Mercurial > trustbridge > nss-cmake-static
comparison nss/lib/freebl/arcfour.c @ 0:1e5118fa0cb1
This is NSS with a Cmake Buildsyste
To compile a static NSS library for Windows we've used the
Chromium-NSS fork and added a Cmake buildsystem to compile
it statically for Windows. See README.chromium for chromium
changes and README.trustbridge for our modifications.
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Mon, 28 Jul 2014 10:47:06 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:1e5118fa0cb1 |
---|---|
1 /* arcfour.c - the arc four algorithm. | |
2 * | |
3 * This Source Code Form is subject to the terms of the Mozilla Public | |
4 * License, v. 2.0. If a copy of the MPL was not distributed with this | |
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | |
6 | |
7 #ifdef FREEBL_NO_DEPEND | |
8 #include "stubs.h" | |
9 #endif | |
10 | |
11 #include "prerr.h" | |
12 #include "secerr.h" | |
13 | |
14 #include "prtypes.h" | |
15 #include "blapi.h" | |
16 | |
17 /* Architecture-dependent defines */ | |
18 | |
19 #if defined(SOLARIS) || defined(HPUX) || defined(NSS_X86) || \ | |
20 defined(_WIN64) | |
21 /* Convert the byte-stream to a word-stream */ | |
22 #define CONVERT_TO_WORDS | |
23 #endif | |
24 | |
25 #if defined(AIX) || defined(OSF1) || defined(NSS_BEVAND_ARCFOUR) | |
26 /* Treat array variables as words, not bytes, on CPUs that take | |
27 * much longer to write bytes than to write words, or when using | |
28 * assembler code that required it. | |
29 */ | |
30 #define USE_WORD | |
31 #endif | |
32 | |
33 #if defined(IS_64) || defined(NSS_BEVAND_ARCFOUR) | |
34 typedef PRUint64 WORD; | |
35 #else | |
36 typedef PRUint32 WORD; | |
37 #endif | |
38 #define WORDSIZE sizeof(WORD) | |
39 | |
40 #if defined(USE_WORD) | |
41 typedef WORD Stype; | |
42 #else | |
43 typedef PRUint8 Stype; | |
44 #endif | |
45 | |
46 #define ARCFOUR_STATE_SIZE 256 | |
47 | |
48 #define MASK1BYTE (WORD)(0xff) | |
49 | |
50 #define SWAP(a, b) \ | |
51 tmp = a; \ | |
52 a = b; \ | |
53 b = tmp; | |
54 | |
55 /* | |
56 * State information for stream cipher. | |
57 */ | |
58 struct RC4ContextStr | |
59 { | |
60 #if defined(NSS_ARCFOUR_IJ_B4_S) || defined(NSS_BEVAND_ARCFOUR) | |
61 Stype i; | |
62 Stype j; | |
63 Stype S[ARCFOUR_STATE_SIZE]; | |
64 #else | |
65 Stype S[ARCFOUR_STATE_SIZE]; | |
66 Stype i; | |
67 Stype j; | |
68 #endif | |
69 }; | |
70 | |
71 /* | |
72 * array indices [0..255] to initialize cx->S array (faster than loop). | |
73 */ | |
74 static const Stype Kinit[256] = { | |
75 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, | |
76 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, | |
77 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, | |
78 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, | |
79 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, | |
80 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, | |
81 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, | |
82 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, | |
83 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, | |
84 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, | |
85 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, | |
86 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, | |
87 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, | |
88 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, | |
89 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, | |
