diff nss/lib/freebl/arcfour.c @ 0:1e5118fa0cb1

This is NSS with a Cmake Buildsyste To compile a static NSS library for Windows we've used the Chromium-NSS fork and added a Cmake buildsystem to compile it statically for Windows. See README.chromium for chromium changes and README.trustbridge for our modifications.
author Andre Heinecke <andre.heinecke@intevation.de>
date Mon, 28 Jul 2014 10:47:06 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/nss/lib/freebl/arcfour.c	Mon Jul 28 10:47:06 2014 +0200
@@ -0,0 +1,573 @@
+/* arcfour.c - the arc four algorithm.
+ *
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#ifdef FREEBL_NO_DEPEND
+#include "stubs.h"
+#endif
+
+#include "prerr.h"
+#include "secerr.h"
+
+#include "prtypes.h"
+#include "blapi.h"
+
+/* Architecture-dependent defines */
+
+#if defined(SOLARIS) || defined(HPUX) || defined(NSS_X86) || \
+    defined(_WIN64)
+/* Convert the byte-stream to a word-stream */
+#define CONVERT_TO_WORDS
+#endif
+
+#if defined(AIX) || defined(OSF1) || defined(NSS_BEVAND_ARCFOUR)
+/* Treat array variables as words, not bytes, on CPUs that take 
+ * much longer to write bytes than to write words, or when using 
+ * assembler code that required it.
+ */
+#define USE_WORD
+#endif
+
+#if defined(IS_64) || defined(NSS_BEVAND_ARCFOUR)
+typedef PRUint64 WORD;
+#else
+typedef PRUint32 WORD;
+#endif
+#define WORDSIZE sizeof(WORD)
+
+#if defined(USE_WORD)
+typedef WORD Stype;
+#else
+typedef PRUint8 Stype;
+#endif
+
+#define ARCFOUR_STATE_SIZE 256
+
+#define MASK1BYTE (WORD)(0xff)
+
+#define SWAP(a, b) \
+	tmp = a; \
+	a = b; \
+	b = tmp;
+
+/*
+ * State information for stream cipher.
+ */
+struct RC4ContextStr
+{
+#if defined(NSS_ARCFOUR_IJ_B4_S) || defined(NSS_BEVAND_ARCFOUR)
+	Stype i;
+	Stype j;
+	Stype S[ARCFOUR_STATE_SIZE];
+#else
+	Stype S[ARCFOUR_STATE_SIZE];
+	Stype i;
+	Stype j;
+#endif
+};
+
+/*
+ * array indices [0..255] to initialize cx->S array (faster than loop).
+ */
+static const Stype Kinit[256] = {
+	0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+	0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+	0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+	0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
+	0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
+	0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
+	0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
+	0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
+	0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
+	0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
+	0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
+	0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
+	0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
+	0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
+	0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
+	0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
+	0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
+	0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
+	0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
+	0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
+	0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
+	0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
+	0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
+	0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
+	0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
+	0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
+	0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
+	0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
+	0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
+	0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
+	0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
+	0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
+};
+
+RC4Context *
+RC4_AllocateContext(void)
+{
+    return PORT_ZNew(RC4Context);
+}
+
+SECStatus   
+RC4_InitContext(RC4Context *cx, const unsigned char *key, unsigned int len,
+	        const unsigned char * unused1, int unused2, 
+		unsigned int unused3, unsigned int unused4)
+{
+	unsigned int i;
+	PRUint8 j, tmp;
+	PRUint8 K[256];
+	PRUint8 *L;
+
+	/* verify the key length. */
+	PORT_Assert(len > 0 && len < ARCFOUR_STATE_SIZE);
+	if (len == 0 || len >= ARCFOUR_STATE_SIZE) {
+		PORT_SetError(SEC_ERROR_BAD_KEY);
+		return SECFailure;
+	}
+	if (cx == NULL) {
+	    PORT_SetError(SEC_ERROR_INVALID_ARGS);
+	    return SECFailure;
+	}
+	/* Initialize the state using array indices. */
+	memcpy(cx->S, Kinit, sizeof cx->S);
+	/* Fill in K repeatedly with values from key. */
+	L = K;
+	for (i = sizeof K; i > len; i-= len) {
+		memcpy(L, key, len);
+		L += len;
+	}
+	memcpy(L, key, i);
+	/* Stir the state of the generator.  At this point it is assumed
+	 * that the key is the size of the state buffer.  If this is not
+	 * the case, the key bytes are repeated to fill the buffer.
