between 1 and bsize bytes * until next time. (We must do this because we cannot be sure * that none of the decrypted bytes are padding bytes until we * have at least another whole block of data. You cannot tell by * looking -- the data could be anything -- you can only tell by * context, knowing you are looking at the last block.) We could * decrypt a whole block now but it is easier if we just treat it * the same way we treat partial block bytes. */ if (final) { if (padsize) { blocks = input_len / padsize; ifraglen = blocks * padsize; } else ifraglen = input_len; PORT_Assert (ifraglen == input_len); if (ifraglen != input_len) { PORT_SetError (SEC_ERROR_BAD_DATA); return SECFailure; } } else { blocks = (input_len - 1) / bsize; ifraglen = blocks * bsize; PORT_Assert (ifraglen < input_len); pcount = input_len - ifraglen; PORT_Memcpy (pbuf, input + ifraglen, pcount); obj->pending_count = pcount; } if (ifraglen) { rv = (* obj->doit) (obj->cx, output, &ofraglen, max_output_len, input, ifraglen); if (rv != SECSuccess) return rv; /* * For now anyway, all of our ciphers have the same number of * bytes of output as they do input. If this ever becomes untrue, * then sec_PKCS7DecryptLength needs to be made smarter! */ PORT_Assert (ifraglen == ofraglen); if (ifraglen != ofraglen) { PORT_SetError (SEC_ERROR_BAD_DATA); return SECFailure; } output_len += ofraglen; } else { ofraglen = 0; } /* * If we just did our very last block, "remove" the padding by * adjusting the output length. */ if (final && (padsize != 0)) { unsigned int padlen = *(output + ofraglen - 1); if (padlen == 0 || padlen > padsize) { PORT_SetError (SEC_ERROR_BAD_DATA); return SECFailure; } output_len -= padlen; } PORT_Assert (output_len_p != NULL || output_len == 0); if (output_len_p != NULL) *output_len_p = output_len; return SECSuccess; } /* * Encrypt a given length of input buffer (starting at "input" and * containing "input_len" bytes), placing the encrypted bytes in * "output" and storing the output length in "*output_len_p". * "obj" is the return value from sec_PKCS7CreateEncryptObject. * When "final" is true, this is the last of the data to be encrypted. * * This is much more complicated than it sounds when the cipher is * a block-type, meaning that the encryption function will only * operate on whole blocks. But our caller is operating stream-wise, * and can pass in any number of bytes. So we need to keep track * of block boundaries. We save excess bytes between calls in "obj". * We also need to add padding bytes at the end. PKCS #7 specifies * that the padding used for a block cipher is a string of bytes, * each of whose value is the same as the length of the padding, * and that all data is padded. (Even data that starts out with * an exact multiple of blocks gets added to it another block, * all of which is padding.) * * XXX I would kind of like to combine this with the function above * which does decryption, since they have a lot in common. But the * tricky parts about padding and filling blocks would be much * harder to read that way, so I left them separate. At least for * now until it is clear that they are right. */ SECStatus sec_PKCS7Encrypt (sec_PKCS7CipherObject *obj, unsigned char *output, unsigned int *output_len_p, unsigned int max_output_len, const unsigned char *input, unsigned int input_len, PRBool final) { int blocks, bsize, padlen, pcount, padsize; unsigned int max_needed, ifraglen, ofraglen, output_len; unsigned char *pbuf; SECStatus rv; PORT_Assert (obj->encrypt); /* * Check that we have enough room for the output. Our caller should * already handle this; failure is really an internal error (i.e. bug). */ max_needed = sec_PKCS7EncryptLength (obj, input_len, final); PORT_Assert (max_output_len >= max_needed); if (max_output_len < max_needed) { /* PORT_SetError (XXX); */ return SECFailure; } bsize = obj->block_size; padsize = obj->pad_size; /* * When no blocking and padding work to do, we can simply call the * cipher function and we are done. */ if (bsize == 0) { return (* obj->doit) (obj->cx, output, output_len_p, max_output_len, input, input_len); } pcount = obj->pending_count; pbuf = obj->pending_buf; output_len = 0; if (pcount) { /* * Try to fill in an entire block, starting with the bytes * we already have saved away. */ while (input_len && pcount < bsize) { pbuf[pcount++] = *input++; input_len--; } /* * If we do not have a full block and we know we will be * called again, then we are done for now. */ if (pcount < bsize && !final) { obj->pending_count = pcount; if (output_len_p != NULL) *output_len_p = 0; return SECSuccess; } /* * If we have a whole block available, encrypt it. */ if ((padsize == 0) || (pcount % padsize) == 0) { rv = (* obj->doit) (obj->cx, output, &ofraglen, max_output_len, pbuf, pcount); if (rv != SECSuccess) return rv; /* * For now anyway, all of our ciphers have the same number of * bytes of output as they do input. If this ever becomes untrue, * then sec_PKCS7EncryptLength needs to be made smarter! */ PORT_Assert (ofraglen == pcount); /* * Account for the bytes now in output. */ max_output_len -= ofraglen; output_len += ofraglen; output += ofraglen; pcount = 0; } } if (input_len) { PORT_Assert (pcount == 0); blocks = input_len / bsize; ifraglen = blocks * bsize; if (ifraglen) { rv = (* obj->doit) (obj->cx, output, &ofraglen, max_output_len, input, ifraglen); if (rv != SECSuccess) return rv; /* * For now anyway, all of our ciphers have the same number of * bytes of output as they do input. If this ever becomes untrue, * then sec_PKCS7EncryptLength needs to be made smarter! */ PORT_Assert (ifraglen == ofraglen); max_output_len -= ofraglen; output_len += ofraglen; output += ofraglen; } pcount = input_len - ifraglen; PORT_Assert (pcount < bsize); if (pcount) PORT_Memcpy (pbuf, input + ifraglen, pcount); } if (final) { padlen = padsize - (pcount % padsize); PORT_Memset (pbuf + pcount, padlen, padlen); rv = (* obj->doit) (obj->cx, output, &ofraglen, max_output_len, pbuf, pcount+padlen); if (rv != SECSuccess) return rv; /* * For now anyway, all of our ciphers have the same number of * bytes of output as they do input. If this ever becomes untrue, * then sec_PKCS7EncryptLength needs to be made smarter! */ PORT_Assert (ofraglen == (pcount+padlen)); output_len += ofraglen; } else { obj->pending_count = pcount; } PORT_Assert (output_len_p != NULL || output_len == 0); if (output_len_p != NULL) *output_len_p = output_len; return SECSuccess; } /* * End of cipher stuff. * ------------------------------------------------------------------- */ /* * ------------------------------------------------------------------- * XXX