90 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, | |
91 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, | |
92 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, | |
93 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, | |
94 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, | |
95 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, | |
96 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, | |
97 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, | |
98 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, | |
99 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, | |
100 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, | |
101 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, | |
102 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, | |
103 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, | |
104 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, | |
105 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, | |
106 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff | |
107 }; | |
108 | |
109 RC4Context * | |
110 RC4_AllocateContext(void) | |
111 { | |
112 return PORT_ZNew(RC4Context); | |
113 } | |
114 | |
115 SECStatus | |
116 RC4_InitContext(RC4Context *cx, const unsigned char *key, unsigned int len, | |
117 const unsigned char * unused1, int unused2, | |
118 unsigned int unused3, unsigned int unused4) | |
119 { | |
120 unsigned int i; | |
121 PRUint8 j, tmp; | |
122 PRUint8 K[256]; | |
123 PRUint8 *L; | |
124 | |
125 /* verify the key length. */ | |
126 PORT_Assert(len > 0 && len < ARCFOUR_STATE_SIZE); | |
127 if (len == 0 || len >= ARCFOUR_STATE_SIZE) { | |
128 PORT_SetError(SEC_ERROR_BAD_KEY); | |
129 return SECFailure; | |
130 } | |
131 if (cx == NULL) { | |
132 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
133 return SECFailure; | |
134 } | |
135 /* Initialize the state using array indices. */ | |
136 memcpy(cx->S, Kinit, sizeof cx->S); | |
137 /* Fill in K repeatedly with values from key. */ | |
138 L = K; | |
139 for (i = sizeof K; i > len; i-= len) { | |
140 memcpy(L, key, len); | |
141 L += len; | |
142 } | |
143 memcpy(L, key, i); | |
144 /* Stir the state of the generator. At this point it is assumed | |
145 * that the key is the size of the state buffer. If this is not | |
146 * the case, the key bytes are repeated to fill the buffer. | |
147 */ | |
148 j = 0; | |
149 #define ARCFOUR_STATE_STIR(ii) \ | |
150 j = j + cx->S[ii] + K[ii]; \ | |
151 SWAP(cx->S[ii], cx->S[j]); | |
152 for (i=0; i<ARCFOUR_STATE_SIZE; i++) { | |
153 ARCFOUR_STATE_STIR(i); | |
154 } | |
155 cx->i = 0; | |
156 cx->j = 0; | |
157 return SECSuccess; | |
158 } | |
159 | |
160 | |
161 /* | |
162 * Initialize a new generator. | |
163 */ | |
164 RC4Context * | |
165 RC4_CreateContext(const unsigned char *key, int len) | |
166 { | |
167 RC4Context *cx = RC4_AllocateContext(); | |
168 if (cx) { | |
169 SECStatus rv = RC4_InitContext(cx, key, len, NULL, 0, 0, 0); | |
170 if (rv != SECSuccess) { | |
171 PORT_ZFree(cx, sizeof(*cx)); | |
172 cx = NULL; | |
173 } | |
174 } | |
175 return cx; | |
176 } | |
177 | |
178 void | |
179 RC4_DestroyContext(RC4Context *cx, PRBool freeit) | |
180 { | |
181 if (freeit) | |
182 PORT_ZFree(cx, sizeof(*cx)); | |
183 } | |
184 | |
185 #if defined(NSS_BEVAND_ARCFOUR) | |
186 extern void ARCFOUR(RC4Context *cx, WORD inputLen, | |
187 const unsigned char *input, unsigned char *output); | |