+	 */
+	j = 0;
+#define ARCFOUR_STATE_STIR(ii) \
+	j = j + cx->S[ii] + K[ii]; \
+	SWAP(cx->S[ii], cx->S[j]);
+	for (i=0; i<ARCFOUR_STATE_SIZE; i++) {
+		ARCFOUR_STATE_STIR(i);
+	}
+	cx->i = 0;
+	cx->j = 0;
+	return SECSuccess;
+}
+
+
+/*
+ * Initialize a new generator.
+ */
+RC4Context *
+RC4_CreateContext(const unsigned char *key, int len)
+{
+    RC4Context *cx = RC4_AllocateContext();
+    if (cx) {
+	SECStatus rv = RC4_InitContext(cx, key, len, NULL, 0, 0, 0);
+	if (rv != SECSuccess) {
+	    PORT_ZFree(cx, sizeof(*cx));
+	    cx = NULL;
+	}
+    }
+    return cx;
+}
+
+void 
+RC4_DestroyContext(RC4Context *cx, PRBool freeit)
+{
+	if (freeit)
+		PORT_ZFree(cx, sizeof(*cx));
+}
+
+#if defined(NSS_BEVAND_ARCFOUR)
+extern void ARCFOUR(RC4Context *cx, WORD inputLen, 
+	const unsigned char *input, unsigned char *output);
+#else
+/*
+ * Generate the next byte in the stream.
+ */
+#define ARCFOUR_NEXT_BYTE() \
+	tmpSi = cx->S[++tmpi]; \
+	tmpj += tmpSi; \
+	tmpSj = cx->S[tmpj]; \
+	cx->S[tmpi] = tmpSj; \
+	cx->S[tmpj] = tmpSi; \
+	t = tmpSi + tmpSj;
+
+#ifdef CONVERT_TO_WORDS
+/*
+ * Straight ARCFOUR op.  No optimization.
+ */
+static SECStatus 
+rc4_no_opt(RC4Context *cx, unsigned char *output,
+           unsigned int *outputLen, unsigned int maxOutputLen,
+           const unsigned char *input, unsigned int inputLen)
+{
+    PRUint8 t;
+	Stype tmpSi, tmpSj;
+	register PRUint8 tmpi = cx->i;
+	register PRUint8 tmpj = cx->j;
+	unsigned int index;
+	PORT_Assert(maxOutputLen >= inputLen);
+	if (maxOutputLen < inputLen) {
+		PORT_SetError(SEC_ERROR_OUTPUT_LEN);
+		return SECFailure;
+	}
+	for (index=0; index < inputLen; index++) {
+		/* Generate next byte from stream. */
+		ARCFOUR_NEXT_BYTE();
+		/* output = next stream byte XOR next input byte */
+		output[index] = cx->S[t] ^ input[index];
+	}
+	*outputLen = inputLen;
+	cx->i = tmpi;
+	cx->j = tmpj;
+	return SECSuccess;
+}
+
+#else
+/* !CONVERT_TO_WORDS */
+
+/*
+ * Byte-at-a-time ARCFOUR, unrolling the loop into 8 pieces.
