Mercurial > trustbridge > nss-cmake-static
view nss/lib/freebl/arcfour.c @ 4:b513267f632f tip
Build DBM module
author | Andre Heinecke <andre.heinecke@intevation.de> |
---|---|
date | Tue, 05 Aug 2014 18:58:03 +0200 |
parents | 1e5118fa0cb1 |
children |
line wrap: on
line source
/* arcfour.c - the arc four algorithm. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifdef FREEBL_NO_DEPEND #include "stubs.h" #endif #include "prerr.h" #include "secerr.h" #include "prtypes.h" #include "blapi.h" /* Architecture-dependent defines */ #if defined(SOLARIS) || defined(HPUX) || defined(NSS_X86) || \ defined(_WIN64) /* Convert the byte-stream to a word-stream */ #define CONVERT_TO_WORDS #endif #if defined(AIX) || defined(OSF1) || defined(NSS_BEVAND_ARCFOUR) /* Treat array variables as words, not bytes, on CPUs that take * much longer to write bytes than to write words, or when using * assembler code that required it. */ #define USE_WORD #endif #if defined(IS_64) || defined(NSS_BEVAND_ARCFOUR) typedef PRUint64 WORD; #else typedef PRUint32 WORD; #endif #define WORDSIZE sizeof(WORD) #if defined(USE_WORD) typedef WORD Stype; #else typedef PRUint8 Stype; #endif #define ARCFOUR_STATE_SIZE 256 #define MASK1BYTE (WORD)(0xff) #define SWAP(a, b) \ tmp = a; \ a = b; \ b = tmp; /* * State information for stream cipher. */ struct RC4ContextStr { #if defined(NSS_ARCFOUR_IJ_B4_S) || defined(NSS_BEVAND_ARCFOUR) Stype i; Stype j; Stype S[ARCFOUR_STATE_SIZE]; #else Stype S[ARCFOUR_STATE_SIZE]; Stype i; Stype j; #endif }; /* * array indices [0..255] to initialize cx->S array (faster than loop). */ static const Stype Kinit[256] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff }; RC4Context * RC4_AllocateContext(void) { return PORT_ZNew(RC4Context); } SECStatus RC4_InitContext(RC4Context *cx, const unsigned char *key, unsigned int len, const unsigned char * unused1, int unused2, unsigned int unused3, unsigned int unused4) { unsigned int i; PRUint8 j, tmp; PRUint8 K[256]; PRUint8 *L; /* verify the key length. */ PORT_Assert(len > 0 && len < ARCFOUR_STATE_SIZE); if (len == 0 || len >= ARCFOUR_STATE_SIZE) { PORT_SetError(SEC_ERROR_BAD_KEY); return SECFailure; } if (cx == NULL) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } /* Initialize the state using array indices. */ memcpy(cx->S, Kinit, sizeof cx->S); /* Fill in K repeatedly with values from key. */ L = K; for (i = sizeof K; i > len; i-= len) { memcpy(L, key, len); L += len; } memcpy(L, key, i); /* Stir the state of the generator. At this point it is assumed * that the key is the size of the state buffer. If this is not * the case, the key bytes are repeated to fill the buffer. */ j = 0; #define ARCFOUR_STATE_STIR(ii) \ j = j + cx->S[ii] + K[ii]; \ SWAP(cx->S[ii], cx->S[j]); for (i=0; i<ARCFOUR_STATE_SIZE; i++) { ARCFOUR_STATE_STIR(i); } cx->i = 0; cx->j = 0; return SECSuccess; } /* * Initialize a new generator. */ RC4Context * RC4_CreateContext(const unsigned char *key, int len) { RC4Context *cx = RC4_AllocateContext(); if (cx) { SECStatus rv = RC4_InitContext(cx, key, len, NULL, 0, 0, 0); if (rv != SECSuccess) { PORT_ZFree(cx, sizeof(*cx)); cx = NULL; } } return cx; } void RC4_DestroyContext(RC4Context *cx, PRBool freeit) { if (freeit) PORT_ZFree(cx, sizeof(*cx)); } #if defined(NSS_BEVAND_ARCFOUR) extern void ARCFOUR(RC4Context *cx, WORD inputLen, const unsigned char *input, unsigned char *output); #else /* * Generate the next byte in the