188 #else | |
189 /* | |
190 * Generate the next byte in the stream. | |
191 */ | |
192 #define ARCFOUR_NEXT_BYTE() \ | |
193 tmpSi = cx->S[++tmpi]; \ | |
194 tmpj += tmpSi; \ | |
195 tmpSj = cx->S[tmpj]; \ | |
196 cx->S[tmpi] = tmpSj; \ | |
197 cx->S[tmpj] = tmpSi; \ | |
198 t = tmpSi + tmpSj; | |
199 | |
200 #ifdef CONVERT_TO_WORDS | |
201 /* | |
202 * Straight ARCFOUR op. No optimization. | |
203 */ | |
204 static SECStatus | |
205 rc4_no_opt(RC4Context *cx, unsigned char *output, | |
206 unsigned int *outputLen, unsigned int maxOutputLen, | |
207 const unsigned char *input, unsigned int inputLen) | |
208 { | |
209 PRUint8 t; | |
210 Stype tmpSi, tmpSj; | |
211 register PRUint8 tmpi = cx->i; | |
212 register PRUint8 tmpj = cx->j; | |
213 unsigned int index; | |
214 PORT_Assert(maxOutputLen >= inputLen); | |
215 if (maxOutputLen < inputLen) { | |
216 PORT_SetError(SEC_ERROR_OUTPUT_LEN); | |
217 return SECFailure; | |
218 } | |
219 for (index=0; index < inputLen; index++) { | |
220 /* Generate next byte from stream. */ | |
221 ARCFOUR_NEXT_BYTE(); | |
222 /* output = next stream byte XOR next input byte */ | |
223 output[index] = cx->S[t] ^ input[index]; | |
224 } | |
225 *outputLen = inputLen; | |
226 cx->i = tmpi; | |
227 cx->j = tmpj; | |
228 return SECSuccess; | |
229 } | |
230 | |
231 #else | |
232 /* !CONVERT_TO_WORDS */ | |
233 | |
234 /* | |
235 * Byte-at-a-time ARCFOUR, unrolling the loop into 8 pieces. | |
236 */ | |
237 static SECStatus | |
238 rc4_unrolled(RC4Context *cx, unsigned char *output, | |
239 unsigned int *outputLen, unsigned int maxOutputLen, | |
240 const unsigned char *input, unsigned int inputLen) | |
241 { | |
242 PRUint8 t; | |
243 Stype tmpSi, tmpSj; | |
244 register PRUint8 tmpi = cx->i; | |
245 register PRUint8 tmpj = cx->j; | |
246 int index; | |
247 PORT_Assert(maxOutputLen >= inputLen); | |
248 if (maxOutputLen < inputLen) { | |
249 PORT_SetError(SEC_ERROR_OUTPUT_LEN); | |
250 return SECFailure; | |
251 } | |
252 for (index = inputLen / 8; index-- > 0; input += 8, output += 8) { | |
253 ARCFOUR_NEXT_BYTE(); | |
254 output[0] = cx->S[t] ^ input[0]; | |
255 ARCFOUR_NEXT_BYTE(); | |
256 output[1] = cx->S[t] ^ input[1]; | |
257 ARCFOUR_NEXT_BYTE(); | |
258 output[2] = cx->S[t] ^ input[2]; | |
259 ARCFOUR_NEXT_BYTE(); | |
260 output[3] = cx->S[t] ^ input[3]; | |
261 ARCFOUR_NEXT_BYTE(); | |
262 output[4] = cx->S[t] ^ input[4]; | |
263 ARCFOUR_NEXT_BYTE(); | |
264 output[5] = cx->S[t] ^ input[5]; | |
265 ARCFOUR_NEXT_BYTE(); | |
266 output[6] = cx->S[t] ^ input[6]; | |
267 ARCFOUR_NEXT_BYTE(); | |
268 output[7] = cx->S[t] ^ input[7]; | |
269 } | |
270 index = inputLen % 8; | |
271 if (index) { | |
272 input += index; | |
273 output += index; | |
274 switch (index) { | |
275 case 7: | |
276 ARCFOUR_NEXT_BYTE(); | |
277 output[-7] = cx->S[t] ^ input[-7]; /* FALLTHRU */ | |
278 case 6: | |
279 ARCFOUR_NEXT_BYTE(); | |
280 output[-6] = cx->S[t] ^ input[-6]; /* FALLTHRU */ | |
281 case 5: | |
282 ARCFOUR_NEXT_BYTE(); | |
283 output[-5] = cx->S[t] ^ input[-5]; /* FALLTHRU */ | |
284 case 4: | |
285 ARCFOUR_NEXT_BYTE(); | |
286 output[-4] = cx->S[t] ^ input[-4]; /* FALLTHRU */ | |
287 case 3: | |
288 ARCFOUR_NEXT_BYTE(); | |
289 output[-3] = cx->S[t] ^ input[-3]; /* FALLTHRU */ | |
290 case 2: | |
291 ARCFOUR_NEXT_BYTE(); | |
292 output[-2] = cx->S[t] ^ input[-2]; /* FALLTHRU */ | |
293 case 1: | |
294 ARCFOUR_NEXT_BYTE(); | |
295 output[-1] = cx->S[t] ^ input[-1]; /* FALLTHRU */ | |