+ */
+static SECStatus 
+rc4_unrolled(RC4Context *cx, unsigned char *output,
+             unsigned int *outputLen, unsigned int maxOutputLen,
+             const unsigned char *input, unsigned int inputLen)
+{
+	PRUint8 t;
+	Stype tmpSi, tmpSj;
+	register PRUint8 tmpi = cx->i;
+	register PRUint8 tmpj = cx->j;
+	int index;
+	PORT_Assert(maxOutputLen >= inputLen);
+	if (maxOutputLen < inputLen) {
+		PORT_SetError(SEC_ERROR_OUTPUT_LEN);
+		return SECFailure;
+	}
+	for (index = inputLen / 8; index-- > 0; input += 8, output += 8) {
+		ARCFOUR_NEXT_BYTE();
+		output[0] = cx->S[t] ^ input[0];
+		ARCFOUR_NEXT_BYTE();
+		output[1] = cx->S[t] ^ input[1];
+		ARCFOUR_NEXT_BYTE();
+		output[2] = cx->S[t] ^ input[2];
+		ARCFOUR_NEXT_BYTE();
+		output[3] = cx->S[t] ^ input[3];
+		ARCFOUR_NEXT_BYTE();
+		output[4] = cx->S[t] ^ input[4];
+		ARCFOUR_NEXT_BYTE();
+		output[5] = cx->S[t] ^ input[5];
+		ARCFOUR_NEXT_BYTE();
+		output[6] = cx->S[t] ^ input[6];
+		ARCFOUR_NEXT_BYTE();
+		output[7] = cx->S[t] ^ input[7];
+	}
+	index = inputLen % 8;
+	if (index) {
+		input += index;
+		output += index;
+		switch (index) {
+		case 7:
+			ARCFOUR_NEXT_BYTE();
+			output[-7] = cx->S[t] ^ input[-7]; /* FALLTHRU */
+		case 6:
+			ARCFOUR_NEXT_BYTE();
+			output[-6] = cx->S[t] ^ input[-6]; /* FALLTHRU */
+		case 5:
+			ARCFOUR_NEXT_BYTE();
+			output[-5] = cx->S[t] ^ input[-5]; /* FALLTHRU */
+		case 4:
+			ARCFOUR_NEXT_BYTE();
+			output[-4] = cx->S[t] ^ input[-4]; /* FALLTHRU */
+		case 3:
+			ARCFOUR_NEXT_BYTE();
+			output[-3] = cx->S[t] ^ input[-3]; /* FALLTHRU */
+		case 2:
+			ARCFOUR_NEXT_BYTE();
+			output[-2] = cx->S[t] ^ input[-2]; /* FALLTHRU */
+		case 1:
+			ARCFOUR_NEXT_BYTE();
+			output[-1] = cx->S[t] ^ input[-1]; /* FALLTHRU */
+		default:
+			/* FALLTHRU */
+			; /* hp-ux build breaks without this */
+		}
+	}
+	cx->i = tmpi;
+	cx->j = tmpj;
+	*outputLen = inputLen;
+	return SECSuccess;
+}
+#endif
+
+#ifdef IS_LITTLE_ENDIAN
+#define ARCFOUR_NEXT4BYTES_L(n) \
+	ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n     ); \
+	ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n +  8); \
+	ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 16); \
+	ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 24);
+#else
+#define ARCFOUR_NEXT4BYTES_B(n) \
+	ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 24); \
+	ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 16); \
+	ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n +  8); \
+	ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n     );
+#endif
+
+#if (defined(IS_64) && !defined(__sparc)) || defined(NSS_USE_64)
+/* 64-bit wordsize */
+#ifdef IS_LITTLE_ENDIAN
+#define ARCFOUR_NEXT_WORD() \
+	{ streamWord = 0; ARCFOUR_NEXT4BYTES_L(0); ARCFOUR_NEXT4BYTES_L(32); }
+#else
+#define ARCFOUR_NEXT_WORD() \
+	{ streamWord = 0; ARCFOUR_NEXT4BYTES_B(32); ARCFOUR_NEXT4BYTES_B(0); }
+#endif
+#else
+/* 32-bit wordsize */
+#ifdef IS_LITTLE_ENDIAN
+#define ARCFOUR_NEXT_WORD() \
+	{ streamWord = 0; ARCFOUR_NEXT4BYTES_L(0); }
+#else
+#define ARCFOUR_NEXT_WORD() \
+	{ streamWord = 0; ARCFOUR_NEXT4BYTES_B(0); }
+#endif
+#endif
+
+#ifdef IS_LITTLE_ENDIAN
+#define RSH <<
+#define LSH >>
+#else
+#define RSH >>
+#define LSH <<
+#endif
+
+#ifdef IS_LITTLE_ENDIAN
+#define LEFTMOST_BYTE_SHIFT 0
+#define NEXT_BYTE_SHIFT(shift) shift + 8
+#else
+#define LEFTMOST_BYTE_SHIFT 8*(WORDSIZE - 1)
+#define NEXT_BYTE_SHIFT(shift) shift - 8
+#endif
+
+#ifdef CONVERT_TO_WORDS
+static SECStatus 
+rc4_wordconv(RC4Context *cx, unsigned char *output,
+             unsigned int *outputLen, unsigned int maxOutputLen,
+             const unsigned char *input, unsigned int inputLen)
+{
+	PR_STATIC_ASSERT(sizeof(PRUword) == sizeof(ptrdiff_t));
+	unsigned int inOffset = (PRUword)input % WORDSIZE;
+	unsigned int outOffset = (PRUword)output % WORDSIZE;
+	register WORD streamWord;
+	register const WORD *pInWord;
+	register WORD *pOutWord;
+	register WORD inWord, nextInWord;