stream. */ #define ARCFOUR_NEXT_BYTE() \ tmpSi = cx->S[++tmpi]; \ tmpj += tmpSi; \ tmpSj = cx->S[tmpj]; \ cx->S[tmpi] = tmpSj; \ cx->S[tmpj] = tmpSi; \ t = tmpSi + tmpSj; #ifdef CONVERT_TO_WORDS /* * Straight ARCFOUR op. No optimization. */ static SECStatus rc4_no_opt(RC4Context *cx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { PRUint8 t; Stype tmpSi, tmpSj; register PRUint8 tmpi = cx->i; register PRUint8 tmpj = cx->j; unsigned int index; PORT_Assert(maxOutputLen >= inputLen); if (maxOutputLen < inputLen) { PORT_SetError(SEC_ERROR_OUTPUT_LEN); return SECFailure; } for (index=0; index < inputLen; index++) { /* Generate next byte from stream. */ ARCFOUR_NEXT_BYTE(); /* output = next stream byte XOR next input byte */ output[index] = cx->S[t] ^ input[index]; } *outputLen = inputLen; cx->i = tmpi; cx->j = tmpj; return SECSuccess; } #else /* !CONVERT_TO_WORDS */ /* * Byte-at-a-time ARCFOUR, unrolling the loop into 8 pieces. */ static SECStatus rc4_unrolled(RC4Context *cx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { PRUint8 t; Stype tmpSi, tmpSj; register PRUint8 tmpi = cx->i; register PRUint8 tmpj = cx->j; int index; PORT_Assert(maxOutputLen >= inputLen); if (maxOutputLen < inputLen) { PORT_SetError(SEC_ERROR_OUTPUT_LEN); return SECFailure; } for (index = inputLen / 8; index-- > 0; input += 8, output += 8) { ARCFOUR_NEXT_BYTE(); output[0] = cx->S[t] ^ input[0]; ARCFOUR_NEXT_BYTE(); output[1] = cx->S[t] ^ input[1]; ARCFOUR_NEXT_BYTE(); output[2] = cx->S[t] ^ input[2]; ARCFOUR_NEXT_BYTE(); output[3] = cx->S[t] ^ input[3]; ARCFOUR_NEXT_BYTE(); output[4] = cx->S[t] ^ input[4]; ARCFOUR_NEXT_BYTE(); output[5] = cx->S[t] ^ input[5]; ARCFOUR_NEXT_BYTE(); output[6] = cx->S[t] ^ input[6]; ARCFOUR_NEXT_BYTE(); output[7] = cx->S[t] ^ input[7]; } index = inputLen % 8; if (index) { input += index; output += index; switch (index) { case 7: ARCFOUR_NEXT_BYTE(); output[-7] = cx->S[t] ^ input[-7]; /* FALLTHRU */ case 6: ARCFOUR_NEXT_BYTE(); output[-6] = cx->S[t] ^ input[-6]; /* FALLTHRU */ case 5: ARCFOUR_NEXT_BYTE(); output[-5] = cx->S[t] ^ input[-5]; /* FALLTHRU */ case 4: ARCFOUR_NEXT_BYTE(); output[-4] = cx->S[t] ^ input[-4]; /* FALLTHRU */ case 3: ARCFOUR_NEXT_BYTE(); output[-3] = cx->S[t] ^ input[-3]; /* FALLTHRU */ case 2: ARCFOUR_NEXT_BYTE(); output[-2] = cx->S[t] ^ input[-2]; /* FALLTHRU */ case 1: ARCFOUR_NEXT_BYTE(); output[-1] = cx->S[t] ^ input[-1]; /* FALLTHRU */ default: /* FALLTHRU */ ; /* hp-ux build breaks without this */ } } cx->i = tmpi; cx->j = tmpj; *outputLen = inputLen; return SECSuccess; } #endif #ifdef IS_LITTLE_ENDIAN #define ARCFOUR_NEXT4BYTES_L(n) \ ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n ); \ ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 8); \ ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 16); \ ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 24); #else #define ARCFOUR_NEXT4BYTES_B(n) \ ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 24); \ ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 16); \ ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 8); \ ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n ); #endif #if (defined(IS_64) && !defined(__sparc)) || defined(NSS_USE_64) /* 64-bit wordsize */ #ifdef IS_LITTLE_ENDIAN #define ARCFOUR_NEXT_WORD() \ { streamWord = 0; ARCFOUR_NEXT4BYTES_L(0); ARCFOUR_NEXT4BYTES_L(32); } #else #define ARCFOUR_NEXT_WORD() \ { streamWord = 