296 default: | |
297 /* FALLTHRU */ | |
298 ; /* hp-ux build breaks without this */ | |
299 } | |
300 } | |
301 cx->i = tmpi; | |
302 cx->j = tmpj; | |
303 *outputLen = inputLen; | |
304 return SECSuccess; | |
305 } | |
306 #endif | |
307 | |
308 #ifdef IS_LITTLE_ENDIAN | |
309 #define ARCFOUR_NEXT4BYTES_L(n) \ | |
310 ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n ); \ | |
311 ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 8); \ | |
312 ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 16); \ | |
313 ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 24); | |
314 #else | |
315 #define ARCFOUR_NEXT4BYTES_B(n) \ | |
316 ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 24); \ | |
317 ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 16); \ | |
318 ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 8); \ | |
319 ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n ); | |
320 #endif | |
321 | |
322 #if (defined(IS_64) && !defined(__sparc)) || defined(NSS_USE_64) | |
323 /* 64-bit wordsize */ | |
324 #ifdef IS_LITTLE_ENDIAN | |
325 #define ARCFOUR_NEXT_WORD() \ | |
326 { streamWord = 0; ARCFOUR_NEXT4BYTES_L(0); ARCFOUR_NEXT4BYTES_L(32); } | |
327 #else | |
328 #define ARCFOUR_NEXT_WORD() \ | |
329 { streamWord = 0; ARCFOUR_NEXT4BYTES_B(32); ARCFOUR_NEXT4BYTES_B(0); } | |
330 #endif | |
331 #else | |
332 /* 32-bit wordsize */ | |
333 #ifdef IS_LITTLE_ENDIAN | |
334 #define ARCFOUR_NEXT_WORD() \ | |
335 { streamWord = 0; ARCFOUR_NEXT4BYTES_L(0); } | |
336 #else | |
337 #define ARCFOUR_NEXT_WORD() \ | |
338 { streamWord = 0; ARCFOUR_NEXT4BYTES_B(0); } | |
339 #endif | |
340 #endif | |
341 | |
342 #ifdef IS_LITTLE_ENDIAN | |
343 #define RSH << | |
344 #define LSH >> | |
345 #else | |
346 #define RSH >> | |
347 #define LSH << | |
348 #endif | |
349 | |
350 #ifdef IS_LITTLE_ENDIAN | |
351 #define LEFTMOST_BYTE_SHIFT 0 | |
352 #define NEXT_BYTE_SHIFT(shift) shift + 8 | |
353 #else | |
354 #define LEFTMOST_BYTE_SHIFT 8*(WORDSIZE - 1) | |
355 #define NEXT_BYTE_SHIFT(shift) shift - 8 | |
356 #endif | |
357 | |
358 #ifdef CONVERT_TO_WORDS | |
359 static SECStatus | |
360 rc4_wordconv(RC4Context *cx, unsigned char *output, | |
361 unsigned int *outputLen, unsigned int maxOutputLen, | |
362 const unsigned char *input, unsigned int inputLen) | |
363 { | |
364 PR_STATIC_ASSERT(sizeof(PRUword) == sizeof(ptrdiff_t)); | |
365 unsigned int inOffset = (PRUword)input % WORDSIZE; | |
366 unsigned int outOffset = (PRUword)output % WORDSIZE; | |
367 register WORD streamWord; | |
368 register const WORD *pInWord; | |
369 register WORD *pOutWord; | |
370 register WORD inWord, nextInWord; | |
371 PRUint8 t; | |
372 register Stype tmpSi, tmpSj; | |
373 register PRUint8 tmpi = cx->i; | |
374 register PRUint8 tmpj = cx->j; | |
375 unsigned int bufShift, invBufShift; | |
376 unsigned int i; | |
377 const unsigned char *finalIn; | |
378 unsigned char *finalOut; | |
379 | |
380 PORT_Assert(maxOutputLen >= inputLen); | |
381 if (maxOutputLen < inputLen) { | |
382 PORT_SetError(SEC_ERROR_OUTPUT_LEN); | |
383 return SECFailure; | |
384 } | |
385 if (inputLen < 2*WORDSIZE) { | |
386 /* Ignore word conversion, do byte-at-a-time */ | |
387 return rc4_no_opt(cx, output, outputLen, maxOutputLen, input, inputLen); | |
388 } | |
389 *outputLen = inputLen; | |
390 pInWord = (const WORD *)(input - inOffset); | |
391 pOutWord = (WORD *)(output - outOffset); | |
392 if (inOffset <= outOffset) { | |