+	PRUint8 t;
+	register Stype tmpSi, tmpSj;
+	register PRUint8 tmpi = cx->i;
+	register PRUint8 tmpj = cx->j;
+	unsigned int bufShift, invBufShift;
+	unsigned int i;
+	const unsigned char *finalIn;
+	unsigned char *finalOut;
+
+	PORT_Assert(maxOutputLen >= inputLen);
+	if (maxOutputLen < inputLen) {
+		PORT_SetError(SEC_ERROR_OUTPUT_LEN);
+		return SECFailure;
+	}
+	if (inputLen < 2*WORDSIZE) {
+		/* Ignore word conversion, do byte-at-a-time */
+		return rc4_no_opt(cx, output, outputLen, maxOutputLen, input, inputLen);
+	}
+	*outputLen = inputLen;
+	pInWord = (const WORD *)(input - inOffset);
+	pOutWord = (WORD *)(output - outOffset);
+	if (inOffset <= outOffset) {
+		bufShift = 8*(outOffset - inOffset);
+		invBufShift = 8*WORDSIZE - bufShift;
+	} else {
+		invBufShift = 8*(inOffset - outOffset);
+		bufShift = 8*WORDSIZE - invBufShift;
+	}
+	/*****************************************************************/
+	/* Step 1:                                                       */
+	/* If the first output word is partial, consume the bytes in the */
+	/* first partial output word by loading one or two words of      */
+	/* input and shifting them accordingly.  Otherwise, just load    */
+	/* in the first word of input.  At the end of this block, at     */
+	/* least one partial word of input should ALWAYS be loaded.      */
+	/*****************************************************************/
+	if (outOffset) {
+		unsigned int byteCount = WORDSIZE - outOffset; 
+		for (i = 0; i < byteCount; i++) {
+			ARCFOUR_NEXT_BYTE();
+			output[i] = cx->S[t] ^ input[i];
+		}
+		/* Consumed byteCount bytes of input */
+		inputLen -= byteCount;
+		pInWord++;
+
+		/* move to next word of output */
+		pOutWord++;
+
+		/* If buffers are relatively misaligned, shift the bytes in inWord
+		 * to be aligned to the output buffer.
+		 */
+		if (inOffset < outOffset) {
+			/* The first input word (which may be partial) has more bytes
+			 * than needed.  Copy the remainder to inWord.
+			 */
+			unsigned int shift = LEFTMOST_BYTE_SHIFT;
+			inWord = 0;
+			for (i = 0; i < outOffset - inOffset; i++) {
+				inWord |= (WORD)input[byteCount + i] << shift;
+				shift = NEXT_BYTE_SHIFT(shift);
+			}
+		} else if (inOffset > outOffset) {
+			/* Consumed some bytes in the second input word.  Copy the
+			 * remainder to inWord.
+			 */
+			inWord = *pInWord++;
+			inWord = inWord LSH invBufShift;
+		} else {
+			inWord = 0;
+		}
+	} else {
+		/* output is word-aligned */
+		if (inOffset) {
+			/* Input is not word-aligned.  The first word load of input 
+			 * will not produce a full word of input bytes, so one word
+			 * must be pre-loaded.  The main loop below will load in the
+			 * next input word and shift some of its bytes into inWord
+			 * in order to create a full input word.  Note that the main
+			 * loop must execute at least once because the input must
+			 * be at least two words.
+			 */
+			unsigned int shift = LEFTMOST_BYTE_SHIFT;
+			inWord = 0;
+			for (i = 0; i < WORDSIZE - inOffset; i++) {
+				inWord |= (WORD)input[i] << shift;
+				shift = NEXT_BYTE_SHIFT(shift);
+			}
+			pInWord++;
+		} else {
+			/* Input is word-aligned.  The first word load of input 
+			 * will produce a full word of input bytes, so nothing
+			 * needs to be loaded here.
+			 */
+			inWord = 0;
+		}
+	}
+	/*****************************************************************/
+	/* Step 2: main loop                                             */
+	/* At this point the output buffer is word-aligned.  Any unused  */
+	/* bytes from above will be in inWord (shifted correctly).  If   */
+	/* the input buffer is unaligned relative to the output buffer,  */
+	/* shifting has to be done.                                      */
+	/*****************************************************************/
+	if (bufShift) {
+		/* preloadedByteCount is the number of input bytes pre-loaded
+		 * in inWord.