0; ARCFOUR_NEXT4BYTES_B(32); ARCFOUR_NEXT4BYTES_B(0); } #endif #else /* 32-bit wordsize */ #ifdef IS_LITTLE_ENDIAN #define ARCFOUR_NEXT_WORD() \ { streamWord = 0; ARCFOUR_NEXT4BYTES_L(0); } #else #define ARCFOUR_NEXT_WORD() \ { streamWord = 0; ARCFOUR_NEXT4BYTES_B(0); } #endif #endif #ifdef IS_LITTLE_ENDIAN #define RSH << #define LSH >> #else #define RSH >> #define LSH << #endif #ifdef IS_LITTLE_ENDIAN #define LEFTMOST_BYTE_SHIFT 0 #define NEXT_BYTE_SHIFT(shift) shift + 8 #else #define LEFTMOST_BYTE_SHIFT 8*(WORDSIZE - 1) #define NEXT_BYTE_SHIFT(shift) shift - 8 #endif #ifdef CONVERT_TO_WORDS static SECStatus rc4_wordconv(RC4Context *cx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { PR_STATIC_ASSERT(sizeof(PRUword) == sizeof(ptrdiff_t)); unsigned int inOffset = (PRUword)input % WORDSIZE; unsigned int outOffset = (PRUword)output % WORDSIZE; register WORD streamWord; register const WORD *pInWord; register WORD *pOutWord; register WORD inWord, nextInWord; PRUint8 t; register Stype tmpSi, tmpSj; register PRUint8 tmpi = cx->i; register PRUint8 tmpj = cx->j; unsigned int bufShift, invBufShift; unsigned int i; const unsigned char *finalIn; unsigned char *finalOut; PORT_Assert(maxOutputLen >= inputLen); if (maxOutputLen < inputLen) { PORT_SetError(SEC_ERROR_OUTPUT_LEN); return SECFailure; } if (inputLen < 2*WORDSIZE) { /* Ignore word conversion, do byte-at-a-time */ return rc4_no_opt(cx, output, outputLen, maxOutputLen, input, inputLen); } *outputLen = inputLen; pInWord = (const WORD *)(input - inOffset); pOutWord = (WORD *)(output - outOffset); if (inOffset <= outOffset) { bufShift = 8*(outOffset - inOffset); invBufShift = 8*WORDSIZE - bufShift; } else { invBufShift = 8*(inOffset - outOffset); bufShift = 8*WORDSIZE - invBufShift; } /*****************************************************************/ /* Step 1: */ /* If the first output word is partial, consume the bytes in the */ /* first partial output word by loading one or two words of */ /* input and shifting them accordingly. Otherwise, just load */ /* in the first word of input. At the end of this block, at */ /* least one partial word of input should ALWAYS be loaded. */ /*****************************************************************/ if (outOffset) { unsigned int byteCount = WORDSIZE - outOffset; for (i = 0; i < byteCount; i++) { ARCFOUR_NEXT_BYTE(); output[i] = cx->S[t] ^ input[i]; } /* Consumed byteCount bytes of input */ inputLen -= byteCount; pInWord++; /* move to next word of output */ pOutWord++; /* If buffers are relatively misaligned, shift the bytes in inWord * to be aligned to the output buffer. */ if (inOffset < outOffset) { /* The first input word (which may be partial) has more bytes * than needed. Copy the remainder to inWord. */ unsigned int shift = LEFTMOST_BYTE_SHIFT; inWord = 0; for (i = 0; i < outOffset - inOffset; i++) { inWord |= (WORD)input[byteCount + i] << shift; shift = NEXT_BYTE_SHIFT(shift); } } else if (inOffset > outOffset) { /* Consumed some bytes in the second input word. Copy the * remainder to inWord. */ inWord = *pInWord++; inWord = inWord LSH invBufShift; } else { inWord = 0; } } else { /* output is word-aligned */ if (inOffset) { /* Input is not word-aligned. The first word load of input * will not produce a full word of input bytes, so one word * must be pre-loaded. The main loop below will load in the * next input word and shift some of its bytes into inWord * in order to create a full input word. Note