393 bufShift = 8*(outOffset - inOffset); | |
394 invBufShift = 8*WORDSIZE - bufShift; | |
395 } else { | |
396 invBufShift = 8*(inOffset - outOffset); | |
397 bufShift = 8*WORDSIZE - invBufShift; | |
398 } | |
399 /*****************************************************************/ | |
400 /* Step 1: */ | |
401 /* If the first output word is partial, consume the bytes in the */ | |
402 /* first partial output word by loading one or two words of */ | |
403 /* input and shifting them accordingly. Otherwise, just load */ | |
404 /* in the first word of input. At the end of this block, at */ | |
405 /* least one partial word of input should ALWAYS be loaded. */ | |
406 /*****************************************************************/ | |
407 if (outOffset) { | |
408 unsigned int byteCount = WORDSIZE - outOffset; | |
409 for (i = 0; i < byteCount; i++) { | |
410 ARCFOUR_NEXT_BYTE(); | |
411 output[i] = cx->S[t] ^ input[i]; | |
412 } | |
413 /* Consumed byteCount bytes of input */ | |
414 inputLen -= byteCount; | |
415 pInWord++; | |
416 | |
417 /* move to next word of output */ | |
418 pOutWord++; | |
419 | |
420 /* If buffers are relatively misaligned, shift the bytes in inWord | |
421 * to be aligned to the output buffer. | |
422 */ | |
423 if (inOffset < outOffset) { | |
424 /* The first input word (which may be partial) has more bytes | |
425 * than needed. Copy the remainder to inWord. | |
426 */ | |
427 unsigned int shift = LEFTMOST_BYTE_SHIFT; | |
428 inWord = 0; | |
429 for (i = 0; i < outOffset - inOffset; i++) { | |
430 inWord |= (WORD)input[byteCount + i] << shift; | |
431 shift = NEXT_BYTE_SHIFT(shift); | |
432 } | |
433 } else if (inOffset > outOffset) { | |
434 /* Consumed some bytes in the second input word. Copy the | |
435 * remainder to inWord. | |
436 */ | |
437 inWord = *pInWord++; | |
438 inWord = inWord LSH invBufShift; | |
439 } else { | |
440 inWord = 0; | |
441 } | |
442 } else { | |
443 /* output is word-aligned */ | |
444 if (inOffset) { | |
445 /* Input is not word-aligned. The first word load of input | |
446 * will not produce a full word of input bytes, so one word | |
447 * must be pre-loaded. The main loop below will load in the | |
448 * next input word and shift some of its bytes into inWord | |
449 * in order to create a full input word. Note that the main | |
450 * loop must execute at least once because the input must | |
451 * be at least two words. | |
452 */ | |
453 unsigned int shift = LEFTMOST_BYTE_SHIFT; | |
454 inWord = 0; | |
455 for (i = 0; i < WORDSIZE - inOffset; i++) { | |
456 inWord |= (WORD)input[i] << shift; | |
457 shift = NEXT_BYTE_SHIFT(shift); | |
458 } | |
459 pInWord++; | |
460 } else { | |
461 /* Input is word-aligned. The first word load of input | |
462 * will produce a full word of input bytes, so nothing | |
463 * needs to be loaded here. | |
464 */ | |
465 inWord = 0; | |
466 } | |
467 } | |
468 /*****************************************************************/ | |
469 /* Step 2: main loop */ | |
470 /* At this point the output buffer is word-aligned. Any unused */ | |
471 /* bytes from above will be in inWord (shifted correctly). If */ | |
472 /* the input buffer is unaligned relative to the output buffer, */ | |
473 /* shifting has to be done. */ | |
474 /*****************************************************************/ | |
475 if (bufShift) { | |
476 /* preloadedByteCount is the number of input bytes pre-loaded | |