The following Attribute stuff really belongs elsewhere. * The Attribute type is *not* part of pkcs7 but rather X.501. * But for now, since PKCS7 is the only customer of attributes, * we define them here. Once there is a use outside of PKCS7, * then change the attribute types and functions from internal * to external naming convention, and move them elsewhere! */ /* * Look through a set of attributes and find one that matches the * specified object ID. If "only" is true, then make sure that * there is not more than one attribute of the same type. Otherwise, * just return the first one found. (XXX Does anybody really want * that first-found behavior? It was like that when I found it...) */ SEC_PKCS7Attribute * sec_PKCS7FindAttribute (SEC_PKCS7Attribute **attrs, SECOidTag oidtag, PRBool only) { SECOidData *oid; SEC_PKCS7Attribute *attr1, *attr2; if (attrs == NULL) return NULL; oid = SECOID_FindOIDByTag(oidtag); if (oid == NULL) return NULL; while ((attr1 = *attrs++) != NULL) { if (attr1->type.len == oid->oid.len && PORT_Memcmp (attr1->type.data, oid->oid.data, oid->oid.len) == 0) break; } if (attr1 == NULL) return NULL; if (!only) return attr1; while ((attr2 = *attrs++) != NULL) { if (attr2->type.len == oid->oid.len && PORT_Memcmp (attr2->type.data, oid->oid.data, oid->oid.len) == 0) break; } if (attr2 != NULL) return NULL; return attr1; } /* * Return the single attribute value, doing some sanity checking first: * - Multiple values are *not* expected. * - Empty values are *not* expected. */ SECItem * sec_PKCS7AttributeValue(SEC_PKCS7Attribute *attr) { SECItem *value; if (attr == NULL) return NULL; value = attr->values[0]; if (value == NULL || value->data == NULL || value->len == 0) return NULL; if (attr->values[1] != NULL) return NULL; return value; } static const SEC_ASN1Template * sec_attr_choose_attr_value_template(void *src_or_dest, PRBool encoding) { const SEC_ASN1Template *theTemplate; SEC_PKCS7Attribute *attribute; SECOidData *oiddata; PRBool encoded; PORT_Assert (src_or_dest != NULL); if (src_or_dest == NULL) return NULL; attribute = (SEC_PKCS7Attribute*)src_or_dest; if (encoding && attribute->encoded) return SEC_ASN1_GET(SEC_AnyTemplate); oiddata = attribute->typeTag; if (oiddata == NULL) { oiddata = SECOID_FindOID(&attribute->type); attribute->typeTag = oiddata; } if (oiddata == NULL) { encoded = PR_TRUE; theTemplate = SEC_ASN1_GET(SEC_AnyTemplate); } else { switch (oiddata->offset) { default: encoded = PR_TRUE; theTemplate = SEC_ASN1_GET(SEC_AnyTemplate); break; case SEC_OID_PKCS9_EMAIL_ADDRESS: case SEC_OID_RFC1274_MAIL: case SEC_OID_PKCS9_UNSTRUCTURED_NAME: encoded = PR_FALSE; theTemplate = SEC_ASN1_GET(SEC_IA5StringTemplate); break; case SEC_OID_PKCS9_CONTENT_TYPE: encoded = PR_FALSE; theTemplate = SEC_ASN1_GET(SEC_ObjectIDTemplate); break; case SEC_OID_PKCS9_MESSAGE_DIGEST: encoded = PR_FALSE; theTemplate = SEC_ASN1_GET(SEC_OctetStringTemplate); break; case SEC_OID_PKCS9_SIGNING_TIME: encoded = PR_FALSE; theTemplate = SEC_ASN1_GET(CERT_TimeChoiceTemplate); break; /* XXX Want other types here, too */ } } if (encoding) { /* * If we are encoding and we think we have an already-encoded value, * then the code which initialized this attribute should have set * the "encoded" property to true (and we