that the main * loop must execute at least once because the input must * be at least two words. */ unsigned int shift = LEFTMOST_BYTE_SHIFT; inWord = 0; for (i = 0; i < WORDSIZE - inOffset; i++) { inWord |= (WORD)input[i] << shift; shift = NEXT_BYTE_SHIFT(shift); } pInWord++; } else { /* Input is word-aligned. The first word load of input * will produce a full word of input bytes, so nothing * needs to be loaded here. */ inWord = 0; } } /*****************************************************************/ /* Step 2: main loop */ /* At this point the output buffer is word-aligned. Any unused */ /* bytes from above will be in inWord (shifted correctly). If */ /* the input buffer is unaligned relative to the output buffer, */ /* shifting has to be done. */ /*****************************************************************/ if (bufShift) { /* preloadedByteCount is the number of input bytes pre-loaded * in inWord. */ unsigned int preloadedByteCount = bufShift/8; for (; inputLen >= preloadedByteCount + WORDSIZE; inputLen -= WORDSIZE) { nextInWord = *pInWord++; inWord |= nextInWord RSH bufShift; nextInWord = nextInWord LSH invBufShift; ARCFOUR_NEXT_WORD(); *pOutWord++ = inWord ^ streamWord; inWord = nextInWord; } if (inputLen == 0) { /* Nothing left to do. */ cx->i = tmpi; cx->j = tmpj; return SECSuccess; } finalIn = (const unsigned char *)pInWord - preloadedByteCount; } else { for (; inputLen >= WORDSIZE; inputLen -= WORDSIZE) { inWord = *pInWord++; ARCFOUR_NEXT_WORD(); *pOutWord++ = inWord ^ streamWord; } if (inputLen == 0) { /* Nothing left to do. */ cx->i = tmpi; cx->j = tmpj; return SECSuccess; } finalIn = (const unsigned char *)pInWord; } /*****************************************************************/ /* Step 3: */ /* Do the remaining partial word of input one byte at a time. */ /*****************************************************************/ finalOut = (unsigned char *)pOutWord; for (i = 0; i < inputLen; i++) { ARCFOUR_NEXT_BYTE(); finalOut[i] = cx->S[t] ^ finalIn[i]; } cx->i = tmpi; cx->j = tmpj; return SECSuccess; } #endif #endif /* NSS_BEVAND_ARCFOUR */ SECStatus RC4_Encrypt(RC4Context *cx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { PORT_Assert(maxOutputLen >= inputLen); if (maxOutputLen < inputLen) { PORT_SetError(SEC_ERROR_OUTPUT_LEN); return SECFailure; } #if defined(NSS_BEVAND_ARCFOUR) ARCFOUR(cx, inputLen, input, output); *outputLen = inputLen; return SECSuccess; #elif defined( CONVERT_TO_WORDS ) /* Convert the byte-stream to a word-stream */ return rc4_wordconv(cx, output, outputLen, maxOutputLen, input, inputLen); #else /* Operate on bytes, but unroll the main loop */ return rc4_unrolled(cx, output, outputLen, maxOutputLen, input, inputLen); #endif } SECStatus RC4_Decrypt(RC4Context *cx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { PORT_Assert(maxOutputLen >= inputLen); if (maxOutputLen < inputLen) { PORT_SetError(SEC_ERROR_OUTPUT_LEN); return SECFailure; } /* decrypt and encrypt are same operation. */ #if defined(NSS_BEVAND_ARCFOUR) ARCFOUR(cx, inputLen, input, output); *outputLen = inputLen; return SECSuccess; #elif defined( CONVERT_TO_WORDS ) /* Convert the byte-stream to a word-stream */ return rc4_wordconv(cx, output, outputLen, maxOutputLen, input, inputLen); #else /* Operate on bytes, but unroll the main loop */ return rc4_unrolled(cx, output, outputLen, maxOutputLen, input, inputLen); #endif } #undef CONVERT_TO_WORDS #undef USE_WORD