+		 */
+		unsigned int preloadedByteCount = bufShift/8;
+		for (; inputLen >= preloadedByteCount + WORDSIZE;
+		     inputLen -= WORDSIZE) {
+			nextInWord = *pInWord++;
+			inWord |= nextInWord RSH bufShift;
+			nextInWord = nextInWord LSH invBufShift;
+			ARCFOUR_NEXT_WORD();
+			*pOutWord++ = inWord ^ streamWord;
+			inWord = nextInWord;
+		}
+		if (inputLen == 0) {
+			/* Nothing left to do. */
+			cx->i = tmpi;
+			cx->j = tmpj;
+			return SECSuccess;
+		}
+		finalIn = (const unsigned char *)pInWord - preloadedByteCount;
+	} else {
+		for (; inputLen >= WORDSIZE; inputLen -= WORDSIZE) {
+			inWord = *pInWord++;
+			ARCFOUR_NEXT_WORD();
+			*pOutWord++ = inWord ^ streamWord;
+		}
+		if (inputLen == 0) {
+			/* Nothing left to do. */
+			cx->i = tmpi;
+			cx->j = tmpj;
+			return SECSuccess;
+		}
+		finalIn = (const unsigned char *)pInWord;
+	}
+	/*****************************************************************/
+	/* Step 3:                                                       */
+	/* Do the remaining partial word of input one byte at a time.    */
+	/*****************************************************************/
+	finalOut = (unsigned char *)pOutWord;
+	for (i = 0; i < inputLen; i++) {
+		ARCFOUR_NEXT_BYTE();
+		finalOut[i] = cx->S[t] ^ finalIn[i];
+	}
+	cx->i = tmpi;
+	cx->j = tmpj;
+	return SECSuccess;
+}
+#endif
+#endif /* NSS_BEVAND_ARCFOUR */
+
+SECStatus 
+RC4_Encrypt(RC4Context *cx, unsigned char *output,
+            unsigned int *outputLen, unsigned int maxOutputLen,
+            const unsigned char *input, unsigned int inputLen)
+{
+	PORT_Assert(maxOutputLen >= inputLen);
+	if (maxOutputLen < inputLen) {
+		PORT_SetError(SEC_ERROR_OUTPUT_LEN);
+		return SECFailure;
+	}
+#if defined(NSS_BEVAND_ARCFOUR)
+	ARCFOUR(cx, inputLen, input, output);
+        *outputLen = inputLen;
+	return SECSuccess;
+#elif defined( CONVERT_TO_WORDS )
+	/* Convert the byte-stream to a word-stream */
+	return rc4_wordconv(cx, output, outputLen, maxOutputLen, input, inputLen);
+#else
+	/* Operate on bytes, but unroll the main loop */
+	return rc4_unrolled(cx, output, outputLen, maxOutputLen, input, inputLen);
+#endif
+}
+
+SECStatus RC4_Decrypt(RC4Context *cx, unsigned char *output,
+                      unsigned int *outputLen, unsigned int maxOutputLen,
+                      const unsigned char *input, unsigned int inputLen)
+{
+	PORT_Assert(maxOutputLen >= inputLen);
+	if (maxOutputLen < inputLen) {
+		PORT_SetError(SEC_ERROR_OUTPUT_LEN);
+		return SECFailure;
+	}
+	/* decrypt and encrypt are same operation. */
+#if defined(NSS_BEVAND_ARCFOUR)
+	ARCFOUR(cx, inputLen, input, output);
+        *outputLen = inputLen;
+	return SECSuccess;
+#elif defined( CONVERT_TO_WORDS )
+	/* Convert the byte-stream to a word-stream */
+	return rc4_wordconv(cx, output, outputLen, maxOutputLen, input, inputLen);
+#else
+	/* Operate on bytes, but unroll the main loop */
+	return rc4_unrolled(cx, output, outputLen, maxOutputLen, input, inputLen);
+#endif
+}
+
+#undef CONVERT_TO_WORDS
+#undef USE_WORD
This site is hosted by Intevation GmbH (Datenschutzerklärung und Impressum | Privacy Policy and Imprint)