would have returned early, * up above). No devastating error, but that code should be fixed. * (It could indicate that the resulting encoded bytes are wrong.) */ PORT_Assert (!encoded); } else { /* * We are decoding; record whether the resulting value is * still encoded or not. */ attribute->encoded = encoded; } return theTemplate; } static const SEC_ASN1TemplateChooserPtr sec_attr_chooser = sec_attr_choose_attr_value_template; static const SEC_ASN1Template sec_pkcs7_attribute_template[] = { { SEC_ASN1_SEQUENCE, 0, NULL, sizeof(SEC_PKCS7Attribute) }, { SEC_ASN1_OBJECT_ID, offsetof(SEC_PKCS7Attribute,type) }, { SEC_ASN1_DYNAMIC | SEC_ASN1_SET_OF, offsetof(SEC_PKCS7Attribute,values), &sec_attr_chooser }, { 0 } }; static const SEC_ASN1Template sec_pkcs7_set_of_attribute_template[] = { { SEC_ASN1_SET_OF, 0, sec_pkcs7_attribute_template }, }; /* * If you are wondering why this routine does not reorder the attributes * first, and might be tempted to make it do so, see the comment by the * call to ReorderAttributes in p7encode.c. (Or, see who else calls this * and think long and hard about the implications of making it always * do the reordering.) */ SECItem * sec_PKCS7EncodeAttributes (PLArenaPool *poolp, SECItem *dest, void *src) { return SEC_ASN1EncodeItem (poolp, dest, src, sec_pkcs7_set_of_attribute_template); } /* * Make sure that the order of the attributes guarantees valid DER * (which must be in lexigraphically ascending order for a SET OF); * if reordering is necessary it will be done in place (in attrs). */ SECStatus sec_PKCS7ReorderAttributes (SEC_PKCS7Attribute **attrs) { PLArenaPool *poolp; int num_attrs, i, pass, besti; unsigned int j; SECItem **enc_attrs; SEC_PKCS7Attribute **new_attrs; /* * I think we should not be called with NULL. But if we are, * call it a success anyway, because the order *is* okay. */ PORT_Assert (attrs != NULL); if (attrs == NULL) return SECSuccess; /* * Count how many attributes we are dealing with here. */ num_attrs = 0; while (attrs[num_attrs] != NULL) num_attrs++; /* * Again, I think we should have some attributes here. * But if we do not, or if there is only one, then call it * a success because it also already has a fine order. */ PORT_Assert (num_attrs); if (num_attrs == 0 || num_attrs == 1) return SECSuccess; /* * Allocate an arena for us to work with, so it is easy to * clean up all of the memory (fairly small pieces, really). */ poolp = PORT_NewArena (1024); /* XXX what is right value? */ if (poolp == NULL) return SECFailure; /* no memory; nothing we can do... */ /* * Allocate arrays to hold the individual encodings which we will use * for comparisons and the reordered attributes as they are sorted. */ enc_attrs=(SECItem**)PORT_ArenaZAlloc(poolp, num_attrs*sizeof(SECItem *)); new_attrs = (SEC_PKCS7Attribute**)PORT_ArenaZAlloc (poolp, num_attrs * sizeof(SEC_PKCS7Attribute *)); if (enc_attrs == NULL || new_attrs == NULL) { PORT_FreeArena (poolp, PR_FALSE); return SECFailure; } /* * DER encode each individual attribute. */ for (i = 0; i < num_attrs; i++) { enc_attrs[i] = SEC_ASN1EncodeItem (poolp, NULL, attrs[i], sec_pkcs7_attribute_template); if (enc_attrs[i] == NULL) { PORT_FreeArena (poolp, PR_FALSE); return SECFailure; } } /* * Now compare and sort them; this is not the most efficient sorting * method, but it is just fine for the problem at hand, because the * number of attributes is (always) going to be small. */ for (pass = 0; pass < num_attrs; pass++) { /* * Find the first not-yet-accepted attribute. (Once one is * sorted into the other array, it is cleared from enc_attrs.) */ for (i = 0; i < num_attrs; i++) { if (enc_attrs[i] != NULL) break; } PORT_Assert (i < num_attrs); besti = i; /* * Find the lowest (lexigraphically) encoding. One that is * shorter than all the rest is known to be "less" because each * attribute is of the same type (a SEQUENCE) and so thus the * first octet of each is the same, and the second octet is * the length (or the length of the length with the high bit * set, followed by the length, which also works out to always * order the shorter first). Two (or more) that have the * same length need to be compared byte by byte until a mismatch * is found. */ for (i = besti + 1; i < num_attrs; i++) { if (enc_attrs[i] == NULL) /* slot already handled */ continue; if (enc_attrs[i]->len != enc_attrs[besti]->len) { if (enc_attrs[i]->len < enc_attrs[besti]->len) besti = i; continue; } for (j = 0; j < enc_attrs[i]->len; j++) { if (enc_attrs[i]->data[j] < enc_attrs[besti]->data[j]) { besti = i; break; } } /* * For this not to be true, we would have to have encountered * two *identical* attributes, which I think we should not see. * So assert if it happens, but even if it does, let it go * through; the ordering of the two does not matter. */ PORT_Assert (j < enc_attrs[i]->len); } /* * Now we have found the next-lowest one; copy it over and * remove it from enc_attrs. */ new_attrs[pass] = attrs[besti]; enc_attrs[besti] = NULL; } /* * Now new_attrs has the attributes in the order we want; * copy them back into the attrs array we started with. */ for (i = 0; i < num_attrs; i++) attrs[i] = new_attrs[i]; PORT_FreeArena (poolp, PR_FALSE); return SECSuccess; } /* * End of attribute stuff. * ------------------------------------------------------------------- */ /* * Templates and stuff. Keep these at the end of the file. */ /* forward declaration */ static const SEC_ASN1Template * sec_pkcs7_choose_content_template(void *src_or_dest, PRBool encoding); static const SEC_ASN1TemplateChooserPtr sec_pkcs7_chooser = sec_pkcs7_choose_content_template; const SEC_ASN1Template sec_PKCS7ContentInfoTemplate[] = { { SEC_ASN1_SEQUENCE | SEC_ASN1_MAY_STREAM, 0, NULL, sizeof(SEC_PKCS7ContentInfo) }, { SEC_ASN1_OBJECT_ID, offsetof(SEC_PKCS7ContentInfo,contentType) }, { SEC_ASN1_OPTIONAL | SEC_ASN1_DYNAMIC | SEC_ASN1_MAY_STREAM | SEC_ASN1_EXPLICIT | SEC_ASN1_CONSTRUCTED | SEC_ASN1_CONTEXT_SPECIFIC | 0, offsetof(SEC_PKCS7ContentInfo,content), &sec_pkcs7_chooser }, { 0 } }; /* XXX These names should change from external to internal convention. */ static const SEC_ASN1Template SEC_PKCS7SignerInfoTemplate[] = { { SEC_ASN1_SEQUENCE, 0, NULL, sizeof(SEC_PKCS7SignerInfo) }, { SEC_ASN1_INTEGER, offsetof(SEC_PKCS7SignerInfo,version) }, { SEC_ASN1_POINTER | SEC_ASN1_XTRN, offsetof(SEC_PKCS7SignerInfo,issuerAndSN), SEC_ASN1_SUB(CERT_IssuerAndSNTemplate) }, { SEC_ASN1_INLINE | SEC_ASN1_XTRN, offsetof(SEC_PKCS7SignerInfo,digestAlg), SEC_ASN1_SUB(SECOID_AlgorithmIDTemplate) }, { SEC_ASN1_OPTIONAL | SEC_ASN1_CONSTRUCTED | SEC_ASN1_CONTEXT_SPECIFIC | 