477 * in inWord. | |
478 */ | |
479 unsigned int preloadedByteCount = bufShift/8; | |
480 for (; inputLen >= preloadedByteCount + WORDSIZE; | |
481 inputLen -= WORDSIZE) { | |
482 nextInWord = *pInWord++; | |
483 inWord |= nextInWord RSH bufShift; | |
484 nextInWord = nextInWord LSH invBufShift; | |
485 ARCFOUR_NEXT_WORD(); | |
486 *pOutWord++ = inWord ^ streamWord; | |
487 inWord = nextInWord; | |
488 } | |
489 if (inputLen == 0) { | |
490 /* Nothing left to do. */ | |
491 cx->i = tmpi; | |
492 cx->j = tmpj; | |
493 return SECSuccess; | |
494 } | |
495 finalIn = (const unsigned char *)pInWord - preloadedByteCount; | |
496 } else { | |
497 for (; inputLen >= WORDSIZE; inputLen -= WORDSIZE) { | |
498 inWord = *pInWord++; | |
499 ARCFOUR_NEXT_WORD(); | |
500 *pOutWord++ = inWord ^ streamWord; | |
501 } | |
502 if (inputLen == 0) { | |
503 /* Nothing left to do. */ | |
504 cx->i = tmpi; | |
505 cx->j = tmpj; | |
506 return SECSuccess; | |
507 } | |
508 finalIn = (const unsigned char *)pInWord; | |
509 } | |
510 /*****************************************************************/ | |
511 /* Step 3: */ | |
512 /* Do the remaining partial word of input one byte at a time. */ | |
513 /*****************************************************************/ | |
514 finalOut = (unsigned char *)pOutWord; | |
515 for (i = 0; i < inputLen; i++) { | |
516 ARCFOUR_NEXT_BYTE(); | |
517 finalOut[i] = cx->S[t] ^ finalIn[i]; | |
518 } | |
519 cx->i = tmpi; | |
520 cx->j = tmpj; | |
521 return SECSuccess; | |
522 } | |
523 #endif | |
524 #endif /* NSS_BEVAND_ARCFOUR */ | |
525 | |
526 SECStatus | |
527 RC4_Encrypt(RC4Context *cx, unsigned char *output, | |
528 unsigned int *outputLen, unsigned int maxOutputLen, | |
529 const unsigned char *input, unsigned int inputLen) | |
530 { | |
531 PORT_Assert(maxOutputLen >= inputLen); | |
532 if (maxOutputLen < inputLen) { | |
533 PORT_SetError(SEC_ERROR_OUTPUT_LEN); | |
534 return SECFailure; | |
535 } | |
536 #if defined(NSS_BEVAND_ARCFOUR) | |
537 ARCFOUR(cx, inputLen, input, output); | |
538 *outputLen = inputLen; | |
539 return SECSuccess; | |
540 #elif defined( CONVERT_TO_WORDS ) | |
541 /* Convert the byte-stream to a word-stream */ | |
542 return rc4_wordconv(cx, output, outputLen, maxOutputLen, input, inputLen); | |
543 #else | |
544 /* Operate on bytes, but unroll the main loop */ | |
545 return rc4_unrolled(cx, output, outputLen, maxOutputLen, input, inputLen); | |
546 #endif | |
547 } | |
548 | |
549 SECStatus RC4_Decrypt(RC4Context *cx, unsigned char *output, | |
550 unsigned int *outputLen, unsigned int maxOutputLen, | |
551 const unsigned char *input, unsigned int inputLen) | |
552 { | |
553 PORT_Assert(maxOutputLen >= inputLen); | |
554 if (maxOutputLen < inputLen) { | |
555 PORT_SetError(SEC_ERROR_OUTPUT_LEN); | |
556 return SECFailure; | |
557 } | |
558 /* decrypt and encrypt are same operation. */ | |
559 #if defined(NSS_BEVAND_ARCFOUR) | |
560 ARCFOUR(cx, inputLen, input, output); | |
561 *outputLen = inputLen; | |
562 return SECSuccess; | |
563 #elif defined( CONVERT_TO_WORDS ) | |
564 /* Convert the byte-stream to a word-stream */ | |
565 return rc4_wordconv(cx, output, outputLen, maxOutputLen, input, inputLen); | |
566 #else | |
567 /* Operate on bytes, but unroll the main loop */ | |
568 return rc4_unrolled(cx, output, outputLen, maxOutputLen, input, inputLen); | |
569 #endif | |
570 } | |
571 | |
572 #undef CONVERT_TO_WORDS | |
573 #undef USE_WORD |