0, offsetof(SEC_PKCS7SignerInfo,authAttr), sec_pkcs7_set_of_attribute_template }, { SEC_ASN1_INLINE | SEC_ASN1_XTRN, offsetof(SEC_PKCS7SignerInfo,digestEncAlg), SEC_ASN1_SUB(SECOID_AlgorithmIDTemplate) }, { SEC_ASN1_OCTET_STRING, offsetof(SEC_PKCS7SignerInfo,encDigest) }, { SEC_ASN1_OPTIONAL | SEC_ASN1_CONSTRUCTED | SEC_ASN1_CONTEXT_SPECIFIC | 1, offsetof(SEC_PKCS7SignerInfo,unAuthAttr), sec_pkcs7_set_of_attribute_template }, { 0 } }; static const SEC_ASN1Template SEC_PKCS7SignedDataTemplate[] = { { SEC_ASN1_SEQUENCE | SEC_ASN1_MAY_STREAM, 0, NULL, sizeof(SEC_PKCS7SignedData) }, { SEC_ASN1_INTEGER, offsetof(SEC_PKCS7SignedData,version) }, { SEC_ASN1_SET_OF | SEC_ASN1_XTRN, offsetof(SEC_PKCS7SignedData,digestAlgorithms), SEC_ASN1_SUB(SECOID_AlgorithmIDTemplate) }, { SEC_ASN1_INLINE, offsetof(SEC_PKCS7SignedData,contentInfo), sec_PKCS7ContentInfoTemplate }, { SEC_ASN1_OPTIONAL | SEC_ASN1_CONSTRUCTED | SEC_ASN1_CONTEXT_SPECIFIC | SEC_ASN1_XTRN | 0, offsetof(SEC_PKCS7SignedData,rawCerts), SEC_ASN1_SUB(SEC_SetOfAnyTemplate) }, { SEC_ASN1_OPTIONAL | SEC_ASN1_CONSTRUCTED | SEC_ASN1_CONTEXT_SPECIFIC | SEC_ASN1_XTRN | 1, offsetof(SEC_PKCS7SignedData,crls), SEC_ASN1_SUB(CERT_SetOfSignedCrlTemplate) }, { SEC_ASN1_SET_OF, offsetof(SEC_PKCS7SignedData,signerInfos), SEC_PKCS7SignerInfoTemplate }, { 0 } }; static const SEC_ASN1Template SEC_PointerToPKCS7SignedDataTemplate[] = { { SEC_ASN1_POINTER, 0, SEC_PKCS7SignedDataTemplate } }; static const SEC_ASN1Template SEC_PKCS7RecipientInfoTemplate[] = { { SEC_ASN1_SEQUENCE, 0, NULL, sizeof(SEC_PKCS7RecipientInfo) }, { SEC_ASN1_INTEGER, offsetof(SEC_PKCS7RecipientInfo,version) }, { SEC_ASN1_POINTER | SEC_ASN1_XTRN, offsetof(SEC_PKCS7RecipientInfo,issuerAndSN), SEC_ASN1_SUB(CERT_IssuerAndSNTemplate) }, { SEC_ASN1_INLINE | SEC_ASN1_XTRN, offsetof(SEC_PKCS7RecipientInfo,keyEncAlg), SEC_ASN1_SUB(SECOID_AlgorithmIDTemplate) }, { SEC_ASN1_OCTET_STRING, offsetof(SEC_PKCS7RecipientInfo,encKey) }, { 0 } }; static const SEC_ASN1Template SEC_PKCS7EncryptedContentInfoTemplate[] = { { SEC_ASN1_SEQUENCE | SEC_ASN1_MAY_STREAM, 0, NULL, sizeof(SEC_PKCS7EncryptedContentInfo) }, { SEC_ASN1_OBJECT_ID, offsetof(SEC_PKCS7EncryptedContentInfo,contentType) }, { SEC_ASN1_INLINE | SEC_ASN1_XTRN, offsetof(SEC_PKCS7EncryptedContentInfo,contentEncAlg), SEC_ASN1_SUB(SECOID_AlgorithmIDTemplate) }, { SEC_ASN1_OPTIONAL | SEC_ASN1_MAY_STREAM | SEC_ASN1_CONTEXT_SPECIFIC | SEC_ASN1_XTRN | 0, offsetof(SEC_PKCS7EncryptedContentInfo,encContent), SEC_ASN1_SUB(SEC_OctetStringTemplate) }, { 0 } }; static const SEC_ASN1Template SEC_PKCS7EnvelopedDataTemplate[] = { { SEC_ASN1_SEQUENCE | SEC_ASN1_MAY_STREAM, 0, NULL, sizeof(SEC_PKCS7EnvelopedData) }, { SEC_ASN1_INTEGER, offsetof(SEC_PKCS7EnvelopedData,version) }, { SEC_ASN1_SET_OF, offsetof(SEC_PKCS7EnvelopedData,recipientInfos), SEC_PKCS7RecipientInfoTemplate }, { SEC_ASN1_INLINE, offsetof(SEC_PKCS7EnvelopedData,encContentInfo), SEC_PKCS7EncryptedContentInfoTemplate }, { 0 } }; static const SEC_ASN1Template SEC_PointerToPKCS7EnvelopedDataTemplate[] = { { SEC_ASN1_POINTER, 0, SEC_PKCS7EnvelopedDataTemplate } }; static const SEC_ASN1Template SEC_PKCS7SignedAndEnvelopedDataTemplate[] = { { SEC_ASN1_SEQUENCE | SEC_ASN1_MAY_STREAM, 0, NULL, sizeof(SEC_PKCS7SignedAndEnvelopedData) }, { SEC_ASN1_INTEGER, offsetof(SEC_PKCS7SignedAndEnvelopedData,version) }, { SEC_ASN1_SET_OF, offsetof(SEC_PKCS7SignedAndEnvelopedData,recipientInfos), SEC_PKCS7RecipientInfoTemplate }, { SEC_ASN1_SET_OF | SEC_ASN1_XTRN, offsetof(SEC_PKCS7SignedAndEnvelopedData,digestAlgorithms), SEC_ASN1_SUB(SECOID_AlgorithmIDTemplate) }, { SEC_ASN1_INLINE, offsetof(SEC_PKCS7SignedAndEnvelopedData,encContentInfo), SEC_PKCS7EncryptedContentInfoTemplate }, { SEC_ASN1_OPTIONAL | SEC_ASN1_CONSTRUCTED | SEC_ASN1_CONTEXT_SPECIFIC | SEC_ASN1_XTRN | 0, offsetof(SEC_PKCS7SignedAndEnvelopedData,rawCerts), SEC_ASN1_SUB(SEC_SetOfAnyTemplate) }, { SEC_ASN1_OPTIONAL | SEC_ASN1_CONSTRUCTED | SEC_ASN1_CONTEXT_SPECIFIC | SEC_ASN1_XTRN | 1, offsetof(SEC_PKCS7SignedAndEnvelopedData,crls), SEC_ASN1_SUB(CERT_SetOfSignedCrlTemplate) }, { SEC_ASN1_SET_OF, offsetof(SEC_PKCS7SignedAndEnvelopedData,signerInfos), SEC_PKCS7SignerInfoTemplate }, { 0 } }; static const SEC_ASN1Template SEC_PointerToPKCS7SignedAndEnvelopedDataTemplate[] = { { SEC_ASN1_POINTER, 0, SEC_PKCS7SignedAndEnvelopedDataTemplate } }; static const SEC_ASN1Template SEC_PKCS7DigestedDataTemplate[] = { { SEC_ASN1_SEQUENCE | SEC_ASN1_MAY_STREAM, 0, NULL, sizeof(SEC_PKCS7DigestedData) }, { SEC_ASN1_INTEGER, offsetof(SEC_PKCS7DigestedData,version) }, { SEC_ASN1_INLINE | SEC_ASN1_XTRN, offsetof(SEC_PKCS7DigestedData,digestAlg), SEC_ASN1_SUB(SECOID_AlgorithmIDTemplate) }, { SEC_ASN1_INLINE, offsetof(SEC_PKCS7DigestedData,contentInfo), sec_PKCS7ContentInfoTemplate }, { SEC_ASN1_OCTET_STRING, offsetof(SEC_PKCS7DigestedData,digest) }, { 0 } }; static const SEC_ASN1Template SEC_PointerToPKCS7DigestedDataTemplate[] = { { SEC_ASN1_POINTER, 0, SEC_PKCS7DigestedDataTemplate } }; static const SEC_ASN1Template SEC_PKCS7EncryptedDataTemplate[] = { { SEC_ASN1_SEQUENCE | SEC_ASN1_MAY_STREAM, 0, NULL, sizeof(SEC_PKCS7EncryptedData) }, { SEC_ASN1_INTEGER, offsetof(SEC_PKCS7EncryptedData,version) }, { SEC_ASN1_INLINE, offsetof(SEC_PKCS7EncryptedData,encContentInfo), SEC_PKCS7EncryptedContentInfoTemplate }, { 0 } }; static const SEC_ASN1Template SEC_PointerToPKCS7EncryptedDataTemplate[] = { { SEC_ASN1_POINTER, 0, SEC_PKCS7EncryptedDataTemplate } }; static const SEC_ASN1Template * sec_pkcs7_choose_content_template(void *src_or_dest, PRBool encoding) { const SEC_ASN1Template *theTemplate; SEC_PKCS7ContentInfo *cinfo; SECOidTag kind; PORT_Assert (src_or_dest != NULL); if (src_or_dest == NULL) return NULL; cinfo = (SEC_PKCS7ContentInfo*)src_or_dest; kind = SEC_PKCS7ContentType (cinfo); switch (kind) { default: theTemplate = SEC_ASN1_GET(SEC_PointerToAnyTemplate); break; case SEC_OID_PKCS7_DATA: theTemplate = SEC_ASN1_GET(SEC_PointerToOctetStringTemplate); break; case SEC_OID_PKCS7_SIGNED_DATA: theTemplate = SEC_PointerToPKCS7SignedDataTemplate; break; case SEC_OID_PKCS7_ENVELOPED_DATA: theTemplate = SEC_PointerToPKCS7EnvelopedDataTemplate; break; case SEC_OID_PKCS7_SIGNED_ENVELOPED_DATA: theTemplate = SEC_PointerToPKCS7SignedAndEnvelopedDataTemplate; break; case SEC_OID_PKCS7_DIGESTED_DATA: theTemplate = SEC_PointerToPKCS7DigestedDataTemplate; break; case SEC_OID_PKCS7_ENCRYPTED_DATA: theTemplate = SEC_PointerToPKCS7EncryptedDataTemplate; break; } return theTemplate; } /* * End of templates. Do not add stuff after this; put new code * up above the start of the template definitions. */